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Abstract
This paper considers reliability inferences in a system of stress-strength 1 outside of n:
G when the strength systems belong to the gamma Gompertz unit distribution family
(UGG). Stochastic comparisons are obtained between the survival distribution functions
of this model. Additionally, some stochastic comparisons are carried out with majorized
shape parameters of the unit gamma Gompertz distribution. The asymptotic and several
bootstrap confidence intervals of the reliability of the stress strength are studied. In
addition, the efficiency of the asymptotic and bootstrap confidence intervals is analyzed
by simulation. A numerical example based on real-life data is displayed as an illustration.
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1. Introduction
Reliability of the system is the probability that the system will perform the intended

task correctly when operating under certain environmental conditions. In stress-strength
models, the strength of the system Y and the stress X caused by its working environment
are treated as random variables. In the stress-strength system, if the random stress exceeds
the random strength, then the system will fail. Therefore, the reliability of stress-strength
is described by R := P (Y > X). This basic idea was introduced by Birnbaum [1] and
developed by Birnbaum and McCarty [2]. The stress strength model has been applied in
various fields such as engineering, seismology, oceanography, hydrology, economics, and
medicine; see, for example, [3] and [4], where the monograph by Kotz et al. [4] provided
a comprehensive review on this topic up to 2003. Some of the applications of this model
have been described by [5]-[10]. Each system usually is under different stresses during
the period of its operation, therefore, so many of the systems that we deal with daily
are a type of stress-strength model, and the study of their features is important. When
independent random variables X and Y follow a specified distribution, the estimation of
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R = P (Y > X) has been extensively discussed by many authors in the literature. Some
recent contributions on the subject can be found in [11] for the inverse Pareto, [12] for
the unit inverse Weibull, [13] for the inverted exponential Rayleigh, [14] and [19] for the
Kumaraswamy [15] for the weighted Lindley, [16] for the two-parameter bathtub-shaped
lifetime,[17] for the Burr Type X, [18] for the generalized logistic, [20] for the proportional
hazard, [48] for the generalized inverted exponential, [21] for the log-logistic, [49] for the
inverse Rayleigh, and [22] for the Weibull distributions. Since the components of the
stress-strength system have a UGG distribution in this paper, we will briefly discuss this
distribution below.

Many authors have discussed the unit distribution in recent years. These models are
often used to describe various events such as proportions, percentages, and probabilities
stated in (0, 1). One reason for the expansion of the application of unit distributions
is the increase of combined data in various fields of research, such as medicine, biology,
meteorology, hydrology, economic modeling, etc. For example, several results of survival
theory, such as unit survival time and system lifetime, are often greater than zero, but
do not exceed sufficiently large values. Thus, they are limited to a specific region, and
boundary models help to describe such data sets. In each of these situations, the random
variables can be converted to the interval (0, 1) using normalization or other transformation
methods. Unit distributions offer the advantage of being able to be calculated using
Y = e−X or Y = X

1+X transformations on any statistical distribution explained in the sets
R or R+. Concerning this, various unit distributions, including the Burr XII unit [23],
UGG [24], and the inverse Gaussian unit [25].

The Gompertz model is a statistical distribution with a monotonic hazard ratio func-
tion. In many real-world scenarios, the hazard rate function does not follow a monotonic
pattern but resembles a bathtub curve. As a result, various generalizations of the Gom-
pertz distribution have been developed. One such generalization is the gamma Gompertz
distribution, originally introduced by Sharma et al. [26]. A UGG distribution is versatile
as it can have increasing, decreasing, increasing-decreasing, or decreasing-increasing den-
sity functions. Furthermore, the inverse hazard rate function of the UGG distribution can
be monotonically increasing or decreasing and sometimes remain constant.

For any CDF G0(x), the unit gamma Gompertz-G0 which we signified during this paper
by UGG−G0(α, β, µ), has respectively CDF and the probability density function (PDF)
as below,

G(x) =
(

µ

µ− 1 +G0
−α(x)

)β

, x > 0, (1.1)

g(x) = αβG0
−α−1(x)

µ− 1 +G0
−α(x)

g0(x)G(x), x > 0, (1.2)

where, G0(x) is the baseline CDF, g0(x) is baseline PDF, α > 0 and β > 0 are the shape
parameters, and µ > 0.

Several authors have also studied multicomponent stress-strength systems. One of the
multicomponent systems is the k-out-of n:G stress-strength system regarded as alive only
if at least k out of n (k < n ) strengths exceed the stress. Furthermore, the 1-out-of
n:G stress-strength system demonstrates a parallel stress-strength system, which is widely
used in various devices, such as the computer hard disk, brake systems, and support ca-
bles on bridges. For example, consider an aircraft with four engines such that at least one
engine is required to operate for the aircraft to remain airborne. If the random variables
Y1, ..., Y4 represent the strength of the engines and the random variable X represents the
random stress of environmental factors such as temperature, fumes and corrosive agents.
Then, due to the parallel engine system and under the stress of the aforementioned en-
vironmental factors, R = P (max(Y1, ..., Y4) > X) is the probability of successfully flying
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the aircraft. Comparisons of the minimum or maximum of two independent and het-
erogeneous samples, each following some specific distribution function, have received the
attention of researchers in recent decades. Several stochastic orderings are proposed in
the respective literature, all of which are studied based on specific distributions such as
[27]-[34]. In this paper a comparison and estimation of the stress- strength reliability of the
parallel system with heterogeneous UGG distribution has been carried out. In addition,
we provide different sets of sufficient conditions for one system to dominate another. The
results of this paper are useful for comparing the reliability of the stress strength of two
parallel strength systems that are described by the UGG distributions. Unlike previous
works that primarily use classical or less flexible distributions (e.g., Weibull, Rayleigh, or
exponential), this paper leverages the UGG distribution. Its ability to represent a wide
range of hazard rate behaviors enhances the modeling of stress-strength reliability. Using
majorized shape parameters, this paper offers a refined perspective on reliability compar-
isons, a focus that has been largely unexplored in previous research. The performance
of the methods proposed in this paper is rigorously validated through simulations and
illustrated with real-life data, ensuring the practical relevance of the findings.

The remainder of this paper is organized as follows. In Section 2, some useful lemma
and definitions are given, which will be used later in this paper. The formulation of
the general model is presented in Section 3. In addition, under special conditions on the
parameters, the reliability of the stress strength of two 1-out of n:G stress strength systems
is compared. In Section 4, the special model considered is described and some stochastic
orderings between the two 1-out-of n:G stress-strength systems in the UGG model are
discussed. We derive the expression for R(n, α,B, γ) = P (Yn:n > X) in the UGG model
and develop a procedure to estimate R(n, α,B, γ) in Section 5. Furthermore, we obtain
the maximum likelihood estimates (MLE) and maximum spacing (MSP) estimates of
the parameters in Section 5. Section 6 provides asymptotic and bootstrap confidence
intervals for R(n, α,B, γ). In Section 7, simulation studies are carried out to evaluate the
performance of the asymptotic and bootstrap confidence intervals for R(n, α,B, γ). In
addition, a numerical example based on real-life data is provided in Section 7. Finally, the
conclusions are given in Section 8.

2. Some fundamental basic definitions and primary results
Several statistical indices, such as mean, median, skewness, and kurtosis, have previously

been used in research work to compare two CDFs or PDFs. However, comparisons based
on single values did not contain sufficient information. To overcome this shortcoming,
several authors, such as [35], applied stochastic orders, which provide further information
regarding the distribution structures. More detailed information on stochastic orders
can be found in [38] and [36]. This section is devoted to the review of some notes on
stochastic orders. Consider two univariate random variables of X and Y such that their
following characteristics are, respectively, termed as: CDFs F and G, survival functions
F̄ (= 1 − F ) and Ḡ(= 1 − G), PDFs f and g, hazard rate functions hf (= f/F̄ ) and
hg(= g/Ḡ) and reversed hazard rate functions r̃F (= f/F ) and r̃G(= g/G). Denote by G−1

the corresponding quantile function, defined by G−1(u) = inf{x : G(x) ≥ u}, 0 ≤ u ≤ 1.
Note that stochastic orders are introduced for the sake of comparing the magnitudes of
two random variables. More details of stochastic orders can be found in [38].

