
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
VOLUME 18 NO. 1 PAGE 97–110 (2025)
DOI: HTTPS://DOI.ORG/10.36890/IEJG.1477137
RESEARCH ARTICLE

A Non-Newtonian Some Partner Curves in
Multiplicative Euclidean Space E3

∗
Aykut Has* and Beyhan Yılmaz

(Communicated by Kazım İlarslan)

ABSTRACT

The aim of this article is to characterize pairs of curves within multiplicative (non-Newtonian)
spaces. Specifically, we investigate how famous curve pairs such as Bertrand partner curves,
Mannheim partner curves, which are prominent in differential geometry, are transformed under
the influence of multiplicative analysis. By leveraging the relationships between multiplicative
Frenet vectors, we introduce multiplicative versions of Bertrand, Mannheim curve pairs.
Subsequently, we characterize these curve pairs using multiplicative arguments. Examples are
provided, and multiplicative graphs are presented to enhance understanding of the subject matter.
Through this analysis, we aim to elucidate the behavior and properties of these curve pairs within
the context of multiplicative geometry.
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1. Introduction

A curve can be simply described as the path traced by a point moving in space. As a regular curve traverses
its path, it generates a tangent vector field at each point along its trajectory. With the help of this tangent
vector field, the principal normal vector field and binormal vector field of the curve are created. Consequently,
these three vector fields collectively form the structure known as the Frenet vectors of the curve [7]. Utilizing
these Frenet vectors, the curvature and torsion of the curve can be quantified. Categorizing curves based on
certain characteristics is a valuable approach in differential geometry and the Frenet apparatus serves as a
useful tool for this purpose. For instance, curves whose principal normals are linearly dependent is called
Bertrand curve pairs, those whose principal normal and binormal are linearly dependent are referred to as
Mannheim curve pairs and curves with orthogonal tangents are known as involute-evolute curve pairs [4]-[6].
As can be understood from here, the most important building block of the curve can be said to be its tangent.
Because all other concepts can be defined with the help of the tangent of the curve. Singular points, where
the curve lacks a defined tangent, have been a subject of recent research interest [30]-[31]. Has A. et al. created
alternative tangents with the help of conformable derivative at points where the traditional derivative was not
defined. Thus, they provided a solution to define an alternative Frenet frame for a curve that does not have a
conventional derivative at any point [18, 19]. Similarly, Evren M. E. et al. tried to construct differential geometry
with the help of multiplicative analysis. In this study, researchers calculated the arc length, which could not be
calculated by traditional methods, with multiplicative arguments and solved this problem [2]. In this respect,
it can be said that there are advantages to using different analyzes in differential geometry [20]-[32].

Classical analysis, a mathematical theory widely used today, is discovered by Leibniz G. and Newton I.
in the second half of the 17th century, based on the concepts of derivative and integral, and is also referred
to as Newtonian analysis. In addition, it can be said that this structure, which uses the unit function as
the generator function, forms the basis of all mathematics. This approach measures change by considering
infinitesimally small variations in quantities and it employs the unit function as the generator function, forming
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the cornerstone of mathematical theories. Volterra V. sought to introduce alternative analyses to Newtonian
analysis by modifying the generator functions and basic operations (addition, subtraction, multiplication and
division) [33]. Building on Volterra V. work, Grossman M. and Kantz R. further expanded this framework
and introduced various types of analysis such as geometric, bigeometric, and anageometric calculus [15, 16].
These non-Newtonian or multiplicative analyses use the exponential function as the generator function,
where multiplication assumes the role of addition in Newtonian analysis. This allows for changes to be
measured not only through the difference operation but also proportionally. Multiplicative analysis is known
to offer advantages over traditional analysis, particularly in scenarios involving exponential growth and
fractal dimensions, making it increasingly popular in interdisciplinary studies [28]-[27]. In recent years,
multiplicative arguments is incorporated into the basic concepts of almost every subject, leading to a redesign
of fundamental principles [5]-[25]. Georgiev S. et al. contributions is instrumental in accelerating this process,
particularly in the field of differential geometry [12]-[14]. Georgiev S. work are introduced basic definitions and
theorems regarding curves, surfaces and manifolds thereby catalyzing advancements in geometry research.
With Georgiev S. et al. work as a reference, studies in the field of differential geometry have experienced
accelerated progress [26]-[23].

