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Cardiovascular diseases (CVDs) remain a leading cause of mortality in modern 

society, with factors such as sedentary lifestyles, unhealthy diets, and obesity 

contributing to their increasing prevalence. The widespread use of Statins for lipid-

lowering therapy in both primary and secondary cardiovascular prevention is 

anticipated to rise in response to this trend. Given the rapid escalation in the 

prevalence of Statin usage, it is imperative to understand their toxicological effects 

on public health. While previous studies have explored various pharmacological 

effects of statins, comprehensive investigations into their genotoxic and Mutagenic 

potential are lacking. In this study, we conducted a comprehensive In silico 

evaluation of Statins using four different toxicological assessment programs, 

focusing on various genotoxicity, carcinogenicity, Mutagenicity, and Micronucleus 

formation endpoints. By comparing program outputs with experimental data, we 

assessed the reliability of In silico Toxicity predictions and discussed the consistency 

among different platforms. Our findings suggest discrepancies among the predictions 

of different programs, highlighting the importance of integrating multiple sources of 

data and methodologies in Toxicity evaluations. Despite inconsistencies, integrating 

in silico predictions with future in vitro and in vivo studies can contribute to a better 

understanding of the toxicological properties of statins and ensure their safe usage. 

This study underscores the necessity of careful evaluation and utilization of multiple 

data sources in decision-making regarding the toxicological profile of statins. 

Ultimately, leveraging in silico methods to guide future comprehensive toxicological 

studies will enhance our understanding of Statins' safety profiles and contribute to 

public health research. 

1. Introduction 

 

Cardiovascular diseases have been the leading 

cause of death worldwide. According to the 

World Health Organization's report, in 2021, 

20.5 million people died from cardiovascular 

diseases [1]. Additionally, it is estimated that by 

the year 2030, 23 million people will die from 

cardiovascular diseases [2]. Cholesterol-

lowering drugs known as Statins, 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) 

inhibitors, are the preferred choice in combating 

cardiovascular diseases [3]. 

The substance named mevastatin, isolated from 

the fungus Penicillium citrinum by Akira Endo in 

1971, was the first statin. However, it was not 

released to the market due to adverse effects 

observed in dog animal models [4, 5].  

 

Following the discovery of the cholesterol-

lowering effects of mevastatin, research efforts 

were directed towards the discovery of other 

cholesterol lowering substances similar to 

mevastatin. As a result of these studies, lovastatin 

(mevinolin) was obtained from the strain of 

Aspergillus terreus (ATCC 20542) [6]. 

Lovastatin became the first statin to be approved 

by the United States Food and Drug 

Administration (FDA) as a hypercholesterolemic 

drug and was released to the market in August 
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1987 [7]. Although atorvastatin, simvastatin, 

lovastatin, fluvastatin, pravastatin, pitavastatin, 

and rosuvastatin have been commercially 

available for sale, cerivastatin was withdrawn 

from the market in 2001 due to 52 deaths 

attributed to drug-induced rhabdomyolysis 

associated with renal failure [8]. 

 

According to product information for 

cholesterol-lowering drugs, statins have been 

observed to induce cancer in rodents. In most 

cases, the carcinogenic effect observed in rodents 

occurs at doses equivalent to the maximum 

recommended dose for humans [9]. A clinical 

study published in 2008 investigated the 

relationship between the use of lipophilic statins 

and cancer formation. The study, conducted on 

patients using atorvastatin, simvastatin, 

lovastatin, and fluvastatin, concluded that the 

sufficiently high doses of lipophilic statins may 

be associated with a clinically significant 

reduction in cancer cases [10].  

 

Apart from non-clinical toxicology reports, there 

is a lack of comprehensive genotoxicity studies 

on statin drugs. In 2007, Gajski et al. published a 

study aiming to determine the potential 

genotoxic effects of atorvastatin. DNA damage 

was assessed using comet assay, micronucleus, 

and chromosomal abnormality tests. It was noted 

that human lymphocytes exposed to atorvastatin 

exhibited higher levels of genotoxic damage 

compared to the control group [11]. 

 

Mutagenicity studies similarly present diverse 

findings. Robison et al. examined gene mutations 

in Salmonella typhimurium, Escherichia coli 

strains and, hamster cells to determine the 

mutagenicity of fluvastatin but did not encounter 

any mutagenic phenomenon [12]. On the other 

hand, Orsolin et al.'s study revealed that 

atorvastatin and rosuvastatin did not exhibit a 

mutagenic effect on D. melanogaster, but these 

synthetic statins demonstrated a suppressive 

effect on the genotoxicity of DXR (mutagen) in 

somatic cells of D. melanogaster [13].  

 

Increasing the number of clinical, in silico, and 

in vitro studies on the toxic effects of statins will 

play an important role in elucidating their 

toxicological mechanisms of action. Most of 

these studies have focused on the anticancer 

properties of statins.  Recently, alongside these 

studies, in silico methods that support or predict 

toxic endpoints, such as developmental toxicity, 

genotoxicity, and in vitro mutagenicity, have 

gained increasing significance. 