Definition 2.1. The vector X is said to be smaller than the vector Y in the
(i) usual stochastic order denoted by X ≤st Y if F̄ (t) ≤ Ḡ(t) for all t.
(ii) hazard rate order denoted by X ≤hr Y if Ḡ(t)/F̄ (t) increases in t. If X and Y are
absolutely continuous, then X ≤hr Y is equivalent to hF (t) ≥ hG(t) for all t.
(iii) reversed hazard rate order denoted by X ≤rhr Y if G(t)/F (t) increases in t. If X
and Y are absolutely continuous, then X ≤rhr Y is equivalent to r̃F (t) ≤ r̃G(t) for all t.
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(iv) likelihood ratio order denoted by X ≤lr Y if g(t)/f(t) increases in t for which the
ratio is well defined.
(v) mean residual life order denoted by X ≤MRL Y if

∫∞
x Ḡ(u)du/

∫∞
x F̄ (u)du is increas-

ing in x.
(vi) convex transform order (denoted by X ⩽c Y ) if G−1(F (x)) is convex in x on the
support of F .

(vii) star order (denoted by X ⩽∗ Y ) if G
−1(F (x))
x

increases in x > 0.
(viii) super-additive order (denoted by X ⩽su Y ) if G−1(F (x + y)) ≥ G−1(F (x)) +
G−1(F (y)), ∀ x ≥ 0,
y ≥ 0.
(ix) dispersive order (denoted by X ⩽disp Y ) if and only if G−1(F (x)) − x increases in x.

Suppose that In is a n-dimensional Euclidean space, where I ⊆ R and two real vec-
tors x = (x1, x2, ..., xn) ∈ In and y = (y1, y2, ..., yn) ∈ In with ascending elements
{x(1), x(2), ..., x(n)} and {y(1), y(2), ..., y(n)}. Consider the following definition derived by
[37].

Definition 2.2. The vector x is said to majorize the vector y (denoted x
m
⪰ y) if

j∑
i=1
x(i) ≤

j∑
i=1
y(i) for j = 1, 2, ..., n− 1 and

n∑
i=1
x(i) =

n∑
i=1
y(i) .

Definition 2.3. A real-valued function φ : In → R is said to be Schur-Convex (Schur-
Concave)on In if x

m
⪰ y, implies φ(x) ≥ (resp. ≤)φ(y) for all x,y ∈ In.

Lemma 2.4. The function h(x) = xp−x

µ−1+p−x is increasing and convex in x, for all x > 0,
µ > 1, and 0 < p < 1.

In what follows, let us denote
MYn:n,Yi,G0,αi,βi,X,F,R(n,ααα,βββ) = {Yn−r+1:n, Yi ∼ UGG−G0(αi, βi, µ), Y0 ∼ G0(.), X ∼ F,R(n,ααα,βββ)},
as the model function of the 1-out-of-n:G stress-strength system associated with the INID
components lifetimes Yi, where Yi ∼ UGG − G0(αi, βi, µ), for i = 1, 2, ..., n and the
strength system is subjected to a random stress X with the CDF F . Also, assume that
the strength-system and the stress strength reliability of the aforementioned system are
Yn:n and R(n,ααα,βββ), respectively.

3. Description general model and majorization ordering results
Consider a 1-out-of-n:G strength system of order n consisting of independent and het-

erogeneous UGG components with lifetimes Yi ∼ UGG − G0(αi, βi, µ), for i = 1, 2, ..., n.
The system is subjected to random stress X with CDF F . Also, suppose that Yi and X are
independent random variables for i = 1, 2, ..., n. It is obvious that Yn:n = max(Y1, ..., Yn)
is the strength of the 1-out-of-n:G system. The CDF and PDF of the random strength of
the aforementioned 1-out-of-n:G system is given by

Gn:n(y) =
n∏

i=1

(
µ

µ− 1 +G0
−αi(y)

)βi

, (3.1)

and

gn:n(y) = Gn:n(y)
n∑

i=1
αiβi

g0(y)
G0(y)

G0
−αi(y)

b− 1 +G0
−αi(y)

, (3.2)
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respectively. Then, the stress-strength reliability of the 1-out-of-n:G stress-strength system
is given by

R(n,ααα,βββ) = P (Yn:n > X)

= 1 −
∫ 1

0
R(u, n,α,β)du, (3.3)

where R(u, n,α,β) =
∏n

i=1

(
µ

µ−1+G0−αi (F −1(u))

)βi and F−1(u) = inf{x : F (x) ≥ u} for
0 ≤ u ≤ 1 is the corresponding quantile function. In the following, under special parame-
ters conditions, the stress strength reliability of 1-out-of-n:G stress strength systems with
independent and heterogeneous UGG components are compared under identical baseline
CDFs.
Result 3.1. Let MYn:n,Yi,G0,αi,βi,X,F,R(n,ααα,βββ) and MZn:n,Zi,G0,γi,βi,X,F,R(n,γγγ,βββ) be two model
functions of two 1-out-of-n:G stress-strength systems. If α,γ,β ∈ D+(ε+), then α

m
⪰ γ

implies R(n,ααα,βββ) ≥ R(n,γγγ,βββ).
Proof. Let r1:n(x) be the reversed hazard rate function of Y1:n, then we have

rn:n(y) =
n∑

i=1
αiβi

g0(y)
G0(y)

G0
−αi(y)

b− 1 +G0
−αi(y)

.

According to Theorem A.3 in [37], it suffices to indicate that the random variable hazard
rate function Y1:n, that is,

rn:n(y) =
n∑

i=1
αiβi

g0(y)
G0(y)

G0
−αi(y)

b− 1 +G0
−αi(y)

= g0(y)
G0(y)

n∑
i=1

βiψ(αi),

is a Schur-convex function in ααα, where ψ(αi) = αiG0−αi (x)
µ−1+G0−αi (x) . Based on Lemma 2.4, it

can be concluded that ψ(αi) is increasing and convex with respect to αi for i = 1, . . . , n.
Therefore, according to Theorem 3.1 (a)(i)(3.2 (b)(i)) of [32], rn:n(y) is a Schur-convex
function in α on D+(ε+). Thus, according to Theorem A.8 in [37], we have Yn:n ≥rhr Zn:n
and so Yn:n ≥st Zn:n. Finally, by Equation (3.3) the proof is complete. 2

Result 3.1 states that in a 1-out-of-n:G stress-strength system with independent com-
ponents, the higher heterogeneity of the shape parameter (in majorization order) results
in the higher stress-strength reliability of the 1-out-of-n:G stress-strength system in the
reversed hazard rate order.
Result 3.2. Let MYn:n,Yi,G0,αi,βi,X,F,R(n,ααα,βββ) and MZn:n,Zi,G0,αi,δi,X,F,R(n,ααα,δδδ) be two model
functions of two 1-out-of-n:G stress strength systems. If δ,β,α ∈ ε+, and β

m
⪰ δ, then

R(n,ααα,βββ) ≥ R(n,ααα,δδδ).
Proof. The reversed hazard rate function of the random variable Yn:n can be expressed

as
rn:n(x) = f(x)

n∑
i=1

uiψ(βi),

where, for i = 1, ..., n, ψ(βi) = βi and ui = αiF
−αi−1(x)

b−1+F −αi (x) . Due to the lemma 2.4, it can be
observed that ui is an increasing function in αi, for i = 1, ..., n. Therefore, α ∈ ε+ implies
u = (u1, ..., un) ∈ ε+. Furthermore, if u ∈ ε+ and β ∈ ε+, according to Theorem 3.2 (b)
(i) in [32], r̃n:n(x) is a Schur-convex function in ε+ and Thus, according to Theorem A.8
in [37], we have Yn:n ≥rhr Zn:n and so Yn:n ≥st Zn:n. Finally, by Equation 3.3 the proof is
complete. 2

In the following, the comparison of the reliability of the strength of the stress of two
parallel systems with independent and heterogeneous UGG−F components is carried out
under non-identical baseline distribution functions.
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Result 3.3. Let MYn:n,Yi,G0,αi,βi,X,F,R(n,ααα,βββ) and MZn:n,Zi,H0,γi,βi,X,F,R(n,γγγ,βββ) be two model
functions of 1-out-of-n:G stress strength systems. Ifα,γ,β ∈ D+(ε+) and α

m
⪰ γ, then

Y0 ≥st Z0 implies R(n,ααα,βββ) ≥ R(n,γγγ,βββ).