By measuring changes proportionally in multiplicative space, all traditionally known metric concepts
undergo transformation when employing multiplicative arguments. In this space, numerous metric concepts
crucial in the realm of differential geometry, such as angle, length, norm, etc., are redefined based on the
properties of the exponential function. The objective of this article is to explore the most prominent curve pairs
in the theory of curves, namely Bertrand, Mannheim curve pairs, utilizing new multiplicative metric concepts.
Under the influence of multiplicative arguments, these special pairs of curves undergo re-characterization.
Furthermore, relevant examples and figures are provided to facilitate a better understanding of the topic.

2. Multiplicative Calculus and Multiplicative Space

In this section, basic definitions and theorems will be given about the multiplicative space created by
choosing the generator exponential function (exp). Generator function α is chosen as (exp) function. Georgiev
S. books will be used for the basic informations given in this section [12]-[14].

α : R → R+ α−1 : R+ → R
a → α(a) = ea b → α−1(b) = log b.

By choosing the generator (exp) function as, a function is defined from real numbers to the positive side of real
numbers. Thus, the set of real numbers in the multiplicative space is defined as follows

R∗ = {exp(a) : a ∈ R} = R+.

Similarly, positive and negative multiplicative numbers are as follows

R+
∗ = {exp(a) : a ∈ R+} = (1,∞)

and
R−

∗ = {exp(a) : a ∈ R−} = (0, 1).

Additionally, with the help of the function exp, the basic operations in the multiplicative space, for all a, b ∈ R∗,
b ̸= 1

a+∗ b elog a+log b ab
a−∗ b elog a−log b a

b

a ·∗ b elog a log b alog b

a/∗b elog a/ log b a
1

log b

Table 2.1 Basic multiplicative operations.
Given by Table 2.1, a multiplicative structure is formed by the field (R∗,+∗, ·∗). Each element of the space R∗ is
referred to as a multiplicative number and is denoted by a∗ ∈ R∗, where a∗ = exp(a). For the sake of simplicity
in notation, we will denote multiplicative numbers as a ∈ R∗ instead of a∗ in the rest of the study. In addition,
the unit elements of multiplicative addition and multiplication operations are 0∗ = 1 and 1∗ = e, respectively.

Now some useful operations on the multiplicative space will be given. Multiplicative space is defined
based on the absolute value multiplication operation. Since distance is an additive change in Newtonian
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(additive) space, the absolute value is defined as additive. However, since distance is a multiplicative change
in multiplicative space, the multiplicative absolute value is as follows

|a|∗ =

{
a, a ≥ 0∗ or a ∈ [1,∞)
−∗a, a < 0∗ or a ∈ (0, 1).

where −∗a = 1/a. Also in the multiplicative space we have,

ak∗ = a ·∗ a ·∗ a ·∗ ... ·∗ a︸ ︷︷ ︸
k−times

= e(log a)k

for a ∈ R∗. Moreover for k ∈ R, we have
a

1
2∗ = e(log a)

1
2 = ∗

√
a.

The inverses of multiplicative addition and multiplication in multiplicative space are as follows, respectively

−∗a = 1/a, a−1∗ = e
1

log a .

We have the following formulas for a, b ∈ R∗

(a+∗ b)
2∗ = a2∗ +∗ e

2 ·∗ a ·∗ b+∗ b
2∗, (2.1)

a2∗ −∗ b
2∗ = (a+∗ b) ·∗ (a−∗ b). (2.2)

The vector definition in n-dimensional multiplicative space Rn
∗ is given by

Rn
∗ = {(x1, ..., xn) : xi ∈ R∗, i ∈ 1, 2, 3, ..., n}.

Rn
∗ is a vector space on R∗ with the pair of operations

u+∗ v = (u1 +∗ v1, ..., un +∗ vn) = (u1v1, ..., unvn),

a ·∗ u = (a ·∗ u1, ..., a ·∗ un) = (elog a log u1 , ..., elog a log un) = elog a logu, a ∈ R∗.

where u,v ∈ Rn
∗ and logu = (log u1, ..., log un).

