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Abstract. Let G be a finite group and C(G) denote the set of all non-normal

non-cyclic subgroups of G. In this paper, the function δc(G) = 1
|G|

∑
H∈C(G)

|H|

is introduced. In fact, we prove that, if δc(G) ≤ 10
3
, then either G ∼= A5, or G

is solvable. We also find some examples of finite groups G with δc(G) ≤ 10
3
.
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1. Introduction

In this paper, all groups are assumed to be finite. Let G be the set of all groups

of order n and f : G −→ R, where R is the real field. One may ask how the structure

of G is influenced by some certain functions f . For example, T. De Medts and M.

Tărnăuceanu [5] introduced the function

σ1(G) = 1
|G|

∑
H≤G

|H|.

Many results show that the arithmetical conditions of σ1(G) influence the solvabil-

ity and supersolvability of G (see [8,10,13,14,15]). Similarly, W. Meng and J. Lu

[11] only considered the sum of order of non-cyclic subgroups and introduced the

function

δ(G) = 1
|G|

∑
H≤G

{|H| | H is non-cyclic}.

They showed that if δ(G) < 13
3 , then G is solvable, and if δ(G) < 1 + 4

|G| , then

G is supersolvable. Furthermore, they gave a classification of finite groups with

δ(G) ≤ 2.

W. Meng is supported by National Natural Science Foundation of China (12161021), Guangxi Nat-

ural Science Foundation Program (2021JJA10003), Center for Applied Mathematics of Guangxi

(GUET) and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computa-

tion. B. Zhang is supported by the National Natural Science Foundation of China (12301022). H.

Chen is supported by program of Science and education collaborative(GUET).



THE SUM OF ORDERS OF NON-CYCLIC AND NON-NORMAL SUBGROUPS 207

On the other hand, L. Cui et al. [4] considered the sum of order of non-normal

subgroups. Consequently, they investigated the following function

ν0(G) = 1
|G|

∑
H≤G,H ̸⊴G

|H|.

They proved that if ν0(G) < 29
6 , then G is solvable.

Inspired by above investigations, we consider the set of all non-cyclic and non-

normal subgroups in a finite group. For conveniently, let C(G) denote the set of all

non-cyclic and non-normal subgroups of G. The following function is defined.

δc =
1
|G|

∑
H∈C(G)

|H|.

It is easy to see that δc(G) = 0 if and only if every non-cyclic subgroup of G is

normal. Hence δc(G) = 0 implies that G is a metahamiltonian group (i.e., every

non-abelian subgroup of G is normal). The structure of metahamiltonian p-groups

can be found in [1,3,6,7,9]. Thus, it seems to be interesting to study the properties

of finite groups in terms of δc(G).

In this paper, we will prove the following result.

Theorem 1.1. Let G be a group. If δc(G) ≤ 10
3 , then either G ∼= A5, or G is

solvable.

Lemma 2.6(2) shows that δc(A5) = 10
3 , therefore the bound in Theorem 1.1 is

the best possible. Furthermore, we will find some finite groups G with δc(G) < 10
3

in Section 4. All unexplained notations and terminologies are standard and can be

found in [12].

2. Preliminaries

In this section, we collect some results which will be used in the sequel.

Lemma 2.1. Let G be a finite group and N be a normal subgroup of G. Then

δc(G/N) ≤ δc(G).

Proof. Let G be a finite group and N be a normal subgroup of G. We have

δc(G/N) = 1
|G/N |

∑
H/N∈C(G/N)

|H/N |

= 1
|G|

∑
H/N∈C(G/N)

|H|

≤ 1
|G|

∑
H∈C(G)

|H|

= δc(G),

as desired. □



208 HAOWEN CHEN, BORU ZHANG AND WEI MENG

Lemma 2.2. [10, Lemma 2.1] Let G be a finite group and [K] be the conjugacy

class of a self-normalizing subgroup K of G. Then∑
H∈[K] |H| = |G|.

Lemma 2.3. [2, Theorem 2] If a finite group G has at most 2 conjugacy classes of

non-normal maximal subgroups, then G is solvable.

Lemma 2.4. [2, Theorem 1] Let G be a finite non-solvable group. Then G has three

conjugacy classes of maximal subgroups if and only if either G/Φ(G) ∼= PSL(2, 7)

or PSL (2, 2p), where p is a prime.

Lemma 2.5. [10, Lemma 2.4] Let p ≥ 5 be a prime, G = PSL (2, 2p). Then∑
H≤G, H non-cyclic

|H| ≥ p|G|.

Lemma 2.6. We have

(1) δc(PSL(2, 7)) > 5 > 10
3 ;

(2) δc(PSL(2, 2p)) > 10
3 , where p is a prime.

