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Abstract. In this paper, we study the stability and convergence of fully dis-

crete finite element method with grad-div stabilization for the incompressible
non-isothermal fluid flows. The proposed scheme uses finite element discretiza-

tion in space and linearly extrapolated blended Backward Differentiation For-

mula (BLEBDF) in time. We prove the unconditional stability over finite time
interval and optimally convergence of the scheme. We also present numerical

experiments to verify our theoretical convergence rates and show the reliability

of the scheme.

1. Introduction

Most of practical engineering problems including insulating in windows, solar
collectors, cooling in electronics are modelled by natural convection flows. In the
dimensionless form, the equations governed by these flows are given on the domain
Ω ⊂ Rd(d = 2 or 3) and a time interval (0, t∗], t∗ <∞, as follows

ut + (u · ∇)u− ν∆u +∇p = RiTξ + f , (1.1)

∇ · u = 0, (1.2)

Tt + (u · ∇)T − κ∆T = g, (1.3)

where u is the velocity filed, p the pressure, T the temperature and f and g are
the external forcing and thermal source. ξ is the unit vector in the direction of
the gravitational acceleration, ν is the dimensionless kinematic viscosity which is
inversely proportional to the Reynolds number, i.e. ν = Re−1, κ the thermal con-
ductivity defined as κ = Re−1Pr−1 where Pr is the Prandtl number and Ri the
Richardson number, and Rayleigh number is defined by Ra = RiRe2Pr. The sys-
tem is complemented with the appropriate initial and boundary conditions.
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This system is well posed under some restriction on the Rayleigh and Prandtl num-
bers [21]. Simulations with standard Galerkin finite element method of (1.1)-(1.3)
for high Rayleigh number leads to severe computational problems and can exhibit
global spurious oscillations, [21, 6, 18]. One remedy to overcome this issue is to
use the grad-div stabilization. This type of stabilization adds the penalization term
γ∇(∇ · u) to the momentum equation which leads to γ(∇ · uh,∇ · vh) in the dis-
cretization. It was originally proposed in [3] and since then it has studied from both
theoretical and computational points of view. The studies on grad-div stabiliza-
tion show that this stabilization improves mass conservation, leads to much more
accurate approximate solutions for the Stokes/Navier-Stokes and related coupled
multiphysics flow problems, [5, 12, 14, 15, 19, 20].
The aim of this study is to use this advantage of grad-div stabilized finite element
for approximating of the natural convection flows. For the temporal discretization,
a new second order time stepping scheme called an blended three step Backward
Differentiation Formula (BDF) is used. This selection is due to the fact that such
scheme is of second order accuracy with a smaller constant in truncation error term,
A-stable and is more accurate than two-step BDF scheme, [22, 16, 2, 10].
The remaining of the paper is organized as follows. Section 2 presents some mathe-
matical preliminaries necessary for the finite element analysis. Section 3 introduces
the numerical scheme. Section 4 and 5 provides theoretical results of the stability
and convergence. We show that approximate solutions are unconditionally stable
over finite time interval and converge both in time and space quadratically. Sec-
tion 6 provides two numerical experiments. The first one verifies the second order
convergence in space and time. The second one, on the other hand, tests the re-
liability and efficiency of the algorithm. For this aim, we compare the solutions
of the scheme with BLEBDF (without the stabilization) on Marsigli’s experiment.
The results show that our method captures very well the flow pattern at each time
level.

2. Mathematical Preliminaries

We consider the domain Ω ⊂ Rd, d = 2, 3 to be a convex polygon or polyhedra.
The L2-inner product and its induced norm will be denoted as (·, ·) and ‖ · ‖, the
Hk-norm by ‖ · ‖k, and the L∞-norm by ‖ · ‖L∞ , [1]. Continuous velocity, pressure
and temperature spaces are given by respectively:

X : = H1
0(Ω) = {v ∈ (L2(Ω))d : ∇v ∈ L2(Ω)d×d, v = 0 on ∂Ω},

Q : = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

Y : = H1
0 (Ω).

Further, we define the space V ⊂ X to be the divergence free subset of X. The
dual space of X is denoted by H−1 with the norm

‖f‖−1 := sup
06=v∈X

|(f ,v)|
‖∇v‖

.

We frequently use the Poincaré-Friedrich’s inequality, [11]: there exists a constant
CP such that

‖v‖ ≤ CP ‖∇v‖, ∀v ∈ X.
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Define the skew symmetrized trilinear form for the non-linear terms to ensure sta-
bility of the numerical method

b1(u,v,w) :=
1

2
[(u · ∇v,w)− (u · ∇w,v)] , u,v,w ∈ X,

b2(u, θ,Φ) :=
1

2
[(u · ∇θ,Φ)− (u · ∇Φ, θ)] , u ∈ X, θ,Φ ∈ Y.