The symbol E2
∗ will be used to denote the set R2

∗ equipped with the multiplicative distance d∗. Let u and v be
any two multiplicative vectors in the multiplicative vector space Rn

∗ . The multiplicative inner product of the u
and v vectors is

⟨u,v⟩∗ = e⟨logu,log v⟩.

Moreover, if the multiplicative vectors u and v are perpendicular to each other, a relation can be given as

⟨u,v⟩∗ = 0∗.

For a vector u ∈ Rn
∗ , the multiplicative norm of u is defined as follows,

∥u∥∗ = e⟨log x,log x⟩
1
2 .

The multiplicative cross product of u and v in R3
∗ is defined by

u×∗ v = (elog u2 log v3−log u3 log v2 , elog u3 log v1−log u1 log v3 , elog u1 log v2−log u2 log v1).

The multiplicative cross product exhibits the typical algebraic and geometric properties. For instance, u×∗ v
is multiplicative orthogonal to both u and v. Additionally, u×∗ v = 0∗ if and only if u and v are multiplicative
collinear. For example, let’s consider the multiplicative vectors u = (e5, e3,−∗e

2) and v = (e4, e2, e13). Here can
easily be calculated to be u×∗ v. These u, v and u×∗ v multiplicative vectors are formed into a multiplicative
orthogonal system to each other [12]. In Fig. 1, we present the graph of the multiplicative orthogonal system.

Let u and v represent two unit direction multiplicative vectors in the multiplicative vector space. Let’s denote
by θ the multiplicative angle between the multiplicative unit vectors u and v, so θ as follows

θ = arccos∗(e
⟨logu,log v⟩).
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Figure 1. Multiplicative orthogonal system

For θ ∈ R∗, the definitions multiplicative sine, multiplicative cosine, multiplicative tangent and multiplicative
cotangent are as follows

sin∗ θ = esin log θ, cos∗ θ = ecos log θ,

tan∗ θ = etan log θ, cot∗ θ = ecot log θ.

In addition, multiplicative trigonometric functions provide multiplicative trigonometric relations in parallel
with classical trigonometric relations. For example, there is the equality sin2∗∗ θ + cos2∗∗ θ = 1∗. For other
relations, see [12].

Let the function f be given in multiplicative space R∗, where x ∈ I ⊂ R∗. The multiplicative derivative of f
is denoted by f∗(x) and is as follows

f∗(x) = lim
h→0∗

(f(x+∗ h)−∗ f(x))/∗h

= lim
h→1

(
f(xh)

f(x)

)1/ log h

= lim
h→1

e
log

f(xh)
f(x)

log h .

If the L’ Hospital’s rule applies here, we get

f∗(x) = e
xf′(x)
f(x) .

In addition, if the function f is differentiable in the multiplicative sense and continuous, it is called *
(multiplicative) differentiable function. It also satisfies the multiplicative derivative Leibniz and the chain rule
(see details [12]).

The definition of the multiplicative integral is given as the inverse operator of the multiplicative derivative.
The multiplicative indefinite integral of the function f(x) is defined by∫

∗
f(x) ·∗ d∗x = e

∫
1
x log f(x)dx, x ∈ R∗.

3. Differential Geometry of Curves in Multiplicative Space

Let the x multiplicative vector valued function defined in the open interval I ∈ R∗ be given x : I ∈ R∗ →
E3
∗, s 7→ x(s) = (x1(s), x2(s), x3(s)). The multiplicative component functions of x can be k-times continuously

multiplicative differentiable. In this case, x is called of class Ck
∗ (k ≥ 1∗). Withal a differentiable x multiplicative

is called a curve in multiplicative Euclidean space E3
∗. In particular, a parametric multiplicative curve x is

regular if and only if ∥x∗(s)∥∗ ̸= 0∗ for any s ∈ I . The expression x∗(s) gives us the multiplicative velocity
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function of x. In addition, if ∥x∗(s)∥∗ = 1 for every s ∈ R∗, then x is a multiplicative naturally parametrized
curve. The multiplicative Frenet trihedron of a multiplicative naturally parameterized curve x(s) are

t(s) = x∗(s), n(s) = x∗∗(s)/∗∥x∗∗(s)∥∗, b(s) = t(s)×∗ n(s).

