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1. Introduction

In recent times, some concepts associated with primality for R-modules have

been introduced and studied, providing valuable insights into various mathematical

elements. Of particular interest is the dual notion of prime submodule, introduced

by S. Yassemi in [10] and further extended to lattice theory by J. Abuhlail and H.

Hroub in [1]. A nonzero submodule N of RM is second if IN = 0 or IN = N for

each I ideal of R. This is equivalent to AnnR(N) = AnnR(N/K) for every proper

submodule K of N , where AnnR(M) is the left annihilator of M in R, see Remark

2.4. On the other hand, the lattice of preradicals in R-Mod has proven been highly

useful in characterizing and describing different types of rings and modules, for

examples see Theorems 9, 11 and 13 of [6].

In this paper, we define and study two extensions of the concept of second

module. One involves actions of a subclass A of R-pr on a lattice of submodules

of a module, which allows us to introduce A -second modules. The other method

involves the R-pr-annihilator of a module, which allows us to introduce strongly

second modules.

In Sections 2 and 3, we introduce the fundamental concepts required to define

R-pr-second modules, A -second modules and strongly second modules. In Section

4, we define R-pr-second modules and give examples of R-pr-seconds modules. In

Section 5, we characterize the R-pr-second modules over a principal ideal domain,
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perfect rings and left semiartinian rings. In Section 6, we prove that each R-pr-

second module is a second module, and we give a counterexample for the converse

in Example 6.3. In Section 7, we characterize the R-id-second modules and R-rad-

second modules, where R-id is the class of idempotent preradicals in R-Mod and

R-rad is the class of radicals in R-Mod. In Section 8, we prove that each strongly

second module is a second module, we give a counterexample for the converse in

Example 8.11 and characterize rings in which each module is strongly second. In

Section 9, we characterize the rings for which each module is R-id-second, the rings

for which each module is R-rad-second and the rings for which each module is

R-pr-second.

2. Preliminaries

Throughout this paper, all rings will be assumed to possess an identity element.

Every simple R-module can be represented by a module of the form R/I, where

I is a maximal left ideal of R. We can pick a collection of representatives of the

isomorphic classes of simple modules, which we will refer to as R-simp. Recall

that a left R-module M is semisimple if each of its left submodules is a direct

summand. This happens precisely when M coincides with the sum of its simple left

submodules, which is called the socle of M and is denoted soc(M). Moreover, a

left semisimple R-module M is homogeneous if any two simple submodules S and

S′ of M are isomorphic.

Recall that a ring R is a left V -ring if every simple left R-module is injective.

Moreover, R is a left semiartinian ring if every nonzero R-module has a nonzero

socle. When every two simple left R-modules are isomorphic, R is a left local ring.

A ring R is a semisimple ring when it is semisimple when viewed as a module over

itself. A ring R is a left perfect ring if every left R-module has a projective cover.

The lattice of submodules of a module. The category of left R-modules is

denoted by R-Mod. A preradical σ on R-Mod is a functor σ : R-Mod → R-Mod

such that:

• σ(M) ≤ M for each M ∈ R-Mod.

• For each R-morphism f : M → N , the following diagram is commutative:

σ(M) σ(N)

M N.

f↾
⇂

f
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R-pr denotes the collection of all preradicals in R-Mod. Recall that for each β ∈
R-pr and each family of R-modules {Mi}i∈I , we have β(

⊕
i∈I

Mi) =
⊕
i∈I

β(Mi), see

Proposition I.1.2 of [3]. Recall that σ ∈ R-pr is idempotent if σ◦σ = σ. σ is radical

if σ(M/σ(M)) = 0, for each M ∈ R-Mod. σ is a left exact preradical if it is a left

exact functor. σ is t-radical if σ(M) = σ(R)M . Note that σ is a t-radical if and

only if σ preserves epimorphisms; and σ is a left exact preradical if and only if for

each submodule N of a module M we have σ(N) = σ(M) ∩ N . We will denote

R-id, R-rad, R-lep, and R-ler, the collections of idempotent preradicals, radicals,

left exact preradicals, and left exact radicals, respectively.

If RM is a left R-module, it is well known that the set of submodules of M , which

we shall denote L(RM), is a complete lattice, where the supremum and infimum of

a family {Ni}i∈I of submodules of RM are∑
i∈I

Ni =

{
n∑

i=1

xi | n ∈ N, xj ∈ Nj and j ∈ I

}
and

⋂
i∈I

Ni,

respectively. See Proposition 2.5 of [2].

Preradicals. We introduce the basic definitions and results of preradicals in R-

Mod. For more information on preradicals, see [3], [6], [7], [8], and [9]. By Theorem

7 of [6], R-pr is a big lattice where

(1) the order in R-pr is given by α ⪯ β if α(M) ≤ β(M) for every M ∈ R-Mod;

(2) for any family of preradicals {σi}i∈I in R-Mod the supremum and infimum

for the family are given respectively by

• (
∨
i∈I

σi)(M) =
∑
i∈I

σi(M), and

• (
∧
i∈I

σi)(M) =
⋂
i∈I

σi(M).

We say that a submodule RN of RM is fully invariant in M if f(N) ≤ N for all

f ∈ End(RM). It is easy to see that the set of fully invariant submodules of RM

is a complete sublattice of Lat(M). We will denote Latf.i.(M), the lattice of fully

invariant submodules of M , and Nf.i. ≤R M will mean that N is a fully invariant

submodule of M .