Lemma 2.1. For u,v,w ∈ X and v,∇v ∈ L∞, the skew symmetrized trilinear
form b(·, ·, ·) is bounded as follows, [13]

b1(u,v,w) ≤ C‖∇u‖‖∇v‖‖∇w‖, (2.1)

b1(u,v,w) ≤ C‖u‖ (‖∇v‖L3 + ‖v‖L∞) ‖∇w‖. (2.2)

We assume that τh is a regular, conforming mesh with a maximum diameter h,
and Xh ⊂ X, Qh ⊂ Q, Yh ⊂ Y be conforming finite element spaces which satisfy
approximation properties of piece-wise polynomials of local degree k, k − 1, and k
with k ≥ 1 respectively, [7]

inf
vh∈Xh

{‖u− vh‖+ h‖∇(u− vh)‖} ≤ Chk+1‖u‖k+1,

inf
qh∈Qh

‖p− qh‖ ≤ Chk‖p‖k.

inf
Th∈Yh

{‖T − Th‖+ h‖∇(T − Th)‖} ≤ Chk+1‖T‖k+1.

We also assume that the velocity-pressure finite element pair, (Xh, Qh), satisfy the
discrete inf-sup condition:

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)

||∇vh || || qh ||
≥ β > 0.

We denote the discretely divergence-free space by Vh and defined as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh}.
We also introduce the following norms on time interval [0, t∗]: 1 ≤ p <∞

‖φ‖p,k :=

 t∗∫
0

‖φ(t, ·)‖pkdt

1/p

, ‖φ‖∞,k := sup
0≤t≤t∗

‖φ(t, ·)‖∞

and discrete norms

‖|φ|‖p,k :=

(
∆t

N−1∑
n=0

‖φ(tn, ·)‖pk

)1/p

, ‖|φ|‖∞,k := max
0≤n≤N

‖φ(tn, ·)‖k,

where tn = n∆t, n = 0, 1, 2, ..., N = t∗/∆t.
We also introduce the following notations for the stability and convergence analysis

δ[φn+1] :=
5

3
φn+1 − 5

2
φn + φn−1 − 1

6
φn−2, (2.3)

E[φn+1] := φn+1 − 3φn + 3φn−1 − φn−2, (2.4)
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and estimates which are the conclusion of the use of Taylor’s Theorem with integral
remainder term, [10]:

‖φn+1
t − δ[φn+1]

∆t
‖2 ≤ 7

3
(∆t)3

tn+1∫
tn−2

‖φttt‖2dt, (2.5)

‖E[φn+1]‖2 ≤ 9∆t5
tn+1∫

tn−2

‖φttt‖2dt. (2.6)

To simplify our finite element analysis, we use the G-stability framework as in [8].
For third order backward differentiation, the positive definite matrix G-matrix and
the associated norm are given as

G =
1

12

 19 −12 3
−12 10 −3

3 −3 1

 , ‖U‖2G = (U , GU) , U ∈ L2 (Ω) .

For Un+1 :=
[
un+1 un un−1

]T
, ∀ui ∈ L2(Ω) , the following identity holds, [2](

δ[un+1], un+1
)

= ‖Un+1‖2G − ‖Un‖2G +
1

12
‖E[un+1]‖2. (2.7)

The G- and L2-norms are equivalent in the sense that: there exist Cl, Cu > 0
positive constants such that

Cl‖U‖2G ≤ ‖U‖2 ≤ Cu‖U||2G. (2.8)

We also use Young’s inequality and the discrete version of Gronwall Lemma.

Lemma 2.2. Let a, b be non-negative real numbers. Then for any ε > 0,

ab ≤ ε

p
ap +

ε−q/p

q
bq;

1

p
+

1

q
= 1, and 1 ≤ p, q ≤ ∞.

Lemma 2.3 (Gronwall Lemma). Let ∆t,H and an, bn, cn, dn be non-negative num-
bers such that

aN + ∆t

N∑
n=0

bn ≤ ∆t

N−1∑
n=0

dnan + ∆t

N−1∑
n=0

cn +H, for N ≥ 0.

Then for all ∆t > 0

aN + ∆t

N∑
n=0

bn ≤ exp

(
∆t

N−1∑
n=0

dn

)(
∆t

N−1∑
n=0

cn +H

)
.