The vector field t(s) (resp. n(s) and b(s)) along x(s) is said to be multiplicative tangent (resp. multiplicative
principal normal and multiplicative binormal). It is direct to prove that {t(s),n(s),b(s)} is mutually multiplicative
orthogonal and n(s)×∗ b(s) = t(s) and b(s)×∗ t(s) = n(s). We also point out that the arc length parameter and
multiplicative Frenet frame are independent from the choice of multiplicative parametrization [13].

The multiplicative Frenet formulae of x are given by

t∗ = κ ·∗ n = elog κ logn,

n∗ = −∗κ ·∗ t+∗ τ ·∗ b = e− log κ log t+log τ logb,

b∗ = −∗τ ·∗ n = e− log τ logn,

where κ = κ(s) and τ = τ(s) are the curvature and the torsion functions of x, calculated by

κ(s) = ∥x∗∗(s)∥∗ = e⟨log x∗∗,log x∗∗⟩
1
2 ,

τ(s) = ⟨n∗(s),b(s)⟩∗ = e⟨logn∗(s),logb(s)⟩.

Has A. et al. conducted a study on helices in multiplicative space and derived the general multiplicative helices
equation as [22]

τ/∗κ = c, c ∈ R∗. (3.1)

Furthermore, in the same study, the multiplicative slant helix equation is provided as [22]

σ =
(
κ2∗/∗(κ

2∗ +∗ τ
2∗)

3
2∗
)
·∗ (τ/∗κ)∗ (3.2)

where σ = c, c ∈ R∗. Evren M.E. et al examined spherical curves and obtained the following characterization
[2]

r =
(
(e−1/∗κ(s))

2∗ +∗ ((e
−1/∗κ(s))

∗/∗τ(s)))
2∗)

) 1
2 ∗

or equivalently,
r2∗ = p2∗ +∗ (p

∗ ·∗ q)2∗ (3.3)

where p = e/∗κ(s) and q = e/∗τ(s). Also multiplicative Frenet curve x is a multiplicative spherical curve if and
only if

(p∗ ·∗ q)∗ +∗ p/∗q = 0∗. (3.4)

Again in the study, Evren M. E. et al. are studied multiplicative rectifying curves and obtained the following
characterization

τ
1

log κ = elog a log s+log b

or multiplicative arguments
τ/∗κ = a ·∗ s+∗ b (3.5)

where a, b ∈ R∗. Additionally, some basic geometric concepts have been obtained. Evren M. E. et al. introduced
the multiplicative sphere and circle [2]. Additionally, Has and Yılmaz examined multiplicative planes and
conics. In Fig. 2 shows the multiplicative unit circle and sphere whose centers is the multiplicative origin
O1 = (0∗, 0∗) and O2 = (0∗, 0∗, 0∗), respectively.

We have also given the multiplicative plane spanned by multiplicative lines and whose equation is
e3 ·∗ x−∗ e

−2 ·∗ y +∗ z − e5 = 0∗ in Fig. 6.

Conclusion 3.1. Multiplicative analysis has some advantages over traditional (non-Newtonian) analysis. It
is not possible to interpret the geometric interpretation of some exponential expressions with the help of
traditional analysis. More clearly, consider the following subset of R2.

C = {(x, y) ∈ R2 : (log x)2 + (log y)2 = 1, x, y > 0}.

We also can parameterize this set as x(t) = ecos(log t) and y(t) = esin(log t), t > 0. If we use the usual arithmetic
operations, derivative and integral, then it would not be easy to understand what the set C expresses
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Figure 2. Multiplicative unit circle and sphere

Figure 3. Multiplicative plane

geometrically. With or without the help of computer programs, we cannot even calculate its basic invariants,
e.g., the arc length function s(t) is given by a complicated integral

s(t) =

∫ t 1

u

(
(sin(log u)ecos(log u))2 + (cos(log u)esin(log u))2

)1/2

du.

However, applying the multiplicative tools, we see that C is indeed a multiplicative circle parameterized by
the multiplicative arc length whose center is (1, 1) and radius e, which is one of the simplest multiplicative
curves. This is the reason why, in some cases, the multiplicative tools need to be applied instead of the usual
ones [2].

4. Multiplicative partner curves

In this section, Bertrand and Mannheim curve pairs, which are popular curve pairs in differential geometry,
will be characterized with the help of multiplicative arguments.