Recall for a fully invariant submodule NR of RM the preradicals αM
N and ωM

N

were defined in Definition 4 of [6].

Definition 2.1. Let NR be a fully invariant submodule of MR and U ∈ R-Mod.

• αM
N (U) =

∑
{f(N)|f ∈ HomR(M,U)} and

• ωM
N (U) =

⋂
{f−1(N)|f ∈ HomR(U,M)}.

Remark 2.2. Let M be an R-module and let N be a fully invariant submodule

of M . By Proposition 5 of [6], αM
N : R-Mod → R-Mod is the least preradical ρ such
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that ρ(M) = N , and ωM
N : R-Mod → R-Mod is the largest preradical ρ such that

ρ(M) = N . It is easy to see that {ρ ∈ R-pr | ρ(M) = N} = [αM
N , ωM

N ], an interval

in R-pr.

We can see that αM
M (L) is the trace of M in L, that is, αM

M = trM . Furthermore,

ωM
0 (L) is the reject of M in L, and is the smallest submodule of L such that

L/ωM
0 (L) embeds in a product of copies of M .

It should be noted that soc : R-Mod → R-Mod is a preradical which is idem-

potent, and soc(M) is the biggest semisimple submodule of M . Additionally,

soc = ∨{αS
S | S ∈ R-simp}.

Second modules. We will begin by recalling the concepts defined in module the-

ory as an introduction to the concepts that will be presented in more general terms.

In [1], the authors define a second module as follows.

Definition 2.3. An R-module M is second if, for every I ideal of R, IM = 0 or

IM = M .

Remark 2.4. The following statements are equivalent for a left R-module RM :

(1) For each ideal I of R, IM = 0 or IM = M .

(2) AnnR(M) = AnnR(M/N) for all N ⪇ M .

Proof. If IM ⪇ M for some ideal I, then I ≤ AnnR (M/IM) = AnnR (M).

Therefore, IM = 0.

On the other hand, assume that AnnR(M) = AnnR(M/N) for all N ≨ M. If

IM ≨ M, then as I ≤ AnnR (M/IM) = AnnR (M), then IM = 0. □

In [4], the authors give the following definition, which is equivalent to Definition

2.3, by Remark 2.4.

Definition 2.5. An R-module M is second if AnnR(M) = AnnR(M/N) for all

N ⪇ M .

3. P-second elements of a lattice

We use the concepts of actions of partial orders in lattices, and the notion of

second elements of a lattice, which were introduced in [1]. We will study some

instances of these actions. As the lattices are particular kinds of posets (short for

partially ordered sets), we can explore the actions of lattices in other lattices as

particular cases of the above definition. We examine in particular Lat(M), the

lattice of left R-submodules of RM , R-pr, the lattice of preradicals in R-mod, and
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Latfi(M), the lattice of fully invariant submodules of M . All of these are examples

of lattices that can either act on or be acted upon by other posets. We distinguish

Lat(•R), the lattice of left ideals of R, from Lat(R), which will denote the lattice

of two-sided ideals of R-mod.

Definition 3.1. A lattice L is bounded if it contains elements 0 and 1 such that

all elements x in L are between 0 and 1, with 0 being the smallest element and 1

the greatest element.

Definition 3.2. Let L = (L,≤,∨,∧) be a lattice, and let P = (P,≤′) be a poset.

A P-action on L is a function ⇀: P×L → L satisfying the following conditions

for all s, t ∈ P and x, y ∈ L:

(1) s ≤′ t ⇒ s ⇀ x ≤ t ⇀ x.

(2) x ≤ y ⇒ s ⇀ x ≤ s ⇀ y.

(3) s ⇀ x ≤ x.

Example 3.3. The lattice Lat(R) acts on Lat(M).

Lat(R)× Lat(M) Lat(M)

(I,N) IN,

⇀

Example 3.4. The lattice R-pr acts on Lat(M).

R-pr× Lat(M) Lat(M)

(r,N) r(N),

⇀

Example 3.5. The lattice R-pr acts on R-pr by composition.

R-pr×R-pr Lat(M)

(ρ, σ) ρ ◦ σ.

◦

Remark 3.6. Let P = (P,≤′) be a poset, L = (L,≤,∧,∨, 0, 1) be a bounded

lattice with a P-action ⇀: P × L → L and Q be a suborder of P. Then, the

restriction of ⇀ to Q × L is a Q-action.

Definition 3.7. Let P = (P,≤′) be a poset, L = (L,≤,∧,∨, 0, 1) be a bounded

lattice with an P-action ⇀: P × L → L and x ∈ L \ {0}. We say that x is

P-second if for every s ∈ P :

s ⇀ x = 0 or s ⇀ x = x.

When this definition is applied to the action described in Example 3.3, the usual

definition of second modules is obtained, see Definition 2.3.

We omit the easy proof of the following proposition.
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Proposition 3.8. Each order-preserving function f : P → Q induces a correspon-

dence between Q-actions on L and P-actions on L . Explicitly, Q×L
⇀−→ L 7→

P × L
⇀f−→ L , where a ⇀f x := f(a) ⇀ x.

Lemma 3.9. Let P = (P,≤′) be a poset, L = (L,≤,∧,∨, 0, 1) be a bounded lattice

with a P-action ⇀: P × L → L and let f : Q → P be an order preserving

function. Then any P-second respect ⇀ element of L is Q-second respect ⇀f .