Proof. Let Wi ∼ UGG−G0(γi, βi, µ) for i = 1, 2, . . . , n. For (ααα,βββ) ∈ An and (γγγ,βββ) ∈
An, in the proof of the result 3.1, Yn:n ≥st Wn:n was shown. Therefore, we have

n∏
i=1

(
µ

µ− 1 +G0
−αi(y)

)βi

≤
n∏

i=1

(
µ

µ− 1 +G0
−γi(y)

)βi

. (3.4)

According to the definition of the usual stochastic order and based on the relationship
Y0 ≥st Z0, for all βi, γi > 0, we have(

b− 1 +G0
−γi(y)

)βi ≥
(
µ− 1 +H0

−γi(y)
)βi .

Therefore, Equation 3.4 can be rewritten as
n∏

i=1

(
µ

µ− 1 +G0
−αi(y)

)βi

≤
n∏

i=1

(
µ

µ− 1 +G0
−γi(y)

)βi

≤
n∏

i=1

(
mu

µ− 1 +H0
−γi(y)

)βi

,

which results in Gn:n(y) ≤ Hn:n(y), where Hn:n(y) is the CDF of the random variable
Zn:n. This implies Yn:n ≥st Zn:n. Therefore, by Equation 3.3 the proof is complete. 2

Result 3.4. Let MYn:n,Yi,G0,αi,βi,X,F,R(n,ααα,βββ) and MZn:n,Zi,H0,γi,βi,X,F,R(n,γγγ,βββ) be two model
functions of 1-out-of-n:G stress strength systems. Ifδ,β,α ∈ ε+ and β

m
⪰ δ, then Y0 ≥st Z0

implies R(n,ααα,βββ) ≥ R(n,ααα,δδδ).

4. Special Models
Consider a 1-out-of-n:G strength system of order n consisting of independent and het-

erogeneous UGG components with lifetimes Yi ∼ UGG − G0(α, βi, µ), for i = 1, 2, ..., n.
The system is subjected to random stressX with CDFG0. Also, suppose that Yi andX are
independent random variables for i = 1, 2, ..., n. Consider Ms

Yn:n,Yi,G0,α,βi,X,G0,R(n,α,B,µ)
as the model function of the aforementioned 1-out-of-n:G stress-strength system, where
B =

∑n
i=1 βi. Then stress-strength reliability of the aforementioned system is given by

R(n, α,B, µ) = P (X < Yn:n)

= 1 −
∫ ∞

0

n∏
i=1

(
µ

µ− 1 +G−α
0 (x)

)βi

dG0(x)

= 1 −
∫ 1

0

( µ

µ− 1 + u−α

)B
du. (4.1)

We now study the stochastic ordering between Yn:n and X. Using relation (3.2), we
have

gn:n(y)
g0(y) = αBµ−1G0

−αi−1(y)Gn:n
1
β

+1(y). (4.2)

This gives
d

dy

[gn:n(y)
g0(y)

]
= αBµ−1G0

−α−1(y)Gn:n
1
B

+1(y)
[

− (α+ 1)r0(y) + ( 1
B

+ 1)rn:n(y)
]
, (4.3)

where, r0(y) = g0(y)
G0(y) and rn:n(y) = gn:n(y)

Gn:n(y) . Therefore, α = 1
B and µ ≥ 1 involve Yn:n ≤lr

X.
Based on what has already been stated, the following results are obtained.
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Result 4.1. Let Ms
Yn:n,Yi,G0,α,βi,X,G0,R(n,α,B,µ) be the model function of the 1-out-of-n:G

stress-strength system. Then, if α = 1
B and µ ≥ 1(µ < 1),

i) Yn:n ≤hr X(Yn:n ≥hr X);
ii) Yn:n ≤rh X(Yn:n ≥hr X);
iii) Yn:n ≤st X(Yn:n ≥hr X);
iv) Yn:n ≤MRL X(Yn:n ≥hr X);
v) R(n, α,βββ, µ) ≤ (≥)1

2 .

Next, we investigate the stochastic orderings with respect to the parameters β and
α. Let Ms

Yn:n,Yi,G0,α,βi,X,G0,R1(n,α,B,µ1) and Ms
Zn:n,Zi,G0,γ,δi,X,G0,R2(n,γ,D,µ2) be two model

functions of two 1-out-of-n:G stress-strength systems, where D =
∑n

i=1 δi. Then,

gn:n(y)
hn:n(y) = αBµ2

γDµ1

G0
γ(y)

G0
α(y)

Gn:n
1
B

+1(y)
Hn:n

1
D

+1(y)
. (4.4)

Therefore, we have

d

dy

[ gn:n(y)
hn:n(y)

]
= αBµ2
γDµ1

[
(γ + 1)r0(y) − ( 1

D
+ 1)sn:n(y)

− (α+ 1)r0(y) + ( 1
B

+ 1)rn:n(y)
]
, (4.5)

where, sn:n(y) = hn:n(y)
Hn:n(y) . If α = 1

B and γ = 1
D , then we have

d

dy

[ gn:n(y)
hn:n(y)

]
= µ2
µ1

[
(γ + 1)r0(y)

(
1 − G0

−γ

µ2 − 1 +G0
−γ(y)

)
+ (α+ 1)r0(y)

( G0
−α

µ2 − 1 +G0
−α(y)

− 1
)]
.

(4.6)

Thus α = 1
B , γ = 1

D , µ1 < 1, and µ2 ≥ 1 implies Yn:n ≥lr Zn:n.
By the above-mentioned results, the following result is achieved.

Result 4.2. Let Ms
Yn:n,Yi,G0,α,βi,X,G0,R1(n,α,B,µ1) and Ms

Zn:n,Zi,G0,γ,δi,X,G0,R2(n,γ,D,µ2) be
two model functions of two 1-out-of-n:G stress-strength systems. Then, if α = 1

B , γ = 1
D ,

µ1 < 1(µ1 ≥ 1), and µ2 ≥ 1(µ2 < 1),
i) Yn:n ≥hr Zn:n(Yn:n ≤hr Zn:n);
ii) Yn:n ≥rh Zn:n(Yn:n ≤rh Zn:n);
iii) Yn:n ≥st Zn:n(Yn:n ≤st Zn:n);
iv) Yn:n ≥MRL Zn:n(Yn:n ≤MRL Zn:n);
v) R1(n, α,B, µ1) ≥ R2(n, γ,D, µ2)(R1(n, α,B, µ1) ≤ R2(n, γ,D, µ2)).

The next result shows that some stochastic orders are preserved under the aforemen-
tioned models.

Result 4.3. Let Ms
Yn:n,Yi,G0,α,βi,X,G0,R1(n,α,B,µ) and Ms

Zn:n,Zi,H0,α,βi,X,H0,R2(n,α,B,µ) be
two model functions of two 1-out-of-n:G stress-strength systems. Then we have

i) Y0 ⩽c Z0 if, and only if, Yn:n ⩽c Zn:n.
ii) Y0 ⩽∗ Z0 if, and only if, Yn:n ⩽∗ Zn:n.
iii) Y0 ⩽su Z0 if, and only if, Yn:n ⩽su Zn:n.
iv) Y0 ⩽disp Z0 if, and only if, Yn:n ⩽disp Zn:n.
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Proof. By assumptions, we have

Gn:n
−1(Hn:n(y)) = G0

−1
[(

1 − µ
(
1 − µ− 1 +H−α

0 (y)
µ

))− 1
α

]
. (4.7)

The results follow from (4.7) and parts (vi) to (ix) of Definition 2.1. 2

5. Point estimation of the the 1-out-of-n:G stress-strength reliability in
UGG models

In this section, we propose two point estimators for the 1-out-of-n:G stress-strength
reliability in UGG models using ML and MPS methods.