4.1. Multiplicative Bertrand partner curves

Definition 4.1. Let x : I ∈ R∗ → E3
∗ be the multiplicative curve in multiplicative Euclidean space E3

∗. The
multiplicative curve y with a multiplicative principal normal equal to the multiplicative principal normal of
the x is called the Bertrand partner curve of the x. In other words, let the multiplicative Frenet vectors of x and
y be {t,n,b} and {t̄, n̄, b̄}, respectively. In case n = n̄, y is called the multiplicative Bertrand partner curve of x
and where the multiplicative angle between t and t̄ is θ.

Conclusion 4.1. Let x and y be a pair of multiplicative Bertrand partner curves with multiplicative Frenet
vectors {t,n,b} and {t̄, n̄, b̄} in the multiplicative Euclidean space, respectively. The following equation exists
between x and y with multiplicative arguments

y(s) = x(s) +∗ λ ·∗ n(s). (4.1)
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Figure 4. Multiplicative Bertrand partner curve and their multiplicative Frenet vectors.

Remark 4.1. Let x and y be a pair of multiplicative Bertrand partner curves with multiplicative Frenet vectors
{t,n,b} and {t̄, n̄, b̄} in the multiplicative Euclidean space, respectively. The following relations exist between
the multiplicative Frenet vectors of x and y

t̄ = cos∗ θ ·∗ t−∗ sin∗ θ ·∗ b,
b̄ = sin∗ θ ·∗ t+∗ cos∗ θ ·∗ b.

Proposition 4.1. Let x and y form a multiplicative Bertrand partner curve in the multiplicative Euclidean space. In this
case, λ in Eq. (4.1) is a multiplicative constant.

Proof. Taking a multiplicative differentiation in Eq. (4.1), we obtain

y∗ = x∗ +∗ λ
∗ ·∗ n+∗ λ ·∗ (−∗κ ·∗ t+∗ τ ·∗ b)

and so
t̄ = (e−∗ λ ·∗ κ) ·∗ t+∗ λ

∗ ·∗ n+∗ λ ·∗ τ ·∗ b. (4.2)

Since n and n̄ are multiplicative linear dependent, from Eq. (4.2), we get

e⟨log t̄,log n̄⟩ = (e−∗ λ ·∗ κ) ·∗ e⟨log n̄,log t⟩ +∗ λ
∗ ·∗ e⟨log n̄,logn⟩ +∗ λ ·∗ τ ·∗ e⟨log n̄,logb⟩

and
e0 = elog

e
λ log κ log e0+log λ∗+log λ log τ log e0 .

Finally, let this equation be arranged in the light of multiplicative arguments, as follow

0∗ = λ∗.

Take the multiplicative integral of both sides∫
∗
λ∗ ·∗ d∗s =

∫
∗
0∗ ·∗ d∗s

e
∫

1
s log e

sλ′
λ ds = e

∫
1
s log e0ds

e
∫

λ′
λ ds = ec

elog λ = ec

λ = ec, c ∈ R.

Thus, it is proven that λ ∈ R∗.
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Proposition 4.2. Let x and y be a pair of multiplicative Bertrand partner curves with multiplicative Frenet apparatus
{t,n,bκ, τ} and {t̄, n̄, b̄, κ̄, τ̄} in the multiplicative Euclidean space, respectively. In this case, the following equations
exist

κ̄ = e(c log κ−sin2 log θ)/(c−c2 log κ)

τ̄ = esin
2 log θ/c2 log τ

where c = log λ.

Proof. We use take Remark 4.1 in Eq (4.2), we get

e⟨log t̄,log t⟩ = (e−∗ λ ·∗ κ) ·∗ e⟨log t,log t⟩ +∗ λ
∗ ·∗ e⟨logn,log t⟩ +∗ λ ·∗ τ ·∗ e⟨logb,log t⟩ (4.3)

and
e⟨log t̄,logb⟩ = (e−∗ λ ·∗ κ) ·∗ e⟨log t,logb⟩ +∗ λ

∗ ·∗ e⟨logn,logb⟩ +∗ λ ·∗ τ ·∗ e⟨logb,logb⟩. (4.4)