 

In silico toxicity studies, conducted using 

computer-based modeling and computational 

methods, are used to analyze or predict the 

toxicities of chemical substances [14]. These 

tools utilize data from various sources such as 

chemical structures, physicochemical properties, 

and biological pathways (Figure 1). By reducing 

the duration, cost, and use of experimental 

animals in toxicity tests, these methods provide a 

significant advantage. Additionally, they are 

effective in rapidly evaluating large datasets [15]. 

 

In recent years, numerous in silico toxicology 

prediction programs and methods have been 

developed. Some of the developed tools include 

Vega Hub, Toxtree, Lazar, and T.E.S.T. All of 

them are free and utilize Quantitative Structure-

Activity Relationship (QSAR) methodologies to 

predict toxicity profiles of chemical compounds 

and assess potential risks. 

 

The concept of "Structure-Activity Relationship" 

(SAR) suggests that the biological activity of a 

chemical can be correlated with its molecular 

structure. When this relationship is quantified, it 

is referred to as "Quantitative Structure-Activity 

Relationship" (QSAR). A QSAR model 

correlates the toxicity of chemicals with 

molecular properties using available 

experimental toxicity data and predicts the 

toxicity of new chemicals [16]. 

 

Vega-QSAR is a program that utilizes over 100 

QSAR models and in silico approaches for the 

prediction and assessment of chemical 

properties, mutagenicity, and carcinogenicity of 

substances [17]. Toxtree is used to determine the 

Cramer class and potential toxicity of a chemical 

based on its similarity to specific structural alerts 

associated with certain toxicity classes, applying 

decision tree approaches [18]. Lazar (Lazy 

Structure-Activity Relationships) is a tool for 

predicting toxic properties such as mutagenicity 

or carcinogenicity of chemical structures based 

on a research database that includes both 

chemical structures and experimental data, 
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identifying compounds sharing similarities with 

the given query structure [19]. T.E.S.T. (Toxicity 

Estimation Software Tool) calculates various 

toxicological endpoints using molecular 

descriptors and QSAR methodologies [20]. 

 

This study aims to evaluate statin group drugs in 

silico for various toxicological endpoints such as 

mutagenicity, carcinogenicity, and micronucleus 

formation using Lazar, Vega, T.E.S.T, and 

Toxtree tools. The findings are compared with 

existing experimental data to assess the 

reliability and consistency of the developed in 

silico toxicology prediction tools. Additionally, 

the study aims to contribute to the literature 

regarding future risk assessments of the potential 

genotoxic, mutagenic, and carcinogenic effects 

of statins and the use of in silico toxicity tools in 

toxicity studies. 

 

2. General Methods 

 

This study aimed to assess the potential 

genotoxic, mutagenic, and carcinogenic 

properties of seven different statin drugs in silico. 

To achieve this goal, four different programs 

were utilized: VEGA-QSAR, TOXTREE, 

T.E.S.T, and LAZAR. These programs were 

preferred due to their open access, user-friendly 

interface, free availability, and ability to provide 

toxicity predictions based on chemical structure 

 

 

Figure 1. 2-dimensional chemical structures of statins 

 

2.1. Chemical structures of molecules 

  

The SMILES (Simplified Molecular Input Line 

Entry System) information for the chemicals was 

obtained from the CAS Common Chemistry 

(https://commonchemistry.cas.org/) source. CAS 

common Chemistry is an open community 

source providing access to various information of 

chemicals. SMILES is a standardized and 

concise representation of the three-dimensional 

structure of a chemical substance, which can be 

easily understood by computer software, 

transforming it into a series of symbols [21]. The 

obtained SMILES information of the chemicals 

(Table 1) has been entered into each software 

tool, and the desired endpoints have been 

selected.  
 

2.2. VEGA QSAR 

 

VEGA (Virtual models for property Evaluation 

of chemicals within a Global Architecture, 

www.vegahub.eu) is a free in silico toxicity 

program that integrates artificial intelligence (AI) 
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based prediction into toxicology. It utilizes 

computer simulations and prediction models to 

estimate biological endpoints such as BCF, 

carcinogenicity, mutagenicity, genotoxicity, and 

skin sensitivity. The program's logic relies on 

"Structure-Activity Relationship" (SAR) and 

"Quantitative Structure-Activity Relationship" 

(QSAR) models, which correlate the biological 

activity of a chemical with its molecular structure 

using existing experimental toxicity data to 

predict toxicity. It also employs various artificial 

intelligence methods, including rule-based 

expert systems, data mining, regression models, 

ensemble methods, and hybrid models [22]. 