5.1. ML estimation
Here, we will find the ML estimation of the 1-out-of-n:G stress-strength reliability when

the strength components belong to the family of UGG distribution with an exponential
baseline distribution. In addition, we consider that the strength system is subjected to
independent stress with an exponential distribution. Let MW,Yi,G0,α,βi,X,F,R(n,α,B,γ) be a
model functions of a 1-out-of-n:G stress-strength system, where G0(y) = 1 − e−λy with
known mean 1

λ , F (x) = 1 − e−γx with unknown mean 1
γ , W = Yn:n, and

R(n, α,B, γ) = P (W > X)

= 1 −
∫ 1

0

(
µ

µ− 1 +
(
1 − (1 − u)

λ
γ
)−α

)B

du. (5.1)

Therefore, the two probability density functions associated with the aforementioned stress-
strength model are given, respectively, by

gW (w) = Bαλ

µ
e−λw(1−e−λw)−α−1

(
µ

µ− 1 + (1 − e−λw)−α

)B+1

, y > 0, B > 0, λ > 0, µ,

(5.2)
and

f(x) = γe−γx, x > 0, γ > 0. (5.3)

Let W1, . . . ,Wm1 be a random sample of size m1 distributed as W with PDF in (5.2)
and X1, . . . , Xm2 be a random sample of size m2 from X with PDF in (5.3). Then, the
likelihood function of the observed sample is easily provided by

L(B,α, γ) =
(Bαλ
µ

)m1e
−λ

m1∑
j=1

wj m1∏
j=1

(1 − e−λwj )−α−1

×
m1∏
j=1

( µ

µ− 1 + (1 − e−λwj )−α

)B+1
γm2e

−γ
m2∑
k=1

xk

.

(5.4)
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The corresponding log-likelihood function is

ℓ(B,α, γ) = m1(lnB + lnα+ lnλ− lnµ) − λ
m1∑
j=1

wj − (α+ 1)
m1∑
j=1

ln(1 − e−λwj ) +

+ (B + 1)m1 lnµ− (B + 1)
m1∑
j=1

ln
(
µ− 1 + (1 − e−λwj )−α

)
+m2 ln γ − γ

m2∑
k=1

xk.

(5.5)

Denote θθθ = (B,α, γ). Taking the first order partial derivatives with respect to B, α, and
γ and setting them to zero, we get the following system of score equations

∂l(θθθ)
∂B = m1

B +m1 lnµ−
m1∑
j=1

ln
(
µ− 1 + (1 − e−λwj )−α

)
= 0,

∂l(θθθ)
∂γ = m2

γ −
m2∑
k=1

xk = 0,

∂l(θθθ)
∂α = m1

α −
m1∑
j=1

ln(1 − e−λwj ) + (B + 1)
m1∑
j=1

(1−e−λwj )
−α

ln(1−e−λwj )
µ−1+(1−e−λwj )

−α = 0.

(5.6)

The MLEs of B, α, and γ denoted by B̂, α̂, and γ̂ are the solutions to the above system
of score equations which maximize the likelihood function (5.4). From (5.6), we attain

B̂(α) = − m1
m1∑
j=1

ln
(

µ

µ−1+(1−e−λwj )
−α

) , (5.7)

and
γ̂ = m2

m2∑
k=1

xk

. (5.8)

By substituting (5.7) and (5.8) in (5.6) we have

∂l(θθθ)
∂α = m1

α −
m1∑
j=1

ln(1 − e−λwj ) +
m1+

m1∑
j=1

ln
(

µ−1+(1−e−λwj )
−α
)

−m1 ln µ

m1∑
j=1

ln
(

µ−1+(1−e−λwj )
−α
)

−m1 ln µ

×
m1∑
j=1

(1−e−λwj )
−α

ln(1−e−λwj )
µ−1+(1−e−λwj )

−α = 0.

(5.9)

By solving the system of non-linear equations in (5.9), B̂, α̂, and γ̂ will be obtained.
Therefore, the MLE of R(n, α,B, γ) can be obtained by

R̂(n, α,B, γ) = 1 −
∫ 1

0

(
µ

µ− 1 +
(
1 − (1 − u)

λ
γ̂
)−α̂

)B̂

du. (5.10)

In the next subsection, various methods are used to find the confidence interval for
R(n, α,B, γ).

5.2. MSP estimation
MSP estimation was proposed by [39], and subsequently investigated by [40] based

on an approximation of the Kullback-Leibler divergence. The estimation method can
effectively replace the ML method in a problem in which the likelihood is unbounded.
Based on the literature [41], the following method is briefly given to calculate the MSP
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estimator of the parameter. Suppose X1, . . . , Xn is a random sample from population X
with CDF Fθ(x), where θ is an unknown parameter vector. Let F (x) be the true CDF of
the population X, (X1:n, ..., Xn:n) be the order statistic of this sample, and its observations
is (x1:n, ..., xn:n). According to the literature [39], and subsequently investigated by [40],
the Kullback-Leibler divergence between Fθ(x) and F (x) is approximated as

1
n+ 1

n+1∑
i=1

ln
∣∣∣∣ F (xi:n) − F (xi−1:n)
Fθ(xi:n) − Fθ(xi−1:n)

∣∣∣∣ , (5.11)

where Fθ(x0:n) ≡ 0 and Fθ(xn+1:n) ≡ 1. The MSP estimators for the unknown parameter
vector θθθ can be obtained by minimizing the above equation. Furthermore, the above
minimization problem can be transformed into the following maximization expression:

Q(θθθ) =
n+1∑
i=1

ln [F (xi:n) − F (xi−1:n)] . (5.12)

In this section, Let W1, . . . ,Wm1 be a random sample of size m1 distributed as W with
the PDF in (5.2), X1, . . . , Xm2 be a random sample of size m2 from X with the PDF in
(5.3), and θθθ = (B,α, γ). Based on the above method for calculating MSP estimator of
parameter, the following expression is given by

Q(θθθ) =
m1+1∑
i=1

ln

( µ

µ− 1 + (1 − e−λwi:m1 )−α

)B

−
(

µ

µ− 1 + (1 − e−λwi−1:m1 )−α

)B


+
m2+1∑
i=1

ln
[
e−γxi−1:m2 − e−γxi:m2

]
, (5.13)

where w0:m1 = 0, x0:m2 = 0, wm1+1:m1 = +∞, and xm2+1:m2 = +∞. The partial deriva-
tives of Equation (5.13) with respect to parameters B, α, and γ are given by

∂Q(θθθ)
∂B =

m1+1∑
i=1

C1i
B ln C1i−C2i

B ln C2i

C1i
B−C2i

B = 0,

∂Q(θθθ)
∂γ =

m2+1∑
i=1

xi:m2 e
−γxi:m2 −xi−1:m2 e

−γxi−1:m2

e
−γxi−1:m2 −e

−γxi:m2
= 0,

∂Q(θθθ)
∂α = B

µ

m1+1∑
i=1

C1i
B+1 ln(1−e

−λwi:m1 )−C2i
B+1 ln(1−e

−λwi−1:m1 )
C1i

B−C2i
B = 0,

(5.14)

where C1i =
(

µ

µ−1+(1−e
−λwi:m1 )

−α

)
and C2i =

(
µ

µ−1+(1−e
−λwi−1:m1 )

−α

)
. Let B̃, α̃, and γ̃

be the MSP estimators of parameters B, α, and γ, respectively, then B̃, α̃, and γ̃ can be
obtained by solving the above equation (5.14). The MSP estimation R̃(n, α,B, γ) can be
obtained by substituting B̃, α̃, and γ̃ into R(n, α,B, γ).