If the necessary adjustments are made in Eqs. (4.3) and (4.4), the following results are obtained

e−∗ λ ·∗ κ = ecos log θ or e−∗ λ ·∗ κ = cos∗ θ (4.5)
λ ·∗ τ = e− sin log θ or −∗ λ ·∗ τ = sin∗ θ. (4.6)

On the other hand, starting from Eq. (4.2), we give

x(s) = y(s)−∗ λ ·∗ n̄(s). (4.7)

we taking multiplicative differentiation in Eq. (4.7), as follow

x∗ = y∗ −∗ λ ·∗ (−∗κ ·∗ t+∗ τ ·∗ b)

and so
t = (e+∗ λ ·∗ κ̄) ·∗ t̄−∗ λ ·∗ τ̄ ·∗ b̄. (4.8)

Since the positions of the multiplicative curves change, the constant multiplicative angle between t and
t̄ becomes −∗θ. Moreover, from the equations cos∗(−∗θ) = ecos log(

1
θ ) = cos∗ θ and sin∗(−∗θ) = esin log( 1

θ ) =
−∗ sin∗ θ, it is easily seen that cos∗ θ is a multiplicative even function and sin∗ θ is a multiplicative odd function.
We use take Remark 4.1 in Eq (4.8), we get

e⟨log t,log t̄⟩ = (e+∗ λ ·∗ κ̄) ·∗ e⟨log t̄,log t̄⟩ −∗ λ ·∗ τ̄ ·∗ e⟨log b̄,log t̄⟩ (4.9)

and
e⟨log t,log t̄⟩ = (e+∗ λ ·∗ κ̄) ·∗ e⟨log t̄,log t̄⟩ −∗ λ ·∗ τ̄ ·∗ e⟨log b̄,log t̄⟩. (4.10)

From Eqs. (4.9) and (4.10), we obtain

e+∗ λ ·∗ κ̄ = ecos log
1
θ or e+∗ λ ·∗ κ̄ = cos∗ θ (4.11)

−∗λ ·∗ τ̄ = esin log 1
θ or −∗ λ ·∗ τ̄ = sin∗ θ. (4.12)

Next, we consider Eqs. (4.5) and (4.11), we have

cos2∗∗ θ = (e−∗ λ ·∗ κ) ·∗ (e+∗ λ ·∗ κ̄). (4.13)

From above equation as follow

κ̄ = e[log e(log ecos log θ)2/(log e−log λ log κ)−log e]/ log λ

= e[cos
2 log θ/(1−log λ log κ)−1] log λ.

Consider that c = log λ in the above equation and make the necessary multiplicative adjustments, we obtain

κ̄ = e(c log κ−sin2 log θ)/(c−c2 log κ).
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Similarly, Eqs (4.6) and (4.11) can be written as follows

sin2∗∗ θ = λ2∗ ·∗ τ ·∗ τ̄

and so

τ̄ = elog e(log esin log θ)2/ log e(log λ)2 log τ

= esin
2 log θ/ log2 λ log τ .

Let’s take into account the equality c = log λ here, so this happens

τ̄ = esin
2 log θ/c2 log τ .

Theorem 4.2. Let x and y be a pair of multiplicative Bertrand partner curves. The following equation is satisfied, with
the curvatures of x being κ and τ respectively,

κlog λ +∗ τ
log µ = e.

Proof. From Eq. (4.2) we know that

t̄ = (e−∗ λ ·∗ κ) ·∗ t+∗ λ
∗ ·∗ n+∗ λ ·∗ τ ·∗ b.

Let Remark 4.1 be used here, then the following can be written

e
1−log λ log κ

cos log θ = e
log λ log τ
sin log θ

If the above equation is rearranged, the following result is obtained

elog λ log κ+log λ log τ cot log θ = λ ·∗ κ+∗ λ ·∗ cot∗ θ ·∗ τ
= e.

Since θ angle is a multiplicative constant angle and λ is a multiplicative constant, we can say for µ ∈ R∗,
λ ·∗ cot∗ θ = µ. Then we express the above equation as follows

λ ·∗ κ+∗ µ ·∗ τ = e

or equivalently
κlog λ +∗ τ

log µ = e.