In particular, note that we can restrict a P-action in L to a subset Q of P. It

is easy to prove the following corollary.

Corollary 3.10. Let P = (P,≤′) be a poset, L = (L,≤,∧,∨, 0, 1) be a bounded

lattice with a P-action ⇀: P × L → L and let Q be a subset of P. Then any

P-second element of L is Q-second.

Definition 3.11. Let L = (L,≤,∧,∨, 0, 1) be a bounded lattice and y, x ∈ L such

that y ≤ x. We denote [y, x] the bounded lattice of all z ∈ L such that y ≤ z ≤ x.

Lemma 3.12. Let P = (P,≤′) be a poset, L = (L,≤,∧,∨, 0, 1) be a bounded

lattice with a P-action ⇀: P × L → L . All atoms of L are P-second.

Proof. Let a be an atom of L . Let s ∈ P and z ≤ x. As s ⇀ a ≤ a and a is an

atom, s ⇀ a = 0 or s ⇀ a = a. Therefore, a is P-second. □

4. R-pr-second modules

We now apply Definition 3.7 to the action described in Example 3.4 to define

second modules with respect to preradicals.

Definition 4.1. Let M be an R-module and N ∈ L (M) \ {0}. We say that N is

an R-pr-second submodule of M if for every α ∈ R-pr,

α(N) = 0 or α(N) = N .

Example 4.2. Let p, n ∈ N such that p is a prime and p|n. (n/p)Zn is a Z-pr-
second submodule of Zn, due to the Lemma 3.12.

Lemma 4.3. Let M be an R-module. Every simple submodule of M is an R-pr-

second submodule of M .

Proof. It follows from Lemma 3.12. □

Notice that for any S,M ∈ R-Mod with S simple, αS
S(M) =

∑
{f(S) | f : S →

M} is a semisimple homogeneous R-module.
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Lemma 4.4. Let M be an R-module and N be a submodule of M with nonzero

socle. Then N is an R-pr-second submodule of M iff N ∼= S(I) for some set I and

for some simple R-module S.

Proof. Assume first that N ∼= S(I), with S a simple left R-module, and let σ be

a preradical. As a preradical commutes with coproducts, σ(S(I)) = ((σ(S))(I), but

this is R0 or S(I), depending on whether σ(S) is R0 or S.

Now, assume that N has a nonzero socle, then there exists S ∈ R-simp which

embeds in N . As there is a nonzero morphism f : S → N , then αS
S(N) ̸= 0, so

αS
S(N) = N , which implies that N ∼= S(I) for some set I. □

Remark 4.5. We have that if N is a submodule of M , then N is R-pr-second in

L (M) if and only if N is R-pr-second in L (N). In this sense, we will say that an

R-module M is R-pr-second if it is R-pr-second as a submodule of itself.

Proposition 4.6. The following conditions are equivalent for a nonzero module

RM .

(1) M is R-pr-second.

(2) The only fully invariant submodules of RM are 0 and M .

Proof. (1) ⇒ (2) Let N be a nonzero fully invariant submodule of RM . Then

ωM
N ∈ R-pr and ωM

N (M) = N ̸= 0, so N = ωM
N (M) = M , as M is R-pr-second.

Therefore, the only fully invariant submodules of RM are 0 and M .

(2) ⇒ (1) Let σ ∈ R-pr. Then σ(M) is a fully invariant submodule of M , so

σ(M) = M or σ(M) = 0. Therefore, M is R-pr second. □

Proposition 4.7. Let R be a ring and I be a two-sided ideal of R. Then for each

σ ∈ R-pr, σ(R/I) is a two-sided ideal of R/I.

Proof. The left R-submodule σ(R/I) of R/I is annihilated by I, thus making it a

left ideal of R/I. Now, for each a ∈ R, the function · (a + I) : R/I → R/I given

by · (a + I)[b + I] = (b + I)(a + I) is an R-morphism, so the following diagram

commutes:

σ(R/I) σ(R/I)

R/I R/I.

·(a+I)↾⇂

·(a+I)

Then · (a + I)(σ(R/I)) ⊆ σ(R/I), so σ(R/I) is a right ideal of R/I. Therefore

σ(R/I) is a two-sided ideal of R/I. □
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A consequence of the Correspondence Theorem for rings, of Proposition 4.6, and

Proposition 4.7 is the following corollary.

Corollary 4.8. Let R be a ring and I be a maximal two-sided ideal of R. Then

R/I is an R-pr-second R-module.

Corollary 4.9. Let R be a ring. Then R is an R-pr-second left R-module if and

only if R is a simple ring.

Example 4.10. ZQ is Z-pr-second. Let σ ∈ Z-pr such that σ(Q) ̸= 0. Then

there exists 0 ̸= x ∈ σ(Q). Let us take the Z-monomorphism f : Z → Q such that

f(1) = x.

If σ(Q) ̸= Q, there exists 0 ̸= y ∈ Q \ σ(Q). Then take the Z-morphism g : Z → Q
such that g(1) = y. As Q is a Z-injective module, there exists a Z-morphism

f : Q → Q such that the following diagram commutes:

Z Q

Q.

g

f

f

As σ is a preradical, f(σ(Q)) ⊆ σ(Q). But we have that x ∈ σ(Q) and f(x) =

f(f(1)) = g(1) = y /∈ σ(Q), a contradiction. Then σ(Q) = Q. Therefore, ZQ is

Z-pr-second.