Proof. (1) Let G ∼= PSL(2, 7). Then G has exactly three classes of maximal

subgroups, which are clearly neither cyclic nor normal. Furthermore, G has at least

two conjugacy classes of non-cyclic second maximal subgroups which are isomorphic

to S3 and D8, respectively. Obviously, S3 and D8 are self-normalizing second

maximal subgroups of G. By Lemma 2.2, we have δc(G) > 5 > 10
3 .

(2) Let G ∼= PSL (2, 2p), where p is a prime. If p = 2, then G ∼= A5. Now, noting

that G has three conjugacy classes of maximal subgroups, says [A4], [S3] and [D10].

Let T ∈ Syl2(G), then T is non-cyclic. So we have C(G) = {[A4], [S3], [D10], [T ]}.
It follows that δc(G) = 1

|G| (3|G|+ 5× 4) = 10
3 .

Suppose that p ≥ 3. If p ≥ 5, then δc(G) ≥ p ≥ 5 > 10
3 by Lemma 2.3. In

the following, suppose that p = 3, then G ∼= PSL(2, 8). It is well known that

G has exact three conjugacy classes of maximal subgroups, i.e.,
[
M1

∼= 23 : Z7

]
,

[M2
∼= D18] and [M3

∼= D14]. Furthermore, G possesses a conjugacy class of second

maximal subgroups which is self-normalizing in G says [S ∼= D6]. Applying Lemma

2.2 again, we have δc(G) > 1
|G|

(∑3
i=1

∑
H∈[Mi]

|H|+
∑

H∈[S]

|H|

)
= 1

|G| (3|G|+ |G|) =

4 > 10
3 . □

3. The proof of Theorem 1.1

Proof. Suppose that G is a non-solvable finite group, which satisfies δc(G) ≤ 10
3

and is not isomorphic to A5, and suppose that G is of minimal order satisfying

these conditions. Let N be a solvable normal subgroup of G. We have
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δc(G/N) ≤ δc(G) ≤ 10
3

by Lemma 2.1. If N ̸= 1, then |G/N | < |G| and hence G/N is solvable by the

minimality of |G|. This implies that G is solvable, a contradiction. Therefore,

N = 1. In particular, the Frattini subgroup Φ(G) = 1.

First we show that G has exactly three conjugacy classes of non-normal maxi-

mal subgroups. Let [M1] , [M2] , · · · , [Mt] be the t conjugacy classes of non-normal

maximal subgroups of G. Since G is non-solvable, it is well known that G has no

abelian maximal subgroups. In particular, G has no cyclic maximal subgroups.

Therefore, δc(G) ≥ 1
|G|

(
t∑

i=1

∑
H∈[Mi]

|H|

)
= t. By hypothesis, δc(G) ≤ 10

3 which

leads to t ≤ 3. If t ≤ 2, then G is solvable by Lemma 2.3, a contradiction. Thus,

t = 3, i.e., G has exactly three conjugacy classes of non-cyclic non-normal maximal

subgroups.

Second, we show that G is not a simple group. Suppose that G is simple, then

G ∼= PSL(2, 7) or PSL(2, 2p) by Lemma 2.4. Applying Lemma 2.6, we know

that δc(G) ≥ 10
3 if p ≥ 3. This implies that G ∼= PSL(2, 2p) ∼= A5. This is a

contradiction again.

Hence G is a non-simple non-solvable group and there exists a non-trivial normal

subgroup N of G. Consider the factor group G/N , then 1 < |G/N | < |G|. Applying

Lemma 2.1 again, we have δc(G/N) ≤ δc(G) ≤ 10
3 . By induction, G/N is solvable.

Therefore, G has a normal maximal subgroup M and |G/M | is a prime. Since G is

non-solvable, also N is non-solvable. Let S =
⋂
{N | N ⊴G and G/N is solvable}

be the solvable residual of G. Then S is non-solvable and it is the minimal normal

subgroup of G with G/S solvable. Let S′ be the derived subgroup of S, then S = S′

(Otherwise, if S′ < S, then G/S′ would be solvable, a contradiction).

In the following, we claim that NG(L) is a self-normalizing maximal subgroup

of G for every maximal subgroup L of S. It is easily seen that S = S′ implies that

L is non-normal in S. Thus, if g ̸∈ NG(L) for some g ∈ NG (NG(L)), then Lg ̸= L.

This obliges to L⊴ ⟨L,Lg⟩ = S which is a contradiction. So g ∈ NG(L). Moreover,

applying Lemma 2.2, we have
∑

H∈[NG(L)]

|H| = |G|. Hence if [NG(L)] ̸= [Mi] for

i = 1, 2, 3, then δc(G) ≥ 4. This is a contradiction. So NG(L) is a maximal

subgroup of G.