6. Confidence intervals for R(n, α, B, γ)
In this section, various methods are used to find confidence interval for the multicompo-

nent stress-strength reliability parameter R(n, α,B, γ). It is difficult to obtain the exact
distribution of R̂(n, α,B, γ). Therefore, it is difficult to obtain the exact confidence in-
terval of R(n, α,B, γ). For this reason, we consider an asymptotic confidence interval
and two parametric bootstrap methods for the construction of the confidence interval of
R(n, α,B, γ), which was first proposed by Efron [42].
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6.1. Asymptotic confidence interval
In this subsection, the asymptotic interval of R(n, α,B, γ) is obtained using the asymp-

totic distribution of MLE θ̂θθ = (α̂, B̂, γ̂). Let θθθ = (α,B, γ)⊺. The Hessian is the matrix of
second derivatives of the likelihood with respect to the parameters and defined by

H(θθθ) = ∂2l(θθθ)
∂θθθ∂θθθ⊺

=


∂2l(θθθ)
∂B2

∂2l(θθθ)
∂B∂α

∂2l(θθθ)
∂B∂γ

∂2l(θθθ)
∂α∂B

∂2l(θθθ)
∂α2

∂2l(θθθ)
∂α∂γ

∂2l(θθθ)
∂γ∂B

∂2l(θθθ)
∂γ∂α

∂2l(θθθ)
∂γ2

 , (6.1)

where

∂2l(θθθ)
∂α2 = −m1

α2 − (B + 1)(µ− 1)
m1∑
j=1

(1 − e−λwj )−α
(

ln(1 − e−λwj )
)2

(
µ− 1 + (1 − e−λwj )−α

)2 ,

∂2l(θθθ)
∂B∂α

=
m1∑
j=1

(1 − e−λwj )−α ln(1 − e−λwj )
µ− 1 + (1 − e−λwj )−α ,

∂2l(θθθ)
∂α∂B

=
m1∑
j=1

(1 − e−λwj )−α ln(1 − e−λwj )
µ− 1 + (1 − e−λwj )−α ,

∂2l(θθθ)
∂B2 = −m1

B2 , ∂2l(θθθ)
∂γ2 = −m2

γ2 , and ∂2l(θθθ)
∂B∂γ = ∂2l(θθθ)

∂α∂γ = ∂2l(θθθ)
∂γ∂B = ∂2l(θθθ)

∂γ∂α = 0. It can be
demonstrated that the likelihood function satisfies the regularity conditions prepared in
[51], pp. 384-385. The observed Fisher information matrix can be presented as

In(θ̂θθ) = −H(θ̂θθ) = −∂2l(θθθ)
∂θθθ∂θθθ⊺

∣∣∣
θθθ=θ̂θθ

. (6.2)

Let m = m1 +m2, k1 = lim
m2→+∞

lim
m1→+∞

m1
m1+m2

, and k1 = lim
m2→+∞

lim
m1→+∞

m2
m1+m2

. We de-
fine the Fisher information matrix of θ based on the model function MW,Yi,G0,α,βi,X,F,R(n,α,B,γ)
as follows

I(θθθ) = lim
m1→∞
m2→∞

E
(

− 1
m

∂2l(θθθ)
∂θθθ∂θθθ⊺

)
=

 I11 I12 I13
I21 I22 I23
I31 I32 I33

 , (6.3)

where

I11 = k1
B2 , I12 = Ψ(B,α, µ, 2), I13 = I31 = 0, I33 = k2

γ2 , I21 = Ψ(B,α, µ, 2),

I13 = I31 = 0, I22 = k1
α2 − (B + 1)(µ− 1)Ψ(B,α, µ, 3),

and

Ψ(B,α, µ, c) = −k1Bαµ
B
∫ 1

0

u−2α−1(ln u)c−1

(µ− 1 + u−α)B+c
du.

Applying the above-mentioned notation, we obtain the following asymptotic normality of
the maximum likelihood estimates θ̂ = (α̂, B̂, γ̂)⊺, of θ = (α,B, γ).

Theorem 6.1. If model (3.1) holds, the MLE (α̂, B̂, γ̂)⊺ of (α,B, γ)⊺ weakly converges to
the following multivariate normal distribution:

√
m

 α̂− α

B̂ −B
γ̂ − γ

 D−→ N
(
0, I−1(θθθ)

)
, (6.4)
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where I−1(θθθ) is the inverse of the Fisher information matrix I(θθθ).

Since I(θθθ) includes integrals, one has to apply a numerical procedure to evaluate these
integrals to use this asymptotic normality. Practically, it is convenient to substitute the
Fisher information matrix I(θθθ) by

− 1
m
H(θ̂θθ) = − 1

m

∂2l(θθθ)
∂θθθ∂θθθ⊺

∣∣∣
θθθ=θ̂θθ

. (6.5)

In fact, H(θ̂θθ) is a consistent estimator of I(θθθ) since

lim
m1→∞
m2→∞

− 1
m1 +m2

∂2l(θθθ)
∂θθθ∂θθθ⊺

= lim
m1→∞
m2→∞

− 1
m1 +m2

Im(θθθ) = I(θθθ). (6.6)

To construct the asymptotic normality of R(n, α,B, γ) represented in (5.1), we define

V (α,B, γ) =
(∂R(n, α,B, γ)

∂B
,
∂R(n, α,B, γ)

∂α
,
∂R(n, α,B, γ)

∂γ

)
, (6.7)

where
∂R(n, α,B, γ)

∂B
= −µB

∫ 1

0
Ψ(u, α, λ, γ, µ, 0) ln

(
µ

µ− 1 +
(
1 − (1 − u)

λ
γ
)−α

)
du,

∂R(n, α,B, γ)
∂α

= −BµB
∫ 1

0

(
1 − (1 − u)

λ
γ
)−α

ln
(
1 − (1 − u)

λ
γ
)
Ψ(u, α, λ, γ, µ, 1)du,

∂R(n, α,B, γ)
∂γ

= αBλµB

γ2

∫ 1

0
ln(1 − u)(1 − u)

λ
γ
(
1 − (1 − u)

λ
γ
)−α−1Ψ(u, α, λ, γ, µ, 1)du,

and
Ψ(u, α, λ, γ, µ, c) =

(
µ− 1 +

(
1 − (1 − u)

λ
γ
)−α)−B−c

.

Applying the Delta method on the MLE of R(n, α,B, γ), we obtain

√
mR̂(n, α,B, γ) =

√
mR(n, α,B, γ) + V (α,B, γ)

√
m

 α̂− α

B̂ −B
γ̂ − γ

+ op(1). (6.8)

Using the results of Theorem 6.1, we obtain the following theorem.

Theorem 6.2. Suppose that model (1.1) holds, we have

√
m
(
R̂(n, α,B, γ) −R(n, α,B, γ)

)
D−→ N

(
0, V (α,B, γ)I−1V ⊺(α,B, γ)

)
, (6.9)

where V ⊺(α,B, γ) is the transpose of V (α,B, γ) and I−1 is the inverse of information
matrix presented in (6.3).