Applicability domain is an important concept in 

quantitative structure-activity relationships 

(QSAR) and allows for predicting the uncertainty 

of a specific molecule's prediction based on how 

similar it is to the compounds used to build the 

model [23]. The VEGA program evaluates 

chemical structures and other properties related 

to the toxicological endpoints under assessment, 

is effective in measuring the applicability 

domain, and enables the user to eliminate 

unreliable predictions [17]. In this study, version 

1.2.3 of the VEGA program was utilized. 
 

Table 1. SMILES (Simplified Molecular Input Line Entry System) information of the tested chemicals 
Name  SMILES 

Atorvastatin  C(NC1=CC=CC=C1)(=O)C=2C(=C(N(CC[C@H](C[C@H](CC(O)=O)O)O)C2C(C)C)C3=CC=C(F)C=C3)C4=

CC=CC=C4 

Fluvastatin  C(=C/[C@@H](C[C@@H](CC(O)=O)O)O)\C1=C(C=2C(N1C(C)C)=CC=CC2)C3=CC=C(F)C=C3 

Lovastatin  O(C([C@H](CC)C)=O)[C@@H]1[C@]2(C(C=C[C@H](C)[C@@H]2CC[C@@H]3C[C@@H](O)CC(=O)O3)

=C[C@H](C)C1)[H] 

Pitavastatin  C(=C/[C@H](C[C@H](CC(O)=O)O)O)\C1=C(C2=C(N=C1C3CC3)C=CC=C2)C4=CC=C(F)C=C4 

Pravastatin  C(C[C@H](C[C@H](CC(O)=O)O)O)[C@@H]1[C@]2([C@@H](OC([C@H](CC)C)=O)C[C@H](O)C=C2C=

C[C@@H]1C)[H] 

Rosuvastatin  C(=C/[C@H](C[C@H](CC(O)=O)O)O)\C=1C(=NC(N(S(C)(=O)=O)C)=NC1C(C)C)C2=CC=C(F)C=C2 

Simvastatin  O(C(C(CC)(C)C)=O)[C@@H]1[C@]2(C(C=C[C@H](C)[C@@H]2CC[C@@H]3C[C@@H](O)CC(=O)O3)=

C[C@H](C)C1)[H] 

Mutagenicity assessment provided by the VEGA 

software was determined through the 

combination of five different models (CAESAR 

version 1.0.4, ISS version 1.0.3, SarPy-IRFMN 

version 1.0.8, KNN version 1.0.1, and Consensus 

version 1.0.4). In the Consensus model, 

predictions from the CAESAR, ISS, KNN/Read-

Across, and SarPy/IRFMN models are combined 

using the applicability domains of each model to 

determine a consensus score ranging from 0 to 1, 

providing a reliability indicator. Higher scores 

indicate more reliable predictions [24].  

 

In the carcinogenicity analysis, the following 

models are used: CAESAR 2.1.10, ISS 1.0.3, 

IRFMN-ISSCAN-CGX 1.0.2, and IRFMN-

Antares 1.0.2. For in vitro micronucleus activity 

prediction, the IRFMN-VERMEER 1.0.1 model 

is utilized, while for in vivo micronucleus 

activity prediction, the IRFMN 1.0.2 model is 

used.  

 

2.3. Toxtree 

 

TOXTREE program is a freely accessible tool 

developed to determine the toxicity of chemicals. 

The program categorizes substances into three 

different classes, namely Class I, Class II, and 

Class III, based on the Cramer classification 

scheme. These classes are determined 

considering the structural properties of each 

substance and known toxicity data. TOXTREE 

operates using a decision tree approach 

consisting of 33 questions for each substance. 

The answers to these questions enable 

classification of the substance and assess its 

potential toxic threat [25]. 

 

Class I substances have structures and data 

suggesting low oral toxicity levels. Class II 

substances may be potentially harmful to a less 

certain degree compared to Class I, but they are 

not as hazardous as those in Class III. Class III 

substances imply high toxicity [18]. 

 

The program relies on chemistry and 

biochemistry knowledge and classifies 

substances based on chemical structure 

properties along with metabolism or toxicity 

data. Additionally, TOXTREE features a module 

based on the Benigni and Bossa rules aimed at 

predicting characteristics such as carcinogenicity 
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and mutagenicity, allowing the program to 

conduct a more comprehensive toxicological 

assessment [26]. 
 

2.4. T.E.S.T. 
 

T.E.S.T (Toxicity Estimation Software Tool), a 

Java software developed by the U.S. 

Environmental Protection Agency (EPA), allows 

users to easily predict toxicity using various 

QSAR (Quantitative Structure-Activity 

Relationships) methodologies without the need 

for any external programs. The TEST program 

enables the evaluation of various toxicity 

endpoints such as bioaccumulation factor, 

developmental toxicity, mutagenicity (Ames 

test), Daphnia magna LC50, among others [27]. 
 