3. Numerical Scheme

The proposed numerical scheme uses three-step backward differentiation in time
and finite element in space.

Algorithm 3.1. Let forcing terms f ∈ L2(0, t∗; H−1(Ω)), g ∈ L2(0, t∗;H−1(Ω))
Choose an end time t∗ and a time step ∆t such that t∗ = N ∆t. Denote the discrete
solutions at time levels tn := n∆t by

un
h := uh(tn), pnh := ph(tn), Tn

h := Th(tn), n = 0, 1, 2, ..., N.
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Let initial conditions u−2
h ,u−1

h ,u0
h ∈ L2(Ω) and T−2

h , T−1
h , T 0

h ∈ L2(Ω) be given.

For n = 0, ..., N − 1, find (un+1
h , pn+1

h , Tn+1
h ) such that the equations below are

satisfied: ∀(vh, qh, χh) ∈ (Xh, Qh, Yh)(
δ[un+1

h ]

∆t
,vh

)
+ b1

(
3un

h − 3un−1
h + un−2

h ,un+1
h ,vh

)
+ ν

(
∇un+1

h ,∇vh

)
+ γ

(
∇ · un+1

h ,∇ · vh

)
−
(
pn+1
h ,∇ · vh

)
= Ri(

(
3Tn

h − 3Tn−1
h + Tn−2

h )ξ,vh

)
+
(
fn+1,vh

)
, (3.1)(

∇ · un+1
h , qh

)
= 0, (3.2)(

δ[Tn+1
h ]

∆t
, χh

)
+ b2

(
3un

h − 3un−1
h + un−2

h , Tn+1
h , χh

)
+ κ
(
∇Tn+1

h ,∇χh

)
=
(
gn+1, χh

)
. (3.3)

4. Stability Analysis

This section is devoted to proving the stability of Algorithm 3.1. We show that
the proposed algorithm’s solutions are stable over finite time interval without any
time step restriction.

Lemma 4.1. The solutions of Algorithm 3.1 are unconditionally stable over (0, t∗)
and they satisfy the bound: for any ∆t > 0

‖T N
h ‖2G +

1

2
κ∆t

N−1∑
n=0

‖Tn+1
h ||2 ≤ ‖T 0

h ‖2G +
1

2
κ−1‖g‖2L2(0,t∗;H−1(Ω)) =: KT , (4.1)

and

‖UN
h ‖2G +

1

2
ν∆t

N−1∑
n=0

‖∇un+1
h ‖2 + γ∆t

N−1∑
n=0

‖∇ · un+1
h ‖2

≤ ‖U0
h‖2G + 27ν−1Ri2C2

PCuKT |ξ|2t∗ +
1

2
ν−1‖f‖2L2(0,t∗;H−1(Ω)) =: Ku. (4.2)

Proof. We will first obtain the bound on discrete temperature solution. Letting
χh = ∆t Tn+1

h in (3.3), which vanishes the non-linear term, and then using (2.7)
followed by the Cauchy-Schwarz and Young’s inequalities we obtain

‖T n+1
h ‖2G − ‖T n

h ‖2G +
1

12
‖E[Tn+1

h ]‖2 + κ∆t‖∇Tn+1
h ‖2

= ∆t
(
gn+1, Tn+1

h

)
≤ ∆t‖gn+1||H−1‖∇Tn+1

h ‖

≤ 1

2
κ−1∆t‖gn+1||2H−1 +

1

2
κ∆t‖∇Tn+1

h ||2. (4.3)

From which, reordering terms gives

||T n+1
h ||2G−||T n

h ||2G +
1

12
||E[Tn+1

h ]||2 +
1

2
κ∆t‖∇Tn+1

h ||2 ≤ 1

2
κ−1∆t‖gn+1||2H−1 .

Dropping the third left hand side term and summing over time steps gives the bound
on temperature solution. To get the stability bound on velocity, set qh = pn+1

h in
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(3.2) and vh = ∆tun+1
h in (3.1). The pressure and the non-linear terms vanishes,

and using the same identity produces

‖Un+1
h ||2G − ‖Un

h ||2G +
1

12
‖E[un+1

h ]||2 + ν∆t‖∇un+1
h ||2 + γ∆t‖∇ · un+1

h ||2

= ∆tRi
((

3Tn
h − 3Tn−1

h + Tn−2
h

)
ξ,un+1

h

)
+ ∆t

(
fn+1,un+1

h

)
. (4.4)