Example 4.1. Let x : I ⊂ R∗ → E3
∗ be a multiplicative naturally parameterized curve in R3

∗ parameterized by

x(s) =
(
−∗e/∗e

√
2 ·∗ sin∗ s, e/∗e

√
2 ·∗ cos∗ s, e/∗e

√
2 ·∗ es

)
.

The multiplicative Bertrand curve pair of x(s) is obtained as follows,

y(s) =
(
e/∗e

√
2 ·∗ cos∗ s,−∗e/∗e

√
2 ·∗ sin∗ s, e/∗e

√
2 ·∗ es

)
.

In Fig. 5 we shows the multiplicative Bertrand partner curves x(s) and y(s).
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Figure 5. Multiplicative Bertrand partner curve.

4.2. Multiplicative Mannheim partner curves

Definition 4.2. Let x : I ∈ R∗ → E3
∗ be the multiplicative curve in multiplicative Euclidean space E3

∗. The
multiplicative curve y with a multiplicative binormal equal to the multiplicative principal normal of the x is
called the multiplicative Manneim partner curve of the x. In other words, let the multiplicative Frenet vectors
of x and y be {t,n,b} and {t̄, n̄, b̄}, respectively. In case n = b̄, y is called the multiplicative Mannheim partner
curve of x and where the multiplicative angle between t and t̄ is θ.

Figure 6. Multiplicative Mannheim partner curve and their multiplicative Frenet vectors.

Conclusion 4.3. Let x and y be a pair of multiplicative Mannheim partner curves with multiplicative Frenet
vectors {t,n,b} and {t̄, n̄, b̄} in the multiplicative Euclidean space, respectively. The following equation exists
between x and y with multiplicative arguments

y(s) = x(s) +∗ λ ·∗ n(s) (4.14)

and
x(s) = y(s) +∗ µ ·∗ b̄(s). (4.15)

Remark 4.2. Let x and y be a pair of multiplicative Mannheim partner curves with multiplicative Frenet vectors
{t,n,b} and {t̄, n̄, b̄} in the multiplicative Euclidean space, respectively. The following relations exist between
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the multiplicative Frenet vectors of x and y

t̄ = cos∗ θ ·∗ t−∗ sin∗ θ ·∗ b,
n̄ = sin∗ θ ·∗ t+∗ cos∗ θ ·∗ b.

Proposition 4.3. Let x and y form a multiplicative Bertrand partner curve in the multiplicative Euclidean space. In this
case, λ and µ in Eqs. (4.14) and (4.15), respectively is a multiplicative constant.

Proof. Taking a multiplicative differentiation in Eq. (4.14), we obtain

y∗ = x∗ +∗ λ
∗ ·∗ n+∗ λ ·∗ (−∗κ ·∗ t+∗ τ ·∗ b)

and so
t̄ = (e−∗ λ ·∗ κ) ·∗ t+∗ λ

∗ ·∗ n+∗ λ ·∗ τ ·∗ b. (4.16)

Since vector y∗ is multiplicative orthogonal to multiplicative vector b̄ and b̄ is multiplicative linearly
dependent on n, as follow

0∗ = λ∗.

Take the multiplicative integral of both sides∫
∗
λ∗ ·∗ d∗s =

∫
∗
0∗ ·∗ d∗s

e
∫

1
s log e

sλ′
λ ds = e

∫
1
s log e0ds

e
∫

λ′
λ ds = ec

elog λ = ec

λ = ec, c ∈ R.

Similarly, it is shown that µ is a multiplicative constant.

Proposition 4.4. Let x and y be a pair of multiplicative Mannheim partner curves with multiplicative Frenet apparatus
{t,n,bκ, τ} and {t̄, n̄, b̄, κ̄, τ̄} in the multiplicative Euclidean space, respectively. In this case, the following equations
exist

κ̄ = e(log κ)2 cos2 log θ+(log τ)2 sin2 log θ
1
2

τ̄ = elog κ sin log θ−log τ cos log θ

where c = log λ.

Proof. Suppose that x : I ∈ R∗ → E3
∗ be a multiplicative curve. By definition of multiplicative curvature in [13],

we have
κ̄ = e⟨log y∗∗,log y∗∗⟩

1
2 and τ̄ = e⟨log n̄∗,log b̄⟩ (4.17)

If the Remark 4.2 is used in the first equation given above, we get

κ̄ = e⟨log t̄∗,log t̄∗⟩
1
2

= e((log κ)2 cos2 log θ+(log τ)2 sin2 log θ)
1
2

or with multiplicative arguments

κ̄ = (κ2∗ ·∗ cos2∗∗ θ +∗ τ
2∗ ·∗ sin2∗∗ θ)

1
2∗.