2.5. Lazar 

 

Lazar (Lazy Structure-Activity Relationships), 

various properties of chemical substances such as 

carcinogenicity, long-term toxicity, reproductive 

toxicity, and mutagenicity are predicted using a 

free program. It generates local QSAR models 

for the evaluation of each compound. These 

models include descriptor calculations, chemical 

similarity indices, and various algorithms for 

model generation. It obtains these predictions 

with data mining algorithms, providing a flexible 

prediction algorithm for different biological 

endpoints. It identifies similar compounds in the 

training data (the dataset used in machine 

learning) and creates local prediction models 

based on the experimental activities of these 

similar compounds, thus predicting the 

toxicological properties of the chemical of 

interest [28].  

Lazar, rather than using a global (Q)SAR model, 

obtains a specialized prediction using a modified 

k-nearest-neighbour (KNN) algorithm. It 

searches a database containing chemical 

structures and experimental data for compounds 

similar to the query structure and makes a 

prediction based on the experimental 

measurements of similar compounds. Unlike 

traditional KNN techniques, it categorizes 

chemical similarities not as absolute values but 

as values that need to be determined based on a 

specific biological activity [19]. 

 

3. Results 

 

Cardiovascular diseases are among the leading 

causes of mortality in today's world. Factors such 

as changing lifestyles, unhealthy diet, sedentary 

behavior, and obesity contribute to the increasing   

incidence of cardiovascular diseases. It is 

predicted that the prevalence and importance of 

cholesterol-lowering medications will rise as a 

result. Statin drugs are commonly used for both 

primary and secondary cardiovascular protection 

through lipid-lowering therapy.  

  

Considering the widespread and rapidly 

increasing usage of statins, determining their 

toxicological effects has significant implications 

for public health. Various studies have 

investigated the carcinogenic, genotoxic, 

anticancer, antitumor, and antimutagenic effects 

of statin drugs, but there hasn't been a 

comprehensive study specifically focusing on 

their genotoxic and mutagenic effects. In our 

study, we utilized four different in silico 

toxicology assessment programs to investigate 

various toxicological endpoints such as 

genotoxicity, carcinogenicity, mutagenicity, and 

micronucleus formation activity of statin drugs. 

The program outputs were compared with each 

other and with experimental data to make 

predictions about the toxicity of statins and to 

discuss the reliability of the in silico toxicity 

programs used (Table 2). 

 

3.1. Toxtree 
 

According to the results of the Toxtree program, 

all 7 compounds evaluated are predicted to be of 

Class III, indicating high toxicity.  
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Table 2. Comparison of programs regarding the toxicological endpoints of statin drugs 

Chemicals Structural Alert for Carcinogenecity Structural Alert for Mutagenicity 

Structural Alert for 

Micronucleus 

Cramer 

Classification 

 TOXTREE VEGA LAZAR TOXTREE VEGA 

LAZ

AR T.E.S.T TOXTREE VEGA TOXTREE 

 GSA  NGSA     CS    
In 
vitro 

In 
vivo  

Atorvastatin NO YES NO YES NO NO 1 NO YES YES NO NO CLASS 3 

Fluvastatin NO YES YES N/A NO NO 1 NO YES YES NO NO CLASS 3 

Lovastatin NO YES NO N/A NO NO 0.825 NO NO YES NO NO CLASS 3 

Pitavastatin NO YES YES N/A NO YES 0.3 NO NO YES YES NO CLASS 3 

Pravastatin NO YES YES YES NO NO 0.35 NO NO YES NO NO CLASS 3 

Rosuvastati

n NO YES YES N/A NO NO 0.3 NO YES YES NO NO CLASS 3 

Simvastatin NO YES YES N/A NO NO 0.825 NO NO YES NO NO CLASS 3 

*GSA: genotoxic structural warning, *NGSA: non-genotoxic structural warning, *N/A: Estimate could not be generated *CS: 

consensus score 

 

Atorvastatin, Fluvastatin, Pitavastatin, and 

Rosuvastatin are classified as Class III because 

they contain elements other than carbon, 

hydrogen, oxygen, nitrogen, and divalent sulfur. 

Additionally, the answer to the question 

regarding whether the non-listed elements are 

found only as sodium, potassium, calcium, 

magnesium, nitrogen salts, sulphamate, 

sulphonate, sulphate, or hydrochloride is "no." 
According to the Cramer decision tree approach, 

the substances lovastatin and simvastatin are 

queried to determine whether they contain a 

lactone or cyclic diester in a heterocyclic 

structure. Since both substances contain a lactone 

ring, they are directed to question 9 in the 

decision tree. These substances have a 

heterocyclic lactone structure that does not 

contain an open ring, and this structure is not a 

three-membered heterocycle. 

 

The heterocyclic ring found in lovastatin and 

simvastatin does not contain complex 

compounds, is not heteroaromatic, and is not 

commonly found as a component in foods. In 

light of all this information, the program directs 

us to the final rule, rule 33. Since the answer to 

the question, "Are there sufficient sulphonate or 

sulphamate groups?" is "no" for these two 

substances, they are classified as high toxicity 

class III by the program. 