To build confidence intervals for R(n, α,B, γ), we apply the following consistent esti-
mated variance

V̂ ar(R̂(n, α,B, γ)) = 1
m
V (α̂, B̂, γ̂)I−1V ⊺(α̂, B̂, γ̂). (6.10)

Applying the consistent estimated variance provided in (6.10) in addition to the asymptotic
normal distributions in Theorem 6.2, we are able to construct inferences on R(n, α,B, γ)
by building confidence intervals. Now, the asymptotic confidence interval 100(1 − α

2 ) of
R(n, α,B, γ) is obtained as(

R̂(n, α,B, γ) − zα
2
V̂ ar(R̂(n, α,B, γ)), R̂(n, α,B, γ) + zα

2
V̂ ar(R̂(n, α,B, γ))

)
,

where zα
2

is the upper α
2 quantile of the standard normal distribution.
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6.2. Bootstrap confidence intervals
In the previous subsection, the behavior of inferences about R(n, α,B, γ) based on

extended asymptotic theories depends greatly on the approximation of the MLE sampling
distribution of the parameters of interest to the normal distribution. Sometimes, such
a regular approximation requires a large sample size which is probably impractical in
actual problems. In this section, we look at two bootstrap intervals, that is, bootstrap-
t and bootstrap percentile intervals, which best need a viable sample size to receive an
appropriate estimate of the CDF of the unique populations. The bootstrap technique
offered through [42], is a resampling system that has had great success in solving many
complicated statistical problems. In this paper, parametric and non-parametric bootstrap
techniques have been applied to generate random samples primarily based on which to
build confidence intervals for the parameters of interest. Let W1, . . . ,Wm1 ∼ GW (w) and
X1, . . . , Xm2 ∼ F (x) be the two identically independently distributed (i.i.d.) random
samples. Applying the method in Section 5, we were able to gain the MLE of B, α, and
γ indicated by B̂, α̂, and γ̂, respectively. The i.i.d. samples W ∗

1 , . . . ,W
∗
m1 ∼ GW (w; B̂, α̂)

and X∗
1 , . . . , X

∗
m2 ∼ F (x; γ̂) are named parametric bootstrap samples. Let ĜW,m1 and

F̂2,m2 be the empirical CDFs determined by W1, . . . ,Wm1 and X1, . . . , Xm2 , respectively.
The simple random samples with replacement W ∗

1 , . . . ,W
∗
m1 ∼ ĜW,m1 and X∗

1 , . . . , X
∗
m2 ∼

F̂m2 are named non-parametric bootstrap samples.

Steps for constructing bootstrap estimates of parameters
The next algorithm is applied to compute parametric and non-parametric bootstrap

estimates B̂∗
1,b, α̂∗

1,b, and γ̂∗
2,b for b = 1, . . . , B. Several bootstrap confidence intervals will

be obtained based on these bootstrap estimates of parameters.

Algorithm 1. Algorithm outline to compute bootstrap estimates of parameters
Algorithm:
(1) Choose bootstrap samples with sizes n1 and n2 from the equivalent bootstrap

populations, i.e., W ∗
1 , . . . ,W

∗
m1 ∼ GW (w; B̂, α̂) or ĜW,m1 and X∗

1 , . . . , X
∗
m2 ∼

F (x; γ̂) or F̂m2 , respectively.
(2) Apply the method explained in Section 5 to estimate bootstrap MLEs B̂∗, α̂∗, and

γ̂∗ depend on W ∗
1 , . . . ,W

∗
m1 and X∗

1 , . . . , X
∗
m2 and compute the MLEs according to

the following pattern

R̂∗(n, α̂∗, B̂∗, γ̂∗) = 1 −
∫ 1

0

(
µ

µ− 1 +
(
1 − (1 − u)

λ
γ̂∗
)−α̂∗

)B̂∗

du. (6.11)

(3) Repeat steps 1 and 2, B times and save the MLEs of parameters into their equivalent
sets of bootstrap estimates: B̂∗

b , α̂∗
b , γ̂∗

b and R̂∗
b(n, α̂∗

b , B̂
∗
b , γ̂

∗
b ) for b = 1, . . . , B.

In the following, two different kinds of bootstrap confidence intervals for the parameters
of interest are proposed. For the sake of simplicity of display, we reduce our writing only
to R(n, α,B, γ). The steps of building confidence intervals for the other three parameters
of interest B, α, and γ are similar to R(n, α,B, γ). Suppose that R̂∗

b(n, α̂∗
b , B̂

∗
b , γ̂

∗
b ) for

b = 1, . . . , B are the bootstrap estimates of R. Moreover, assume that R̂(n, α̂, B̂, γ̂) is
the MLE obtained from the original dataset, and the confidence level is considered to be
100(1 − α)%.
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Bootstrap-t confidence interval
The bootstrap-t confidence interval imitates the method of building standard-t confi-

dence intervals. Two parts of the confidence interval, i.e. t-like critical value, and the stan-
dard error of R̂(n, α̂, B̂, γ̂), are computed from the bootstrap estimates R̂∗

b(n, α̂∗
b , B̂

∗
b , γ̂

∗
b )

for b = 1, . . . , B. The bootstrap standard error is determined by

SE∗(R̂(n, α̂, B̂, γ̂)) =

√√√√ 1
B

B∑
b=1

(R̂∗
b(n, α̂∗

b , B̂
∗
b , γ̂

∗
b ) − R̂∗

b(n, α̂∗
b , B̂

∗
b , γ̂

∗
b ))2,

where

R̂∗
b(n, α̂∗

b , B̂
∗
b , γ̂

∗
b ) = 1

B

B∑
b=1

R̂∗
b(n, α̂∗

b , B̂
∗
b , γ̂

∗
b ).

To obtain the t-like critical value, stated by t̂∗α, we first standardize R̂∗
b(n, α̂∗

b , B̂
∗
b , γ̂

∗
b ) for

b = 1, . . . , B by applying

z∗
b (R) = R̂∗

b(n, α̂∗
b , B̂

∗
b , γ̂

∗
b ) − R̂(n, α̂, B̂, γ̂)

SE∗(R̂(n, α̂, B̂, γ̂))
.

The t-like critical value t̂∗α based on the bootstrap estimate is determined as
#
{
z∗

b (R) ≤ t̂∗α
}

B
= α.

Therefore, the bootstrap-t confidence interval can be described as(
R̂(n, α̂, B̂, γ̂) − t̂∗1− α

2
SE∗(R̂(n, α̂, B̂, γ̂)), R̂(n, α̂, B̂, γ̂) + t̂∗α

2
SE∗(R̂(n, α̂, B̂, γ̂))

)
,

where t̂∗1− α
2

and t̂∗α
2

are the the (α
2 )-th and (1− α

2 )-th percentile values of z∗
b (R), respectively.

Bootstrap percentile confidence interval
We need to construct a confidence interval based on the bootstrap distribution. Sup-

pose that Ĥ∗
B(t) = Pr(R̂∗

B(n, α̂∗
B, B̂

∗
B, γ̂

∗
B) ≤ t) where Ĥ∗

B is the bootstrap CDF of
R̂∗

B(n, α̂∗
B, B̂

∗
B, γ̂

∗
b ). If the bootstrap distribution achieved by the Mont Carlo simulation

is, then we have Ĥ∗
B(t) = #(R̂∗

B(n,α̂∗
B ,B̂∗

B ,γ̂∗
B)≤t)

B . [52] established a 100(1−α)% approximate
bootstrap percentile confidence interval 100(1 − α)% for R as

(R̂∗( α
2 )(n, α̂∗

B, B̂
∗
B, γ̂

∗
B), R̂∗(1− α

2 )(n, α̂∗
B, B̂

∗
B, γ̂

∗
B))

where R̂∗( α
2 )(n, α̂∗

B, B̂
∗
B, γ̂

∗
B) be the α

2 -th percentile of the distribution of R̂∗
B(n, α̂∗

B, B̂
∗
B, γ̂

∗
B).