On the other hand if the Remark 4.2 is used in Eq. (4.17), we get

τ̄ = e(log κ sin log θ−log τ cos log θ)⟨logn,log b̄⟩

= elog κ sin log θ−log τ cos log θ

or with multiplicative arguments
τ̄ = κ ·∗ sin∗ θ −∗ τ ·∗ cos∗ θ.
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Theorem 4.4. In order for x : I ∈ R∗ → E3
∗, whose curvatures are κ and τ , to be a Mannheim curve, the following

equations must be satisfied for λ ∈ R∗
τ∗/∗κ

∗ = −∗ cot∗ θ.

and
κ = elog λ[(log κ)2+(log τ)2].

Proof. Let considering calculate the multiplicative differentiating of Eq. (4.16) with respect to s and considering
λ is multiplicative constant, we get

κ̄ ·∗ n̄ = −∗λ ·∗ κ∗ ·∗ t+∗ (κ−∗ λ ·∗ κ2∗ −∗ λ ·∗ τ2∗) ·∗ n+∗ λ ·∗ τ∗ ·∗ b. (4.18)

According to Remark 4.2 we can give

κ̄ ·∗ sin∗ θ = −∗λ ·∗ κ∗,

κ̄ ·∗ cos∗ θ = λ ·∗ τ∗.

From the above equations we easily obtain

τ∗/∗κ
∗ = −∗ cot∗ θ.

On the other hand, considering that n and b̄ are multiplicative linear dependencies in Eq. (4.18), we give

κ−∗ λ ·∗ κ2∗ −∗ λ ·∗ τ2∗ = 0∗

and so
κ =log λ[(log κ)2+(log τ)2] .

Example 4.2. Let x : I ⊂ R∗ → E3
∗ be a multiplicative naturally parameterized curve in R3

∗ parameterized by

x(s) =
(
−∗e

8/∗e
5 ·∗ cos∗ s, e8/∗e5 ·∗ sin∗ s, e4/∗e5 ·∗ es

)
.

The multiplicative Mannheim curve pair of x(s) is obtained as follows,

y(s) =
(
−∗e

8/∗e
5 ·∗ (sin∗ s+∗ cos∗ s), e

8/∗e
5 ·∗ (sin∗ s+∗ cos∗ s), e

4/∗e
5 ·∗ es

)
.

In Fig. 7 we shows the multiplicative Mannheim partner curves x(s) and y(s).

Figure 7. Multiplicative Mannheim partner curve.
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5. Conclusion

In this article, various curve pairs were scrutinized employing multiplicative arguments. The primary
rationale behind incorporating multiplicative analysis in this investigation stems from its capability to resolve
certain problems that are beyond the scope of traditional (Newtonian) analysis, as elucidated in Conclusion
3.1. The utilization of diverse analytical methodologies, notably non-Newtonian analyses, holds significant
importance in the realm of differential geometry. Such approaches not only offer alternative perspectives
where conventional methods fall short but also facilitate solutions that are often more straightforward to attain.
Therewithal the multiplicative space is produced with the help of the exponential function, it functions in the
first quadrant of the traditional coordinate system. This transformation entails shifting the range (−∞, 0) to
(0, 1) and (0,+∞) to (1,+∞) effectively confining the multiplicative Euclidean space within the first quadrant
region. Consequently, subjects analyzed using multiplicative arguments find themselves operating within a
more constrained domain, facilitating a more streamlined examination process. Moreover, the proportional
nature of measurements in multiplicative space enables a more efficient modeling of exponentially changing
phenomena. Problems characterized by rapid exponential changes can be more effectively addressed with
multiplicative arguments, allowing for a more numerical approach towards attaining real solutions compared
to traditional methods.However, it’s worth noting that compressing multiplicative space into the first quadrant
may pose disadvantages for certain problem structures. Depending on the nature of the problems under
scrutiny, this aspect warrants careful consideration to ensure comprehensive analysis and accurate outcomes.
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