Now, we shall show that S has exactly three conjugacy classes of maximal sub-

groups. Suppose that S has at least four conjugacy classes of maximal subgroups,

say [L1] , [L2] , [L3] and [L4]. If NG(Li) is not conjugate to NG(Lj) for any i ̸= j,

then there exist four conjugacy classes of self-normalizing maximal subgroups
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NG (L1) , NG (L2) , NG (L3) and NG (L4)

ofG which contradict to t = 3. Thus, at least two ofNG (L1) , NG (L2) , NG (L3) and

NG (L4), say NG (L1) and NG (L2) are conjugate in G. So there exists some g ∈ G

such that NG(L1)
g = NG (L2). If Lg

1 ̸= L2, then L2 is normal in ⟨L2, L
g
1⟩ = S,

a contradiction. So we have L2 = Lg
1. Observe that S ̸≤ NG (L1), we get that

G = NG (L1)S and g = ns, with n ∈ NG (L1) and s ∈ S. This implies that

L2 = Lg
1 = Lns

1 = Ls
1, i.e., L1 and L2 are conjugate in S, a contradiction. So S has

at most three conjugacy classes of maximal subgroups.

Observe that S is non-solvable, we know that S/Φ(S) ∼= PSL(2, 7) or PSL (2, 2p)

by Lemma 2.6. Since Φ(S) ≤ Φ(G) = 1, we have S ∼= PSL(2, 7) or PSL (2, 2p).

Therefore, CG(S)∩S = Z(S) = 1. This implies that CG(S) ∼= SCG(S)/S ≤ G/S is

solvable. As G has no non-trivial solvable normal subgroups, we get that CG(S) =

1. So we have G ∼= G/CG(S) ≤ Aut(S).

By above arguments, we know that S contains exactly three conjugacy classes of

self-normalizing non-cyclic maximal subgroups, say [L1] , [L2] and [L3], and these

subgroups are non-normal in S. Applying Lemma 2.2 again, we have
∑

H∈[Li]
|H| =

|S| for any i ∈ {1, 2, 3}. We get that

δc(G) ≥ 1

|G|

 3∑
i=1

∑
H∈[Mi]

|H|+
3∑

i=1

∑
H∈[Li]

|H|

 =
1

|G|
(3|G|+ 3|S|) = 3 +

3|S|
|G|

.

If S ∼= PSL(2, 7), then |Aut(S)| = 2|PSL(2, 7)| (see [12, 8.8 in chapter 6])

which implies that |G| = 2|S|. Thus δc(G) ≥ 1
|G| (3|G|+ 3|S|) = 9

2 > 10
3 . This is a

contradiction.

Suppose that S ∼= PSL (2, 2p), then |Aut(S)| = p|S| (see [12, 8.8 in chapter 6])

and hence |G| = p|S|. If p = 2, or 3, then we have

δc(G) ≥ 1
|G| (3|G|+ 3|S|) = 3 + 3

p ≥ 4 > 10
3 ,

which is another contradiction. In the following, we suppose that p ≥ 5. Observe

that every proper subgroup of S is solvable. We know that every non-trivial sub-

group of S is non-normal in G. So we can consider all non-cyclic proper subgroups

of S. Applying Lemma 2.5, we have
∑

H<S,H non-cyclic

|H| ≥ (p − 1)|S|. It follows

that

δc(G) ≥ 1

|G|

 3∑
i=1

∑
H∈[Mi]

|H|+
∑

H<S,H non-cyclic

|H|

 ≥ 1

|G|
(3|G|+ (p− 1)|S|)

= 3 +
(p− 1)|S|

|G|
= 4− 1

p
≥ 4− 1

5
>

10

3
.
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This is the final contradiction. The proof of theorem is complete. □

4. Several families of finite groups with δc <
10
3

In this section, we first look for the δc of some important classes of groups,

eventually focusing on some groups which have small δc.

Proposition 4.1. Let G ∼= D2n be the dihedral group of order 2n, where n ≥ 3.

Then δc(G) = n− 3.

Proof. Let G = ⟨a, b | a2n−1

= b2 = 1, ab = a−1⟩. If n = 3, then G ∼= D8. It is

easy to see that δc(G) = 0. Thus, the conclusion holds. Suppose that n ≥ 4. By

the defining relations of G, we can find that all non-cyclic non-normal subgroups

of G are as follows

⟨a2k , alb⟩, where 2 ≤ k ≤ n− 2 and 0 ≤ l ≤ 2k − 1.

Observe that |⟨a2k , alb⟩| = 2n−k. It follows that

δc(G) =
1

2n

n−2∑
k=2

2k−1∑
l=0

|⟨a2
k

, alb⟩| = 1

2n

n−2∑
k=2

2k · 2n−k = n− 3.