 

The substance pravastatin is classified as Class 

III because it answered "no" to question 33 of the 

decision tree approach, which asks, "Are there 

sufficient sulphonate or sulphamate groups?" If 

the answer had been "yes," it would have been 

classified as Class I, indicating low toxicity. 

 Additionally, it has been concluded that the 

chemicals contain at least one micronucleus and 

structural alerts for non-genotoxic 

carcinogenicity according to the Benigni/Bossa 

carcinogenicity and mutagenicity rules, but no 

structural alerts were found for genotoxic 

carcinogenicity and potential in vitro 

mutagenicity (Ames Test) based on ISS. 

 

3.2. VEGA QSAR 

 

3.2.1. Mutagenicity estimation 

 

Atorvastatin is predicted to be non-mutagenic, 

with a consensus score of 1 based on 1 

experimental value according to the Consensus 

model. While the Caesar model provides a 

moderately reliable prediction that the compound 

is non-mutagenic, the ISS and SarPy-IRFMN 

models suggest with low reliability that it is non-

mutagenic. The experimental data obtained from 

the KNN model also indicates that the compound 

is non-mutagenic. All models, despite having 

different reliability scores, evaluated this 

compound as non-mutagenic. 

 

Fluvastatin is predicted to be non-mutagenic, 

with a consensus score of 1 based on 2 

experimental values according to the Consensus 

model. The Caesar and SarPy-IRFMN models 

provide high reliability evidence that the 

compound is non-mutagenic, while the ISS and 

KNN models suggest with low reliability that it 

is non-mutagenic. 

 

Lovastatin is predicted to be non-mutagenic, with 

a consensus score of 0.825 based on 4 models 
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according to the Consensus model. The Caesar, 

SarPy-IRFMN, and KNN results indicate with 

high reliability that the compound is non-

mutagenic, while the ISS result suggests with 

moderate reliability that it is non-mutagenic. 

 

Pitavastatin is predicted to be mutagenic 

according to the Consensus model, with a 

consensus score of 0.3, considering four models 

together. While the Caesar and ISS models 

provide moderate and low reliability respectively 

that it is non-mutagenic, the SarPy-IRFMN and 

KNN results suggest with moderate reliability 

that it is mutagenic. 

 

Pravastatin is predicted to be non-mutagenic, 

with a consensus score of 0.35 based on 4 models 

according to the Consensus model. The Caesar 

and SarPy-IRFMN models suggest with 

moderate reliability that it is non-mutagenic, 

while the ISS suggests with low reliability that it 

is non-mutagenic, and finally, the KNN suggests 

with moderate reliability that it is mutagenic. 

 

Pitavastatin is predicted to be mutagenic 

according to the Consensus model, with a 

consensus score of 0.3, considering four models 

together. While the Caesar and ISS models 

provide moderate and low reliability respectively 

that it is non-mutagenic, the SarPy-IRFMN and 

KNN results suggest with moderate reliability 

that it is mutagenic. 

 

Pravastatin is predicted to be non-mutagenic, 

with a consensus score of 0.35 based on 4 models 

according to the Consensus model. The Caesar 

and SarPy-IRFMN models suggest with 

moderate reliability that it is non-mutagenic, 

while the ISS suggests with low reliability that it 

is non-mutagenic, and finally, the KNN suggests 

with moderate reliability that it is mutagenic. 

 

Rosuvastatin is predicted to be non-mutagenic, 

with a consensus score of 0.3 based on 4 models 

according to the Consensus model. The Caesar, 

ISS, and SarPy models suggest with low 

reliability that it is non-mutagenic, while the 

KNN suggests with moderate reliability that it is 

non-mutagenic. 

 

Simvastatin is predicted to be non-mutagenic, 

with a consensus score of 0.825 based on 4 

models according to the Consensus model. The 

Caesar, SarPy, and KNN models suggest with 

high reliability that it is non-mutagenic, while the 

ISS suggests with moderate reliability that it is 

non-mutagenic.  

 

3.2.2. Carcinogenicity assessment 

 

For Atorvastatin, the Caesar model predicts with 

moderate reliability that it is not carcinogenic, 

while the ISS, IRFMN-ISSCAN-CGX, and 

IRFMN-Antares models predict with low 

reliability that it is carcinogenic. 

 

For Fluvastatin, experimental data suggests 

carcinogenicity. The Caesar model predicts with 

moderate reliability that the compound is 

carcinogenic. The ISS model's prediction is 

carcinogenic, with a low reliability score. The 

IRFMN-ISSCAN-CGX model predicts the 

compound as non-carcinogenic with low 

reliability, while the IRFMN-Antares model 

evaluates it as carcinogenic with high reliability. 

 

Lovastatin's experimental data indicates non-

carcinogenicity. The Caesar model evaluates the 

compound as non-carcinogenic with high 

reliability. The ISS model considers the 

compound as carcinogenic, but the program says 

that the result may not be reliable. The IRFMN-

ISSCAN-CGX and IRFMN-Antares models 

evaluate the compound as carcinogenic, with 

high and low reliability respectively, which 

contradicts the experimental data. 