Proposition 4.11. If RM is an R-pr-second module, then RM is generated by

each of its nonzero submodules and cogenerated by its nonzero quotients.

Proof. If 0 ̸= N ≤ M , then trN (M) ̸= 0, hence trN (M) = M , thus M is generated

by N .

Now, if 0 ̸= M/N , then ω
M/N
0 (M) ≤ N ̸= M , thus ω

M/N
0 (M) = 0. This is

equivalent to saying that M is cogenerated by M/N . □

5. R-pr-second modules over special rings

Recall that for a principal ideal domain R, an R-module M is injective if and

only if M is a divisible R-module. Recall also that each nonzero cyclic torsion

module has a simple submodule because each torsion element has a nonzero multiple

annihilated by a prime element. The following proposition characterizes the R-pr-

second modules when R is a principal ideal domain.

Proposition 5.1. Let R be a principal ideal domain and M be a nonzero R-module.

The following statements are equivalent:
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(1) M is R-pr-second.

(2) M is a semisimple homogeneous module or M is a divisible torsion-free

module.

Proof. (1) ⇒ (2) Let M be an R-pr-second module. Then soc(M) = M or

soc(M) = 0. If soc(M) = M , then M is a semisimple module, so M is a semisimple

homogeneous module according to Lemma 4.4. On the other hand, if soc(M) = 0,

then M is a torsion-free module, so IM ̸= 0 for each 0 ̸= I ≤ R . Moreover, as M

is R-pr-second, then IM = M for each 0 ̸= I ≤ R, so M is a divisible torsion-free

module.

(2) ⇒ (1) It is clear that a homogeneous semisimple module is R-pr-second,

because a preradical commutes with coproducts, and a simple module is R-pr-

second. Assume that M is a nonzero divisible torsion-free module and take a

preradical σ. If σ(M) ̸= 0 , let us take 0 ̸= x ∈ σ(M), and the R-monomorphism

f : R → M such that f(1) = x.

If σ(M) ̸= M , let us take 0 ̸= y ∈ M \ σ(M), and the R-monomorphism

g : R → M such that g(1) = y. Now, as M is divisible it is an injective R-module, so

there exists an R-morphism f : M → M such that the following diagram commutes:

R M

M.

g

f

f

Then f(x) = f(f(1)) = g(1) = y /∈ σ(M) but x ∈ σ(M), thus f(σ(M)) ⊈ σ(M), a

contradiction. Then σ(M) = M . Therefore M is R-pr-second. □

Proposition 5.2. Let R be a left perfect ring and M be a nonzero R-module. The

following statements are equivalent:

(1) M is R-pr-second.

(2) M is a semisimple homogeneous R-module.

Proof. (1) ⇒ (2) Let M be a nonzero R-pr-second module. As R is a left perfect

ring, we have that rad(R)M = rad(M) ̸= M by 9.7.3(a) [2], so rad(R)M = 0 which

implies that M is an R/rad(R)-module. Moreover, R/rad(R) is semisimple, so M

is a semisimple R/rad(R)-module which implies that M is semisimple. Therefore

M is a semisimple homogeneous R-module by Lemma 4.4.

(2) ⇒ (1) It follows from Lemma 4.4. □

Proposition 5.3. Let R be a left semiartinian ring and M be a nonzero R-module.

The following statements are equivalent:
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(1) M is R-pr-second.

(2) M is a semisimple homogeneous R-module.

Proof. (1) ⇒ (2) Let M be an R-pr-second module. As R is a left semiartinian

ring, we have that soc(M) ̸= 0, then soc(M) = M , so M is a semisimple R-pr-

second R-module. Therefore M is a semisimple homogeneous R-module by Lemma

4.4.

(2) ⇒ (1) It follows from Lemma 4.4. □

6. R-pr-second modules vs. second modules

We can contrast the concepts of second module and R-pr-second module for a

clearer understanding. Recall that each t-radical σ can be described as σ(R) • (−),

and recall that for each preradical σ, σ(R) is a two-sided ideal of R. Thus, there

is a lattice isomorphism between t − Rad and Lat(R), sending σ to σ(R), see

Corollary I.2.11 [3]. So Lat(R) embeds in R-pr as a partially ordered set and

induces the action described in Example 3.3. Consequently, by Lemma 3.9, the

following proposition holds.

Proposition 6.1. Let M be a left R-module. If M is a R-pr-second module, then

M is a second module.

Theorem 6.2. For a ring R, the following statements are equivalent:

(1) R is a simple ring.

(2) Any R-module is second.

Proof. (1) ⇒ (2) It is clear.