7. A simulation study
In this section, we complete simulation studies on the performance of some considerable

estimators of R(n, α,B, γ), established in the preceding sections, based on small samples.
The calculations in this paper are performed using the open source statistical computer
package R (v.4.3.3) on the Windows platform. We apply the following reverse transforma-
tion algorithm to generate random samples according to the models (5.2) and (5.3). It is
known that for CDF GW (w) the random variable stated by W = G−1

W (U) has distribution
GW (w), where U is a uniform random variable defined on (0, 1). Note that, under (5.2),
the random number W represented by

W = G−1
W (U) = − 1

λ
ln
(

1 −
(
µ(U− 1

β − 1) + 1
)− 1

α

)
. (7.1)

Let W ∼ gW (w) and X ∼ f(x), as determined in (5.2) and (5.3). We first simulate 1000
random samples from gW (w) and f(x), respectively. For a pair of two samples from (5.2)
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and (5.3), we can perform the approaches prepared in Sections 5 and 6 to obtain the MLE of
R(n, α,B, γ) along with the asymptotic confidence intervals of R(n, α,B, γ). In addition,
some plots are provided that show the sampling distributions of the MLE suggested by
R(n, α,B, γ) along with serial plots of MSE versus the number of simulations to study
the stability of the simulation results. Since the parameters λ and µ are known, we select
a constant λ = µ = 2 throughout this simulation study. The sample size is one of the
main factors that affect the performance of the estimators. Like always, we also want to
analyze the influence of sample size on different suggested estimators of R(n, α,B, γ). In
Figure 1, we have graphed the values of MSE(R̂(n, α̂, B̂, γ̂)) versus R(n, α,B, γ), for some
different values of m1 and m2. Figure 1 shows that the estimator ML has more error when
R(n, α,B, γ) tends to 0.5. Furthermore, for m1 = m2 it is symmetric around the point
R(n, α,B, γ) = 0.5 and departs from symmetry when m1 < m2 or m1 > m2. The MSE of
the estimator is first increasing, then decreasing, and reaches its maximum at the point
R(n, α,B, γ) ≃ m1

m1+m2
.

Figure 1. Plots of MSE of R̂(n, α̂, B̂, γ̂) versus R(n, α,B, γ).

Assume that m1 and m2 be the sample sizes that generated from (5.2) and (5.3),
respectively. We want to assess the performance of the estimators suggested of α, B,
and γ with values (α,B, γ,m1,m2) = (2, 2, 2, 5, 5), (α,B, γ,m1,m2) = (2, 2, 2, 5, 20),
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(α,B, γ,m1,m2) = (2, 2, 2, 20, 5), (α,B, γ,m1,m2) = (2, 2, 2, 20, 20), (α,B, γ,m1,m2) =
(3, 1.5, 2, 5, 5), (α,B, γ,m1,m2) = (3, 1.5, 2, 5, 20), (α,B, γ,m1,m2) = (3, 1.5, 2, 20, 5),
(α,B, γ,m1,m2) = (3, 1.5, 2, 20, 20), (α,B, γ,m1,m2) = (1.5, 3, 2, 5, 5), (α,B, γ,m1,m2) =
(1.5, 3, 2, 5, 20), (α,B, γ,m1,m2) = (1.5, 3, 2, 20, 5), (α,B, γ,m1,m2) = (1.5, 3, 2, 20, 20),
(α,B, γ,m1,m2) = (2, 2, 5, 5, 5), (α,B, γ,m1,m2) = (2, 2, 5, 5, 20), (α,B, γ,m1,m2) =
(2, 2, 5, 20, 5), and (α,B, γ,m1,m2) = (2, 2, 5, 20, 20). From Figures 2, we can see that
the simulated MSEs of R̂(n, α̂, B̂, γ̂) under different choices of (α,B, γ,m1,m2) become
stable when the number of simulations reaches approximately 395. As expected, the MSEs
showed themselves to be smaller for a larger sample size.

Figure 2. Plots of MSE of R̂ versus the number of simulations.

In Figure 3, we show the sampling distributions of MLE for R̂(n, α̂, B̂, γ̂) based on simu-
lation using different values of population parameters and sample sizes. It can be observed
that for (α,B, γ,m1,m2) = (2, 2, 2, 5, 20), (2, 2, 2, 20, 5), (3, 1.5, 2, 5, 20), (3, 1.5, 2, 20, 5),
(1.5, 3, 2, 5, 20), (1.5, 3, 2, 20, 5), (2, 2, 5, 5, 20), and (2, 2, 5, 20, 5) the sampling distribution
of R̂(n, α̂, B̂, γ̂) are skewed. Also, for (α,B, γ,m1,m2) = (2, 2, 2, 20, 20), (3, 1.5, 2, 20, 20),
(1.5, 3, 2, 20, 20), and (2, 2, 5, 20, 20) the sampling distributions of R̂(n, α̂, B̂, γ̂) are approx-
imately symmetric at R(n, α,B, γ).
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Figure 3. Sampling distribution of R̂.
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Table 1. Comparison of two point estimations for some value of the parameters.

m1 m2 γ α B R(n, α,B, γ) R̃(n, α,B, γ) MSE(MSP) R̂(n, α,B, γ) MSE(ML)

5 5 1.5 3 2 0.7063 0.6977 0.0193 0.6952 0.0198

5 5 2 2 2 0.7123 0.7281 0.0188 0.7196 0.0196

5 5 5 3 3 0.9785 0.9699 0.0112 0.9621 0.0132

5 20 1.5 3 2 0.7063 0.7191 0.0087 0.7083 0.0092

5 20 2 2 2 0.7123 0.6960 0.0102 0.7032 0.0154

5 20 5 3 3 0.9785 0.9622 0.0005 0.9715 0.0012

20 5 1.5 3 2 0.7063 0.6872 0.0176 0.7021 0.0195

20 5 2 2 2 0.7123 0.7370 0.0151 0.7185 0.0176

20 5 5 3 3 0.9785 0.9812 0.0011 0.9705 0.0034

20 20 1.5 3 2 0.7063 0.7295 0.0057 0.7287 0.0068

20 20 2 2 2 0.7123 0.7334 0.0053 0.7391 0.0062

20 20 5 3 3 0.9785 0.9784 0.0002 0.9801 0.0012

The MSEs of the ML and MSP estimators in Table 1 are compared, it can be seen that
the MSE of the MSP estimator is slightly smaller than the MSE of the ML estimator,
which concludes that the MSP estimator is overall slightly better than the ML estimator
in this stress- strength model.

To obtain and make a comparison between the different bootstrap confidence inter-
vals, we select 1000 parametric and nonparametric bootstrap samples using the method
prepared in Section 6.2 from each of the simulations and find both parametric and non-
parametric bootstrap-t, bootstrap-q confidence intervals. In Table 2, for all combinations
of m1 = 5, 20, m2 = 5, 20 and R(n, α,B, γ) = 0.184, 0.336, 0.506, 0.725, 0.861, 0.994, we
report the average length (AL) and the coverage proportions (CP) of asymptotic, para-
metric and nonparametric bootstrap confidence intervals which include the true value of
the corresponding parameter. The CP and AL of parametric bootstrap percentile confi-
dence intervals, respectively, P.CP.B.t and P.AL.B.t imply the CP and AL of paramet-
ric bootstrap-t confidence intervals, respectively, N-P.CP.P. and N-P.AL.P. represent the
CP and AL of nonparametric bootstrap percentile confidence intervals, respectively, N-
P.CP.B.t and N-P.AL.B.t stand for CP and AL of nonparametric bootstrap-t confidence
intervals, respectively
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Table 2. The values of CP and AL of the aforementioned asymptotic,
parametric and non-parametric confidence intervals for R.