 

Pitavastatin is classified as non-carcinogenic 

according to the Caesar model, but the result 

contains some critical points that need to be 

evaluated. The ISS model assesses the compound 

as carcinogenic with low reliability. The 

IRFMN-ISSCAN-CGX and IRFMN-Antares 

models evaluate the compound as carcinogenic, 

but the results also contain some critical points 

that need to be checked. 

 

Pravastatin, according to the evaluations of the 

Caesar and ISS models, is considered 

carcinogenic, but the result has low reliability 

degree. The IRFMN-ISSCAN-CGX model 

evaluates the compound as carcinogenic with 

high reliability. The IRFMN-Antares model 

assesses the compound as carcinogenic, but the 
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result also indicates some critical points that need 

to be verified. 

 

Rosuvastatin is evaluated as non-carcinogenic by 

the Caesar model, but the result has low 

realibility score. The ISS prediction suggests 

carcinogenicity, but the reliability is low. The 

IRFMN-ISSCAN-CGX and IRFMN-Antares 

models evaluate the compound as carcinogenic, 

but the results have low realibility value. 

 

Although the Caesar model considers 

Simvastatin as carcinogenic, the result indicates 

some critical points that need to be verified. The 

ISS model assesses the compound as 

carcinogenic, but the result has low reliability 

score. The IRFMN-ISSCAN-CGX model 

evaluates the compound as carcinogenic with 

high reliability. The IRFMN-Antares model 

assesses the compound as carcinogenic with low 

reliability. 

 

3.2.3. Micronucleus assessment 

 

According to the in vitro IRFMN-VERMEER 

model, Atorvastatin and Pravastatin are 

evaluated as inactive in terms of micronucleus 

formation, but the results highlight some critical 

points that need to be checked. Fluvastatin, 

Lovastatin, Rosuvastatin, and Simvastatin are 

assessed as inactive in terms of micronucleus 

formation, while Pitavastatin is considered 

active. 

 

According to the in vivo Micronucleus activity 

(IRFMN) model, Fluvastatin's experimental data 

is provided as non-genotoxic, and the model 

prediction, with high reliability, indicates that the 

compound is non-genotoxic. Lovastatin, 

Pitavastatin, and Simvastatin are evaluated as 

non-genotoxic compounds with high reliability. 

Atorvastatin and Pravastatin are considered non-

genotoxic compounds, highlighting the presence 

of critical points that need to be evaluated. 

Rosuvastatin is evaluated as a non-genotoxic 

compound with low reliability. 

 

3.3. Lazar framework 

 

According to the Lazar software, Atorvastatin's 

likelihood of being carcinogenic is estimated at 

0.3. However, its mutagenicity prediction 

indicates a probability of 0.73 that Atorvastatin is 

not mutagenic. The reliability of both 

assessments falls below that of biological assay 

results. Furthermore, the software warns that the 

similarity threshold for application is 0.2, which 

is below the standard threshold of 0.5. This 

suggests that the prediction may fall outside the 

applicability domain, indicating a certain level of 

unreliability. It cautions that reliability may 

decrease when applying the result to data beyond 

the model's learning dataset. Hence, it advises 

users that the model cannot assure a specific level 

of reliability for this prediction, urging careful 

evaluation of the results. 

 

The carcinogenicity evaluation of Fluvastatin 

could not be conducted due to insufficient similar 

data points to meet the required similarity 

threshold for predictions. However, for 

mutagenicity prediction, there is a conclusive 

probability of 1.0 that the substance is not 

mutagenic, with reliability similar to biological 

assay results.    

 

Similarly, the carcinogenicity assessment of 

Lovastatin was hindered by inadequate similar 

data points for prediction. Nevertheless, the 

mutagenicity prediction yields a probability of 

0.216 that Lovastatin is not mutagenic, although 

with lower reliability compared to biological 

assay results, and potentially outside the 

applicability domain due to the threshold being 

below the standard.   

 

For Pitavastatin, the carcinogenicity assessment 

could not proceed due to insufficient similar data 

points. However, the mutagenicity prediction 

suggests a probability of 0.531 that Pitavastatin 

is not mutagenic, with reliability comparable to 

biological assay results.  

 

In the case of Pravastatin, the carcinogenicity 

assessment yields probabilities of 0.576 in mice, 

0.413 in rats, and 0.576 in rodents that it is not 

carcinogenic. For mutagenicity prediction, there 

is a probability of 0.238 that it is not mutagenic, 

with lower reliability compared to biological 

assay results and potential applicability domain 

issues due to a threshold below the standard. 

 

In the case of Pravastatin, the carcinogenicity 

assessment yields probabilities of 0.576 in mice, 
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0.413 in rats, and 0.576 in rodents that it is not 

carcinogenic. For mutagenicity prediction, there 

is a probability of 0.238 that it is not mutagenic, 

with lower reliability compared to biological 

assay results and potential applicability domain 

issues due to a threshold below the standard. 