(2) ⇒ (1) Let I be an ideal of R. As R is second, IR = 0 or IR = R, then I = 0

or I = R. Therefore R is a simple ring. □

Example 6.3. Let F be a field and let R be the ring of linear endomorphisms of the

F vector space F (N). Consider I = {f ∈ R | rank(f) ∈ N}. If f, g ∈ I, h ∈ R and

0 ∈ R, then rank(0) = 0, rank(f + g) ≤ rank(f) + rank(g), rank(hf) ≤ rank(f),

and rank(fh) ≤ rank(f) so rank(f + g), rank(hf), rank(fh) ∈ N, from which it

follows that I is an ideal of R. If f ∈ R \ I, then f(F (N)) has infinite dimension,

thus there exists φ : F (N) → f(F (N)) an F -isomorphism. Moreover, as every short

exact sequence of vector spaces splits, in the exact sequence

0 Ker(f) F (N) f(F (N)) 0,
f=f |f(F (N))
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there exists g : f(F (N)) → F (N), an F -morphism such that fg = Idf(F (N)) and thus

there exists an F -subspace W of F (N) such that F (N) = W
⊕

f(F (N)). Then, the

following diagram commutes:

f(F (N)) F (N) f(F (N)) F (N) = W
⊕

f(F (N))

F (N) F (N),

g f

φ−1

ι

0⊕φ−1

φ

Id
F (N)

where ι : f(F (N)) → F (N) is the canonical inclusion. Moreover, 0 ⊕ φ−1, gφ are

linear endomorphism of F (N), then

IdF (N) = φ−1fgφ = ((0⊕ φ−1)ι)f(gφ) = (0⊕ φ−1)(ιf)(gφ) = (0⊕ φ−1)f(gφ) ∈ J,

where J is the ideal generated by f . Then I + J = R, therefore, I is a maximal

ideal of R, so S = R/I is a simple ring.

Now, we consider S = R/I. Let β be a base of F (N). Then there exists {βi}i∈N ⊆

℘(β) such that β =
◦⋃

i∈N
βi and |βi| = |β|, then FF

(N) =
⊕
i∈N

Wi, where Wi =F ⟨βi⟩.

Let πj : F
(N) →

j⊕
i=1

Wi denote the canonical projection, and ιj :
j⊕

i=1

Wi → F (N),

the canonical inclusion. Let us define fj = ιjπj and Ij = AnnR(fj) for any j ∈ N.

For all j, l ∈ N, if j < l, then
j⊕

i=1

Wi ⪇
l⊕

i=1

Wi, so that Il ≤ Ij , from which it follows

that (Il + I)/I ≤ (Ij + I)/I.

Now, let Mj =
⊕

{Wi|j < i}, πj : F (N) → Mj denote the canonical projection,

ιj : Mj → F (N), the canonical inclusion, and gj = ιjπj . We have that for any

i, j ∈ N, if j < i, gj + I ∈ (Ij + I)/I but gj + I /∈ (Ii + I)/I, so that {(Ii + I)/I}i∈N

is an infinite properly descending chain of submodules of S.

Thus S is not a left artinian ring. So, S is not a left semisimple ring, then

soc(R) ̸= R.

Let SM = S ⊕K with K ∈ S − simp. We have that soc(M) ̸= 0 and soc(M) ̸=
M . Since soc(K) = K ̸= 0 and soc(S) ̸= S, SM is not an S-pr-second module.

On the other hand, as S is a simple ring, any R-module is second by Theorem 6.2,

in particular SM is a second module but it is not an S-pr-second module.

Hence, the fact that module RM is second does not necessarily mean that it is

R-pr-second.

Remark 6.4. By Example 6.3, the converse of Proposition 6.1 is not generally

true.

Note that any simple but not semisimple ring R would also work in the above

example.
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7. Second modules relative to subclasses of R-pr

Let A ⊆ R-pr. We can consider the action of A on the lattice of submodules

of a module induced by the inclusion of A in R-pr and the R-pr action described

in Example 3.4, as in Lemma 3.8, for the following definition:

Definition 7.1. Let M be a nonzero R-module and A ⊆ R-pr. We say that M

is A -second if for every α ∈ A :

α(M) = 0 or α(M) = M .

Recall that given σ ∈ R-pr, Tσ is the class of σ-pretorsion modules and Fσ is the

class of σ-pretorsion-free modules. Then, for A ⊆ R-pr, we define TA :=
⋂

r∈A

Tr

and FA :=
⋂

r∈A

Fr. On the other hand, for A ⊆ R-pr, we will denote as SA the

class of all A -second modules and the zero module. In particular, for σ ∈ R-pr,

we will use Sσ instead of S{σ}.

Remark 7.2. For any σ ∈ R-pr and A ⊆ R-pr, we have that:

(1) SA =
⋂

r∈A

Sr.

(2) Sσ = Tσ ∪ Fσ.

(3) TA ⊆ SA .

(4) FA ⊆ SA .

Remark 7.3. The R-ler-second modules are the decisive modules defined by Golan

in [5], Chapter 31.

Proof. By I.5.E2 of [3], for each hereditary torsion theory (T,F), there exists a

left exact radical σ ∈ R-pr such that (T,F) = (Tσ,Fσ). Now, RM is decisive if

and only if M ∈ T or M ∈ F for each hereditary torsion theory (T,F), which, as
mentioned earlier, is equivalent to σ(M) = M or σ(M) = 0 for each σ ∈ R-ler. □

Example 7.4. Let R = Z, p ∈ N be a prime, σ = α
Zp

Zp
and N ∈ R-Mod. Then we

have that N ∈ Tσ if and only if N is a semisimple homogeneous group whose ele-

ments have order p, since α
Zp

Zp
(N) is the largest homogeneous semisimple subgroup

of M whose elements have order p.

Now, if N ∈ R-Mod has an element a of order p, then K = ⟨a⟩ ∼= Zp, so σ(N) ̸=
0. On the other hand, if σ(N) ̸= 0, then there exists f ∈ HomR(Zp, N) \ {0}, so
f(1 + pZ) is an element of order p of N . Now, we have that N ∈ Fσ if and only if

N has no elements of order p.