So the conclusion holds. □

Proposition 4.2. Let G ∼= Q2n be the generalized quaternion group of order 2n,

where n ≥ 4. Then δc(G) = n− 4.

Proof. Let G = ⟨a, b | a2
n−1

= 1, a2
n−2

= b2, ab = a−1⟩. Then G contains a

unique involution t = a2
n−2

and G/⟨t⟩ ∼= D2n−1 . So we get δc(G) = δc(G/⟨t⟩) =

δc(D2n−1) = n− 4. □

Proposition 4.3. Let G ∼= D2pm be the dihedral group of order 2pm, where p is an

odd prime and m ≥ 1. Then δc(G) = m− 1.

Proof. Let G = ⟨a, b | apm

= b2 = 1, ab = a−1⟩. If m = 1, then G ∼= D2p. It is

easily seen that δc(G) = 0. Thus, the conclusion holds. Suppose that m ≥ 2. By

the defining relations of G, we can find that all non-cyclic non-normal subgroups

of G are as follows ⟨apk

, alb⟩, where 1 ≤ k ≤ m− 1, 0 ≤ l ≤ pk − 1.

Observe that |⟨apk

, alb⟩| = 2pm−k. So we have

δc(G) =
1

2 · pm
m−1∑
k=1

pk−1∑
l=0

|⟨ap
k

, alb⟩| = 1

2 · pm
m−1∑
k=1

pk · (2 · pm−k) = m− 1.

So the conclusion holds. □
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Proposition 4.4. Let m = p1p2 · · · ps and G ∼= D2m the dihedral group of order

2m, where p1, . . . , ps are distinct odd primes. Then δc(G) = 2s − 2.

Proof. Let G = ⟨a, b | am = b2 = 1, ab = a−1⟩. If s = 1, then G ∼= D2p1 . It is

easily seen that δc(G) = 0. Thus, the conclusion holds. Suppose that s ≥ 2. For

any subset {i1, . . . , ik} ⊂ {1, . . . , s}, where 1 ≤ k ≤ s− 1, set

Hi1i2...ik = ⟨apii
···pik , b⟩.

Then each Hi1i2...ik
∼= D2m/pi1

···pik
is a self-normalizing subgroup of G by the

defining relations of G. By Lemma 2.2, we get
∑

H∈[Hi1i2...ik
]

|H| = |G|. It follows

that

δc(G) =
1

|G|
∑

{i1,...,ik}⊂{1,2,...,s}

∑
H∈[Hi1i2...ik

]

|H| =

=
1

|G|
∑

{i1,...,ik}⊂{1,2,...,s}

|G| =
(
s

1

)
+

(
s

2

)
+ · · ·+

(
s

s− 1

)
= 2s − 2,

as desired. □

Proposition 4.5. Let G ∼= Mpn = ⟨a, b | apn−1

= bp = 1, ab = a−1+pn−2⟩, where p

is an odd prime and n ≥ 4. Then δc(G) = pn−3−1
pn−2(p−1) < 1.

Proof. Let G = Mpn . Then G possesses a unique non-cyclic subgroup ⟨apn−λ

, b⟩
of order pλ for any 2 ≤ λ ≤ n. Observe that ⟨a, b⟩ and ⟨ap, b⟩ are normal in G, so

we get δc(G) = p2+···+pn−2

pn = pn−3−1
pn−2(p−1) < 1. So the proof is completed. □

Proposition 4.6. Let G ∼= S4. Then δc(G) = 5
2 .

Proof. Suppose G ∼= S4, then G contains two conjugacy classes of non-normal

maximal subgroups, that is, [D8] and [S3]. Furthermore, G has a conjugacy class

of non-normal subgroups [V4] of order 4, where V4
∼= Z2 × Z2 is non-cyclic and

NG(V4) ∼= D8. So δc(G) = 24+24+4·3
24 = 5

2 . So the conclusion holds. □

By Propositions 4.1-4.6, we can find some finite groups with δc(G) < 10
3 . Hence,

the following result is immediate.

Theorem 4.7. Suppose that G is one of the groups D2n(n ≤ 6), Q2n(n ≤ 7),

D2pn(n ≤ 4), D2pq, Mpn or S4. Then δc(G) < 10
3 .

It seems meaningful to determine the structure of finite groups G with δc(G) ≤
10
3 , so we have the following problem.

Problem 4.8. Find all finite groups G with δc(G) ≤ 10
3 .
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[14] M. Tărnăuceanu, On the solvability of a finite group by the sum of subgroup

orders, Bull. Korean Math. Soc., 57 (2020), 1475-1479.



214 HAOWEN CHEN, BORU ZHANG AND WEI MENG
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