 

In the case of Pravastatin, the carcinogenicity 

assessment yields probabilities of 0.576 in mice, 

0.413 in rats, and 0.576 in rodents that it is not 

carcinogenic. For mutagenicity prediction, there 

is a probability of 0.238 that it is not mutagenic, 

with lower reliability compared to biological 

assay results and potential applicability domain 

issues due to a threshold below the standard. 

 

The carcinogenicity assessment of Rosuvastatin 

could not be conducted due to insufficient similar 

data points. However, for mutagenicity 

prediction, there is a probability of 0.333 that it 

is not mutagenic, although with reliability lower 

than biological assay results and potential 

applicability domain issues due to a threshold 

below the standard. 

 

Similarly, the carcinogenicity assessment of 

Simvastatin faced limitations due to inadequate 

similar data points. Yet, for mutagenicity 

prediction, there is a probability of 0.212 that it 

is not mutagenic, although with reliability lower 

than biological assay results and potential 

applicability domain issues due to a threshold 

below the standard. 

 

3.4. T.E.S.T. 

 

In the evaluation using the T.E.S.T. software, it 

was determined that Atorvastatin, Fluvastatin, 

and Rosuvastatin have consensus scores of 0.61, 

0.59, and 0.63, respectively, indicating they are 

mutagenic. On the other hand, Lovastatin, 

Pitavastatin, Pravastatin, and Simvastatin have 

consensus scores of 0.08, 0.27, 0.11, and 0.23, 

respectively, indicating they are not mutagenic. 

 

4. Discussion 

 

The Toxtree program, which uses the Cramer 

classification scheme, classified the tested 7 

substances as Class 3, indicating high toxicity. 

This classification is based on the structural 

characteristics of chemicals and the presence of 

at least one structural alert for micronucleus 

formation and non-genotoxic carcinogenicity. 

 

According to the results of the Toxtree program, 

none of the test substances showed a structural 

alert for genotoxic-based carcinogenicity. 

Compared to Vega and Lazar, the data provided 

by the Toxtree program are consistent when 

considering non-genotoxic-based 

carcinogenicity, except for Atorvastatin and 

Lovastatin. These findings may lead us to 

conclude that there is some level of uncertainty 

regarding the specific genotoxic end-points 

sensitivity of Toxtree. 

 

It is observed that the Lazar program could not 

obtain data on the carcinogenicity of statin group 

substances except for Atorvastatin and 

Pravastatin. The program could not generate 

predictions because it did not have a sufficient 

amount of similar data points to meet the 

similarity threshold used for carcinogenicity 

assessment. This issue could be resolved by 

increasing the similar data points in the training 

dataset of the model. 

 

The evaluation of carcinogenicity for Pravastatin 

is consistent between the Lazar and Vega 

programs, but contradictory results are observed 

for Atorvastatin. While the Caesar model used in 

the Vega program emphasizes with moderate 

reliability that Atorvastatin is not carcinogenic, 

other models used suggest with low reliability 

that the substance might be carcinogenic. The 

Lazar program evaluated Atorvastatin as 

carcinogenic with a value of 0.3, indicating low 

reliability of the obtained result. When 

comparing the reliability of the data, it can be 

concluded based on the data provided by the 

Vega program that Atorvastatin is not 

carcinogenic. 

 

When comparing the mutagenicity predictions of 

the statin group chemicals by various programs, 

it is observed that the results obtained from the 

Toxtree and Lazar programs are consistent with 

each other, while Vega's predictions, except for 

Pitavastatin, are consistent with the predictions 

of other substances and contradict with the TEST 

program. According to the Consensus model of 

the Vega program, Pitavastatin is predicted to be 

mutagenic with a consensus score calculated 
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based on four models to be 0.3. The results of 

SarPy-IRFMN and KNN are consistent with this 

prediction, but the Caesar and ISS models predict 

with moderate and low reliability, respectively, 

that the substance is not mutagenic. Lazar, on the 

other hand, predicts with a probability of 0.531 

in mutagenicity assessment that the substance is 

not mutagenic, and the reliability of this data is 

similar to bioanalysis results. This implies that 

the reliability of the data provided by Lazar is 

higher than that provided by Vega. Considering 

all the models and reliability scores, it can be 

inferred that Pitavastatin is not mutagenic. 

 

The T.E.S.T program's assessment of 

Atorvastatin, Fluvastatin, and Rosuvastatin with 

consensus scores of 0.61, 0.59, and 0.63, 

respectively, as mutagenic contradicts the data 

provided by other programs. This discrepancy 

highlights the importance of using multiple 

programs and models when assessing whether 

specific substances are mutagenic or not in 

toxicological evaluations. 