Thus N ∈ Sσ if and only if N has no elements of order p or N is a semisimple

homogeneous group whose elements have order p.
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Example 7.5. Let R = Z, A = {αZp

Zp
|p is prime} and N ∈ R-Mod. Then we have

N ∈ TA if and only if N = 0, since from Remark 7.2(1) and the previous example

we have N has to be a p-homogeneous semisimple group for all p prime, so N has

to be 0.

From Remark 7.2, and the above example, we have that N ∈ FA if and only

if N has no elements of order p for all prime p, whence it follows that N ∈ FA if

and only if N has no nontrivial elements of finite order, that is N is a torsion-free

abelian group.

If M ∈ SA and M /∈ FA , then there exists p ∈ Z prime such that M ∈ Tσ where

σ = α
Zp

Zp
, so M = α

Zp

Zp
(M), therefore M is a semisimple homogeneous Z-module.

Furthermore, if M ∈ FA , then M ∈ SA by Remark 7.2(4); and if M is a nonzero

semisimple homogeneous Z-module, then M is an A -second module by Lemma

4.4 and Lemma 3.9. Therefore, SA is the class of all semisimple homogeneous

Z-modules and all torsion-free abelian groups.

Thus, for a nonzero Z-module M , we have that M is A -second if and only if

M is a semisimple homogeneous group or M is a torsion-free abelian group.

Proposition 7.6. Let R be a ring and S ∈ R-simp. The following conditions are

equivalent:

(1) SR-pr = TtrS .

(2) SR-pr is a class closed under taking direct sums.

Proposition 7.7. Let RM . The following conditions are equivalent:

(1) M is R-id-second.

(2) M is generated by any of its nonzero submodules.

Proof. (1) ⇒ (2) Let 0 ̸= N ≤ M . As M is R-id-second, trN ∈ R-id and

trN (M) ̸= 0, then trN (M) = M . Therefore, M is generated by N .

(2) ⇒ (1) Let σ ∈ R-id such that σ(M) ̸= 0. Then there exists a set X and an

epimorphism g : σ(M)(X) → M . As σ is an idempotent preradical,

σ(M)(X) M

σ(σ(M)(X)) σ(M)

g

g|

is commutative and σ(σ(M)) = σ(M).

So σ(σ(M)(X)) = σ(M)(X), then σ(M) = M . Therefore M is R-id-second. □

Proposition 7.8. Let RM . The following conditions are equivalent:

(1) M is R-rad-second.
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(2) M is cogenerated by any of its nonzero quotients.

Proof. (1) ⇒ (2) Let N ⪇ M . As M is R-rad-second, ω
M/N
0 ∈ R-rad and

ω
M/N
0 (M) ̸= M , then ω

M/N
0 (M) = 0. Therefore M is cogenerated by M/N .

(2) ⇒ (1) Let σ ∈ R-rad such that σ(M) ̸= M . Then there exists a set X and a

monomorphism g : M → (M/σ(M))X . As σ is a radical,

M (M/σ(M))X

σ(M) σ((M/σ(M))X)

g

g|

is commutative and σ(M/σ(M)) = 0. So σ((M/σ(M))X) = 0, then σ(M) = 0.

Therefore M is R-rad-second. □

8. Strongly second modules

As R-pr acts in the lattice of submodules of a module M by evaluation, we

can define the R-pr-annihilator of M , and extend Definition 2.5 to this context.

We introduce strongly second modules, and contrast this concept with the concept

of second modules. We prove that a strongly second module is a second module

in Proposition 8.12, and we show that the converse is not generally true in Re-

mark 8.13. Likewise, we contrast the concepts of strongly second module and of

R-rad-second module, proving that each strongly second module is R-rad-second

in Proposition 8.10, and that the converse is not generally true in Remark 8.11.

We characterize the strongly second modules in Proposition 8.7 and the strongly

second rings in Theorem 8.8. We show that the concepts of strongly second module

and of R-pr-second module are, in general, independent.

Definition 8.1. Given M ∈ R-Mod. The R-pr-annihilator of M is defined as:

AnnR-pr(M) = {r ∈ R-pr | r(M) = 0}.

Example 8.2. Let P be the set of all prime integers and M =
⊕
p∈P

Zp. We have that

α ∈ AnnR-pr(M) if and only if α(M) = 0. So that 0 ⪯ α ⪯ ωM
0 , but ωM

0 = rad.

Therefore:

AnnR-pr(M) = [0, rad].

Definition 8.3. Let M be an R-module. We define

Cog(M)={N ∈ R-Mod | there exists a set X and a monomorphismf : N → MX}.
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Remark 8.4. Let M be an R-module. Then

AnnR-pr(M) = [0, ωM
0 ] and Cog(M) = FωM

0
.

The following definition is inspired by Definition 2.5.

Definition 8.5. We say that a nonzero R-module M is strongly second if

AnnR-pr(M) = AnnR-pr(M/N) for all N ⪇ M.