R(n, α,B, γ) m1 m2 CP.A. AL.A. P.CP.P. P.AL.P. N-P.CP.P. N-P.AL.P. P.CP.B.t P.AL.B.t N-P.CP.B.t N-P.AL.B.t

0.184 5 5 0.940 0.397 0.969 0.288 0.961 0.319 0.946 0.270 0.945 0.284

0.184 5 20 0.912 0.331 0.958 0.293 0.955 0.298 0.926 0.225 0.925 0.231

0.184 20 5 0.933 0.249 0.981 0.219 0.952 0.224 0.950 0.170 0.941 0.185

0.184 20 20 0.948 0.185 0.973 0.147 0.970 0.156 0.954 0.118 0.959 0.115

0.336 5 5 0.934 0.549 0.964 0.457 0.960 0.509 0.936 0.340 0.939 0.390

0.336 5 20 0.921 0.434 0.967 0.377 0.956 0.367 0.939 0.289 0.943 0.301

0.336 20 5 0.920 0.420 0.970 0.351 0.965 0.364 0.946 0.272 0.945 0.271

0.336 20 20 0.938 0.267 0.972 0.225 0.974 0.232 0.950 0.173 0.949 0.173

0.506 5 5 0.940 0.600 0.966 0.496 0.962 0.533 0.941 0.375 0.940 0.406

0.506 5 20 0.928 0.428 0.971 0.388 0.973 0.392 0.944 0.292 0.941 0.297

0.506 20 5 0.935 0.492 0.972 0.424 0.965 0.432 0.947 0.336 0.946 0.329

0.506 20 20 0.943 0.296 0.974 0.252 0.973 0.273 0.949 0.196 0.953 0.197

0.725 5 5 0.930 0.533 0.972 0.431 0.966 0.444 0.930 0.342 0.936 0.365

0.725 5 20 0.904 0.382 0.961 0.300 0.963 0.317 0.924 0.257 0.920 0.248

0.725 20 5 0.909 0.473 0.964 0.391 0.967 0.402 0.938 0.299 0.931 0.301

0.725 20 20 0.940 0.279 0.985 0.234 0.988 0.243 0.955 0.184 0.957 0.190

0.861 5 5 0.934 0.395 0.972 0.318 0.978 0.361 0.935 0.254 0.921 0.261

0.861 5 20 0.923 0.273 0.966 0.212 0.972 0.241 0.966 0.177 0.965 0.180

0.861 20 5 0.920 0.359 0.963 0.296 0.965 0.307 0.945 0.251 0.944 0.248

0.861 20 20 0.944 0.213 0.986 0.181 0.990 0.182 0.959 0.134 0.961 0.139

0.994 5 5 0.945 0.216 0.981 0.180 0.985 0.175 0.919 0.137 0.910 0.139

0.994 5 20 0.939 0.112 0.973 0.094 0.976 0.100 0.931 0.073 0.935 0.076

0.994 20 5 0.948 0.220 0.971 0.199 0.978 0.184 0.940 0.136 0.943 0.139

0.994 20 20 0.954 0.110 0.989 0.095 0.995 0.097 0.952 0.073 0.957 0.078

From Table 2, by empirical evidence, it is observed that:
(i) AL approximately reduces by raising the sample size and the maximum of the AL
takes place at the middle point R(n, α,B, γ) = 0.5.
(ii) the CP of bootstrap percentile confidence intervals is greater than all others.
(iii) the AL the bootstrap-t confidence intervals is better than others.
(iv) there is no meaningful difference between parametric and nonparametric confidence
intervals from the point of view of the length and coverage proportion of the intervals.
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8. An illustrative example
In this section, we suggest a numerical example based on a real-life data set to illustrate

the performance of the procedure considered. The data sets used in this article represent
the monthly water capacity of the Shasta reservoir in California, USA, especially the month
of April and the mean annual capacity from 1992 to 2015. (See [46] for more details). To
take precautions against excessive drought, the following scenario can be constructed. In
the five-year period, if the maximum of the water capacity of the reservoir on each April is
more than the average water capacity of the previous year (which is the preceding year of
the five years period), it is claimed that there will be no excessive drought in the months
of October and November afterward. Let X1 be the mean annual capacity of 1992, Y1k,
k = 1, . . . , 5 be the capacity of April from 1993 to 1997, X2 is the mean annual capacity of
1998, Y2k, k = 1, . . . , 5 are the capacity of April from 1999 to 2003. When we continue this
data process up to 2015, we obtain n = 4. To remove (or reduce) the dependency between
Yik and Xi , the years of Xi are not used to obtain the data Yik. For computational ease,
all values divided by the total capacity of Shasta reservoir 4.552.000 acre-foot and these
transformed data are obtained as

YYY =


0.9366 0.7763 0.9150 0.9463 0.8649
0.9350 0.9124 0.8831 0.9439 0.9966
0.9243 0.8913 0.8570 0.6490 0.6587
0.9372 0.9754 0.8322 0.5292 0.5894

, XXX =


0.4529
0.8222
0.6730
0.7985

.

Thus, we obtain the 1-out-of-n:G multicomponent stress-strength system with observed
stress data XXX and observed strength data WWW = (0.9463, 0.9966, 0.9243, 0.9463, 0.9754).
This data set has been used in hydrology research to analyze droughts. First, we test to
see whether the exponential distribution function is appropriate to fit the stress data set
or not. For modeling the stress data via the exponential distribution, we use the fitdist(...)
command in the fitdistrplus R package. We find that the exponential distribution with
scale parameter γ = 1.456346 is quite well adapted to the stress data set. We use the
Kolmogorov-Smirnov (K-S) test to verify the claim, the corresponding p-value is 0.2182.
For modeling the strength data via the exponential distribution, we use the mpsexpg (...)
command in the MPS R package [50]. One of the outputs of this command is the p-value
of Chi-square goodness-of-fit tests based on the maximum product spacing approach with
Moran’s log spacing statistic. It should be mentioned that this test is not a classical chi-
square test. For more details on this test, see [44]. Also, the first output of this command
is the estimated parameter vector, which is obtained with the maximum product spacing
approach. It would appear that the UGG−G0(70.718681, 1, 1) model is totally good for
fitting the strength data set, where G0 is the exponential distribution function with mean
4.729113. For computing the p-value, we applied the command mpsexpg(...) in MPS
R Package. In this package, the significance level for the aforementioned goodness-of-fit
test is reported. The corresponding p-values of the aforementioned goodness-of-fit tests
for strength data is 0.8955. It should be mentioned that, for µ = 1 and β = 1, the
special case of the UGG model is the proportional reversed hazard rate model with cdf
G(x) = Gα

0 (x), α > 0.



Reliability inferences in a 1-out-of-n:G multicomponent stress-strength system 21

Table 3. The values AL of asymptotic and various parametric and
non-parametric bootstrap confidence intervals of R based on real dataset.

α AL.A. P .AL.P. P .AL.B.t N- P .AL.P. N-PAL.B.t

0.05 0.2984 (0.5023,0.8007) 0.2873 (0.6440,0.9313) 0.0769 (0.6893,0.7662) 0.2622 (0.5270,0.7892) 0.1949 (0.6676,0.8625)

0.1 0.2891 (0.5511,0.8402) 0.2721 (0.6950,0.9671) 0.0633 (0.6994,0.7627) 0.2614 (0.6831, 0.9445) 0.1886 (0.7237,0.9123)

From Table 3, it appears that, there is a significant difference between bootstrap per-
centile, bootstrap-t, and asymptotic confidence intervals in terms of AL. The AL of the
bootstrap-t confidence interval is less than others. Therefore, the use of the bootstrap-t
confidence interval for R is recommended. Also, all confidence intervals for R don’t con-
tain the value 0.5 implying that there is a significant difference in the aforementioned two
data sets. It should be mentioned that R̂ = 0.7592 and R̃ = 0.7628. Therefore, based on
the results, there will be no excessive drought in the months of October and November
afterwards with a probability of 0.7592.

9. Summary and conclusion
In this paper, the stress-strength reliability of a 1-out-of n:G stress-strength system

associated with the UGG models is investigated. First of all by using the properties of the
populations parameters and functional form of UGG models the stochastic orders between
stress and strength random variables are assessed and the exact expression for reliability
of a 1-out-of n:G stress-strength system is obtained. The asymptotic distribution of the
MLE of stress-strength reliability is determined based on exponential baseline distribution
functions. Furthermore, the parametric and non-parametric bootstrap-t and bootstrap
quantile confidence intervals are proposed. Their performances on some sample sizes with
respect to AL and CP are analyzed by using a simulation study. In the view point of CP,
the bootstrap percentile confidence is suitable among the other confidence intervals in the
simulation study. A numerical example based on real-life data was taken to demonstrate
the performance of the recommended approaches. In the real-life data, we suggest the use
of bootstrap-t confidence interval for 1-out-of n:G stress-strength reliability which is also
confirmed the results of the simulation study.
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