 

The Toxtree program provided data indicating 

that all 7 tested substances contain at least one 

structural alert for micronucleus formation and 

can potentially form micronuclei. These data 

contradict the reliability of the Vega program's 

data. The limited performance and low accuracy 

rate of the Toxtree program's micronucleus test 

indicate that many structural alerts are present in 

experimentally non-toxic compounds in its 

predictions, suggesting that the Toxtree model 

may be misleading in some cases [29]. 

 

The Vega program is consistent among its 

models for all substances except for pitavastatin. 

The In vivo Micronucleus activity (IRFMN) 

model has classified all substances as non-

genotoxic agents. However, the In vitro IRFMN-

VERMEER model has evaluated pitavastatin as 

active in micronucleus formation with low 

reliability. This data is consistent with the data 

provided by Toxtree, but as mentioned earlier, 

the reliability of the data is low. 

 

In 1995, the genotoxic potential of atorvastatin 

was investigated using bacterial mutagenicity 

and micronucleus tests. This research found no 

biologically significant increase in the frequency 

of micronucleated polychromatic erythrocytes in 

the bone marrow, and the bacterial mutagenicity 

tests yielded negative results [30]. The result of 

the micronucleus test contradicts our findings 

from Toxtree but is consistent with the results 

from Vega. However, the outcome of the 

mutagenicity test aligns with the outputs of the 

other three programs except for T.E.S.T.  

 

In a study conducted in 1994, the genotoxic and 

mutagenic potential of Fluvastatin was evaluated 

in vitro using Salmonella typhimurium, 

Escherichia coli (gene mutations), V79 Chinese 

hamster cells (HGPRT gene mutations, 

chromosomal abnormalities), primary cultures of 

rat hepatocytes (DNA repair), and BALB/3T3 

cell malignant transformations. Additionally, in 

vivo testing was performed using the mouse bone 

marrow micronucleus test. The results of these 

tests did not reveal any evidence of carcinogenic, 

mutagenic, or genotoxic effects [12]. These data 

contradict our study findings. The empirical data 

and model prediction provided by the Vega 

program indicate that the substance is 

carcinogenic. The result of the micronucleus test 

contradicts with the Toxtree program, while the 

result of the mutagenicity test contradicts with 

the T.E.S.T program. 

 

In a clinical study published in 2007 aimed at 

understanding the cancer risk among individuals 

using statins, people using statin drugs were 

followed for 9.4 years, and no significant 

evidence was found to suggest that statins 

contribute to causing cancer or preventing it [31]. 

A study conducted in 2010 using a rat model 

concluded that lovastatin has a significant tumor-

preventive effect [32]. Various hypotheses have 

been proposed and the effects of statin drugs on 

site-specific cancer types have been investigated. 

Some studies have highlighted the anti-cancer 

properties of statin drugs, while clinical trials 

have emphasized that statin drugs do not cause 

cancer [33-35]. Although the in silico toxicity 

prediction programs we used provided various 

structural alerts for carcinogenicity, the 

development of cancer is influenced by many 

factors such as age, gender, diet, lifestyle, and 

others. 

 

In the study conducted by Berber et al. in 2013, 

it was emphasized that Rosuvastatin may have in 

vitro genotoxic potential in human lymphocytes, 
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and micronucleus formation was observed along 

with chromosomal abnormalities [36]. Another 

study found that the total number of micronuclei 

in cells exposed to Atorvastatin was significantly 

higher compared to those in the control group 

[11]. The results of these studies are consistent 

with our micronucleus evaluation in Toxtree but 

contradict with Vega. 

 

5. Conclusion 

 

In this study, we conducted in silico toxicological 

assessments using four different tools to   

investigate various toxicological endpoints of 

statin medications. Through comparisons with 

experimental data and among the different in 

silico tools, we aimed to assess the reliability and 

consistency of these predictions. Our findings 

revealed inconsistencies across different models 

and programs, highlighting the importance of 

careful consideration and comparison of multiple 

sources of data and methodologies in toxicity 

assessments. 

 

While some in silico models indicated potential 

genotoxic or carcinogenic properties for certain 

statins, these predictions were not always 

consistent across all models. Furthermore, 

discrepancies were observed when comparing in 

silico predictions with experimental data. These 

discrepancies may stem from fundamental 

classification schemes, training data sets, or the 

specific focus of each program and model. As 

each program has its own strengths and 

weaknesses, careful evaluation of the results 

regarding potential toxicological endpoints of 

statin drugs and the use of multiple data sources 

in decision-making are necessary. This 

underscores the necessity of incorporating 

multiple lines of evidence and utilizing a variety 

of methodologies in toxicity assessments to 

ensure robust and reliable conclusions. 

 

Despite the limitations and inconsistencies in in 

silico predictions, our study contributes to the 

understanding of the potential toxicological 

effects of statins. Future research should focus on 

conducting comprehensive in vitro and in vivo 

genotoxicity studies to validate and further 

explore the findings derived from in silico 

assessments. Ultimately, such efforts will 

enhance our understanding of the safety profile 

of statin medications and facilitate informed 

decision-making regarding their clinical use. 
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