Example 8.6. Let p ∈ Z be a prime, N ⪇ ZZp∞ and σ ∈ Z-pr. We have

that Zp∞ ∼= Zp∞/N , so σ(Zp∞) ∼= σ(Zp∞/N). Thus σ(Zp∞) = 0 if and only if

σ(Zp∞/N) = 0, so AnnZ-pr(Zp∞) = AnnZ-pr(Zp∞/N). Therefore Zp∞ is a strongly

second module but by Proposition 5.1, Zp∞ is not a Z-pr-second module as it is not

a divisible torsion-free module or a semisimple homogeneous module. Therefore, a

module RM can be strongly second without being R-pr-second.

By Remark 8.4, AnnR-pr(M) = AnnR-pr(K) if and only if ωM
0 = ωK

0 , so we can

describe a strongly second module M as a module such that FωM
0

= Cog(M) =

F
ω

M/N
0

= Cog(M/N) for every N ⪇ M , connecting Definition 8.1 with the concept

of cogenerated, this idea is summarized in the following proposition that character-

izes the strongly second modules:

Proposition 8.7. For a left R-module RM , the following statements are equivalent:

(1) M is strongly second.

(2) Cog(M) = Cog(M/N) for all N ⪇ M .

Now, in the following theorem, we characterize all rings which are strongly second

over themselves.

Theorem 8.8. Let R be a ring. The following statements are equivalent:

(1) R is strongly second.

(2) Cog(R) = Cog(R/I) for all I ⪇ R.

(3) R is left local, left Kasch, left semiartinian, and simple.

(4) R is left semisimple and left local.

(5) Each nonzero R-module M is strongly second.

Proof. (1) ⇒ (2) By Proposition 8.7.

(2) ⇒ (3) First let us see that R is left local. Let S,K ∈ R-simp and take M,M ′

maximal left ideals of R such that S ∼= R/M and K ∼= R/M ′. By hypothesis, we

have that Cog(R/M) = Cog(R) = Cog(R/M ′), and besides we have that Cog(S) =

Cog(R/M) and Cog(K) = Cog(R/M ′). Thus Cog(S) = Cog(K) = Cog(R). Since
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S ∈ Cog(K), we have that S embeds in a product of copies of K, which implies

that S ∼= K. Therefore, R is left local.

Now, let I ⪇ R. Then Cog(R) = Cog(R/I) and Cog(R) = Cog(S), so S embeds

in a product of copies of R/I, which implies that S embeds in R/I. Therefore R is a

left semiartinian left local ring, which implies that R is left Kasch. Finally, if J is a

proper two-sided ideal of R, in particular J is a left ideal, so Cog(R) = Cog(R/J),

then R is embedded in a product of copies of R/J , which implies that J = JR = 0.

Therefore R is simple.

(3) ⇒ (4) Since R is left semiartinian, we have that 0 ̸= soc(M), and as R is

simple, then soc(R) = R. Hence R is semisimple. Moreover, R is left local, so only

one type of simple module exists. Therefore R is semisimple homogeneous.

(4) ⇒ (5) Since R is semisimple homogeneous, we have that R-pr = {0, 1}, so

AnnR-pr(M) = {0},

for any nonzero M ∈ R-Mod, from which it immediately follows that any R-module

M is strongly second.

(5) ⇒ (1) This is clear. □

Remark 8.9. Let S be the ring described in Example 6.3. As S is a simple ring,

S is an S-pr-second module by Corollary 4.9. On the other hand, S is not a

left semisimple ring, then S is not a strongly second S-module, by Theorem 8.8.

Therefore, the fact that a module RM is R-pr-second does not necessarily means

that it is strongly second.

Proposition 8.10. For a left R-module RM , if M is strongly second, then M is

R-rad-second.

Proof. Let β ∈ R-rad. Then β(M/β(M)) = 0, so β ∈ AnnR-pr(M). Now, if

β(M) ̸= M , then AnnR-pr(M) = AnnR-pr(M/β(M)), so β ∈ AnnR-pr(M) which

implies that β(M) = 0. Therefore M is strongly second. □

Remark 8.11. By Example 4.10, we have that Q is Z-pr-second and Z-rad embeds

in Z-pr, then Q is Z-rad-second by Lemma 3.9. On the other hand, Q is a torsion-

free, then trZ2
(Q) = 0 but f : Z2 → Q/Z, given by f(a+2Z) = a

2 +Z, is a nonzero

Z-morphism, so trZ2 ∈ AnnZ-pr(Q) but trZ2 /∈ AnnZ-pr(Q/Z). Thus Q is not a

strongly second Z-module.

Therefore, the converse of Proposition 8.10 doesn’t hold.

Proposition 8.12. For a left R-module RM , if M is strongly second, then M is

second.
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Proof. It follows from the fact of there is a lattice isomorphism between t−Rad and

Lat(R), the fact of t− rad is a sublattice of R-rad, Proposition 8.10 and Corollary

3.10. □

Remark 8.13. By Example 8.11, the converse of Proposition 8.12 is not generally

true.

Remark 8.14. Note that the same example as in Remark 8.11 is another example

that, a module RM can be R-pr-second without being strongly second.

9. Characterizations of rings by classes of A -second modules

In this section we obtain characterizations of the following kinds of left local

rings. In Theorems 9.2 and 9.3, we characterize the left semisimple left local, and

in Theorem 9.4, we characterize left local left perfect rings.

Proposition 9.1. Sσ = R-Mod if and only if σ = 1 or σ = 0.

Proof. It is clear that if σ = 1 or σ = 0, then Sσ = R-Mod.

On the other hand, suppose that σ ̸= 0. Then there exists M ∈ R-Mod such that

σ(M) ̸= 0. Now, let 0 ̸= N ∈ R-Mod. We have that σ(N ⊕M) = σ(N)⊕σ(M) ̸= 0

and N ⊕M ∈ Sσ, so σ(N ⊕M) = N ⊕M , then σ(N) = N . Therefore σ = 1. □

Theorem 9.2. For a ring R, the following statements are equivalent:

(1) R is a left semisimple left local ring.

(2) SR-id = R-Mod.

(3) SR-rad = R-Mod.

Proof. (1) ⇒ (2) If R is a left semisimple left local ring, then R-pr = {0, 1}, in
particular, R-id = {0, 1}. Therefore SR-id = R-Mod.

(2) ⇒ (1) Suppose that SR-id = R-Mod. Let S ∈ R-simp. Then αS
S ∈ R-id, so

SαS
S
= R-Mod. Moreover, αS

S ̸= 0, then αS
S = 1 by Proposition 9.1. It follows that

R is left semisimple left local.

(1) ⇒ (3) If R is a left semisimple left local ring, then R-pr = {0, 1}, in partic-

ular, R-rad = {0, 1}. Therefore, SR-rad = R-Mod.

(3) ⇒ (1) Suppose that SR-rad = R-Mod. Let 0 ̸= N ∈ R-Mod. Then ωN
0 ∈

R-rad, so SωN
0

= R-Mod. Moreover, ωN
0 ̸= 1, then ωN

0 = 0 by Proposition 9.1.

Therefore every nonzero module N ∈ R-Mod cogenerates R-Mod.

Now, let S, S′ ∈ R-simp. As S is cogenerated by R and S′ is cogenerated by S,

then S embeds in R and S ∼= S′. Therefore, R is left local and 0 ̸= soc(R).
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On the other hand, if soc(R) ⪇ R, then R is cogenerated by R/soc(R), so there

exists a set X such that R embeds in (R/soc(R))X . Then soc(R) = soc(R)R

embeds in soc(R)((R/soc(R))X) = 0, so soc(R) = 0, which is a contradiction.

Then soc(R) = R.

Therefore, R is a left semiartinian left local ring. □

Theorem 9.3. For a ring R, the following statements are equivalent:

(1) R is a left semiartinian left local V -ring.

(2) R is a semisimple left local ring.

(3) SR-pr = R-Mod.

Proof. (2) ⇒ (1) We already know that R is left local, and every R-module is

injective and projective since R is semisimple. In particular, every R-simple module

is injective, so R is a V -ring.

Now, since R is left local semiartinian, for all nonzero module M , there exists a

nonempty set I such that M ∼= SI where S is simple, which implies that S embeds

in M , so R is semiartinian.

(1) ⇒ (2) Since R is left semiartinian, there exists a simple submodule S of

R. Furthermore, since R is a V -ring, then S is a direct summand of R, so it is

projective. Suppose soc(R) ⪇ R. Then there exists a maximal ideal M of R such

that soc(R) ⪇ M . Moreover, since R is left local, we have that R/M ∼= S, so the

following sequence splits:

0 M R R/M 0.

Then there exists a submodule K of R such that K ∩M = {0}, and K ∼= R/M , so

K ∩ soc(R) = {0} and K is simple, which is a contradiction. Therefore R = soc(R)

implies R is semisimple and by hypothesis, left local.

(2) ⇒ (3) It follows from Lemma 4.4.

(3) ⇒ (2) Let S be a simple R-module, as SR-pr = R-Mod we have that SαS
S
=

R-Mod. Now, by Proposition 9.1, αS
S = 1. Therefore, R is a semisimple left local

ring. □

By [2, Lemma 28.3], rad(R) is left T -nilpotent if and only if rad(R)M ̸= M for

each RM .

Theorem 9.4. Let R be a ring such that rad(R) is left T -nilpotent. Then the

following statements are equivalent:

(1) SR-pr = TtrS for some S ∈ R-simp.

(2) R is a left perfect and left local ring.
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Proof. (2) ⇒ (1) This follows from Proposition 5.2.

(1) ⇒ (2) Let K ∈ R-simp. Then K ∈ SR-pr by Lemma 4.3, so trS(K) = K,

which implies that S ∼= K. Therefore R is a left local ring.

If R/rad(R) is not semisimple, then it is not homogeneous semisimple. So by

hypothesis, R/rad(R) is not an R-pr-second module. Then there exists a two-sided

ideal I such that 0 ̸= I/rad(R) ⪇ R/rad(R). Let us take a maximal left ideal J

containing I. Then R/J ∼= S and there is a monomorphism R/rad(S) ↣ (R/J)X

for some set X. Moreover I(R/J) = 0 and I · ∈ R-pr, so I((R/J)X) = 0 and the

following diagram commutes

R/rad(R) (R/J)X

I(R/rad(R)) I((R/J)X) = 0.

Then I/rad(R) = I(R/rad(R)) = 0, and thus I = rad(R), a contradiction. Hence

R/rad(R) is a semisimple R-module.

Therefore, by [2, Theorem 28.4], R is left perfect and left local. □
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[3] L. Bican, T. Kepka and P. Němec, Rings, Modules, and Preradicals, Lecture

Notes in Pure and Applied Mathematics, 75, Marcel Dekker, Inc., New York,

1982.
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