Using Cauchy-Schwarz, Young’s and the Poincaré-Friedrich’s inequalities together
with (2.8) and (4.1) on the first right hand side term, we have

∆tRi
((

3Tn
h − 3Tn−1

h + Tn−2
h

)
ξ,un+1

h

)
≤ ∆tRi

[
3‖Tn

h ‖+ 3‖Tn−1
h ‖+ ‖Tn−2

h ‖
]
|ξ|CP ‖∇un+1

h ‖

≤ 27ν−1∆tRi2C2
P

[
‖Tn

h ‖2 + ‖Tn−1
h ‖2 + ‖Tn−2

h ‖2
]
|ξ|2 +

1

4
ν∆t‖∇un+1

h ‖2

≤ 27ν−1∆tRi2C2
PCu‖T n

h ‖2G|ξ|2 +
1

4
ν∆t‖∇un+1

h ‖2

≤ 27ν−1∆tRi2C2
PCuKT |ξ|2 +

1

4
ν∆t‖∇un+1

h ‖2,

and for the forcing term use Cauchy-Schwarz and Young’s inequalities to get

∆t
(
fn+1,un+1

h

)
≤ ν−1∆t‖fn+1‖2H−1 +

1

4
ν∆t‖∇un+1

h ‖2.

Combining these estimates together with (4.4) gives

‖Un+1
h ||2G − ‖Un

h ||2G +
1

12
‖E[un+1

h ]||2 +
ν∆t

2
‖∇un+1

h ||2 + γ∆t‖∇ · un+1
h ||2

≤ 27ν−1∆tRi2C2
PCuKT |ξ|2 + ν−1∆t‖fn+1‖2H−1 . (4.5)

Summing over time steps, dropping the third left hand side term gives the desired
stability bound on the velocity. �

5. Convergence analysis

This section is devoted to the finite element error analysis of Algorithm 3.1
We will show that the finite element solutions convergences to the true solutions
quadratically both in time and space. In the analysis, we will use the following
error notations: ∀n = 0, 1, ..., N

en
u := un − un

h, enT := Tn − Tn
h , (5.1)

and error’s decomposition

en
u := ηnu − φnh,u, φnh,u := un

h − ũn
h, ηnu := un − ũn

h,

enT := ηnT − φnh,T , φnh,T := Tn
h − T̃n

h , ηnT := Tn − T̃n
h

(5.2)
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True solutions at tn+1 satisfies the following equations:(
δ[un+1]

∆t
,vh

)
+ b1(3un − 3un−1 + un−2,un+1,vh) + ν(∇un+1,∇vh)

+ γ(∇ · un+1,∇ · vh)− (pn+1,∇ · vh) = Ri((3Tn − 3Tn−1 + Tn−2)ξ,vh)

+ (fn+1,vh) + Λ1(u, T,vh), (5.3)

(∇ · un+1, qh) = 0, (5.4)(
δ[Tn+1]

∆t
, χh

)
+ b2(3un − 3un−1 + un−2, Tn+1, χh) + κ(∇Tn+1,∇χh)

= (gn+1, χh) + Λ2(u, T, χh), (5.5)

where

Λ1(u, T,vh) :=

(
δ[un+1]

∆t
− un+1

t ,vh

)
− b1(E[un+1],un+1,vh)

+Ri(E[Tn+1]ξ,vh), (5.6)

Λ2(u, T, χh) :=

(
δ[Tn+1]

∆t
− Tn+1

t , χh

)
− b2(E[un+1], Tn+1, χh) (5.7)

are consistency errors. We now give the bounds for the consistency errors.

Lemma 5.1.

|Λ1(u, T,vh)|

≤ 9

ε
ν−1∆t5

(
C‖∇un+1‖2‖∇uttt‖2L2(tn−2, tn+1;L2) +Ri2C2

P |ξ|2‖Tttt‖2L2(tn−2, tn+1;L2)

)
+

7

6ε
ν−1(∆t)3C2

P ‖uttt‖2L2(tn−2, tn+1;L2) + εν‖∇vh‖2, (5.8)

and

|Λ2(u, T, χh)|

≤ 9

2ε
C κ−1 ∆t5‖∇Tn+1‖2‖∇uttt‖2L2(tn−2, tn+1;L2)

+
7

6ε
κ−1(∆t)3C2

P ‖Tttt‖2L2(tn−2, tn+1;L2) + εκ‖∇χh‖2. (5.9)

Proof. Using the Cauchy-Schwarz, Young’s and Poincaré-Friedrich’s inequalities
together with (2.1) produces the bounds. �

Theorem 5.2. Assume that true solutions (u, p, T ) satisfies the following regularity
conditions

u ∈ L∞(0, T ;Hk+1(Ω)), T ∈ L∞(0, T ;Hk+1(Ω)), p ∈ L2(0, T ;Hk+1(Ω)),

ut ∈ L2(0, T ;H1(Ω)), Tt ∈ L2(0, T ;H1(Ω)), Tttt ∈ L2(0, T ;L2(Ω)),

uttt ∈ L2(0, T ;L2(Ω) ∩H1(Ω)).
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Then the errors defined in (5.1) satisfy the following bound:

‖eN
u ‖2G + ‖eNT ‖2G +

1

12

N−1∑
n=0

[
‖E[en+1

u ]‖2 + ‖E[en+1
T ]‖2

]
+

∆t

2

N−1∑
n=0

[
ν‖∇en+1

u ‖2 + κ‖∇en+1
T ‖2

]
+
γ∆t

2

N−1∑
n=0

‖∇ · en+1
u ‖2

≤ C(∆t4 + h2k),

where C is the general constant independent of h and ∆t.

Proof. We divide the error analysis into thee parts. In the first part, we will give
the bounds for the velocity error equation and in the second part, the bounds for
the temperature. In the third part, we will apply the Gronwall Lemma and triangle
inequality to the error terms to finish the proof.

Step 1 [The error bound for the velocity ]
Subtracting (3.1)-(3.2) from (5.3)-(5.4) and using error notations given in (5.1)
produces: ∀ qh ∈ Qh(

δ[en+1
u ]

∆t
,vh

)
+ ν(∇en+1

u ,∇vh) + γ(∇ · en+1
u ,∇ · vh)− (pn+1 − qh,∇ · vh)

+ b1(3un − 3un−1 + un−2,un+1,vh)− b1(3un
h − 3un−1

h + un−2
h ,un+1

h ,vh)

= Ri((3enT − 3en−1
T + en−2

T )ξ,vh) + Λ1(u, T,vh), (5.10)

(∇ · en+1
u , qh) = 0, (5.11)

Using error decomposition’s in (5.2) and setting vh = ∆tφn+1
h,u and applying (2.7)

gives

‖φn+1
h,u ‖

2
G − ‖φnh,u‖2G +

1

12
‖E[φn+1

h,u ]‖2 + ν∆t‖∇φn+1
h,u ‖

2 + γ∆t‖∇ · φn+1
h,u ‖

2

=

(
δ[ηn+1

u ], φn+1
h,u

)
+ ν∆t

(
∇ηn+1

u ,∇φn+1
h,u

)
+ γ∆t

(
∇ · ηn+1

u ,∇ · φn+1
h,u

)
−∆t

(
pn+1 − qh,∇ · φn+1

h,u

)
+ ∆t b1

(
3un − 3un−1 + un−2,un+1, φn+1

h,u

)
−∆tb1

(
3un

h − 3un−1
h + un−2

h ,un+1
h , φn+1

h,u

)
−Ri∆t

(
(3ηnT − 3ηn−1

T + ηn−2
T )ξ, φn+1

h,u

)
+Ri∆t

(
(3φnh,T − 3φn−1

h,T + φn−2
h,T )ξ, φn+1

h,u

)
−∆tΛ1

(
u, T, φn+1

h,u

)
. (5.12)

We now bound below the right hand side terms of (5.12).The first term is zero
due to the L2-projection. The next three terms are bounded below by using the
Cauchy-Schwarz and Young’s inequalities as follows:

ν∆t
(
∇ηn+1

u ,∇φn+1
h,u

)
≤ ν∆t‖∇ηn+1

u ‖2 +
ν∆t

4
‖∇φn+1

h,u ‖
2,

γ∆t
(
∇ · ηn+1

u ,∇ · φn+1
h,u

)
≤ γ∆t‖∇ηn+1

u ‖2 +
γ∆t

4
‖∇ · φn+1

h,u ‖
2

∆t
(
pn+1 − qh,∇ · φn+1

h,u

)
≤ γ−1∆t inf

qh∈Qh

‖pn+1 − qh‖2 +
γ∆t

4
‖∇ · φn+1

h,u ‖
2.
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For the non-linear terms, we add and subtract the terms below

b1(3un
h − 3un−1

h + un−2
h ,un+1, φn+1

h,u )

to get

b1(3un − 3un−1 + un−2,un+1, φn+1
h,u )− b1

(
3un

h − 3un−1
h + un−2

h ,un+1
h , φn+1

h,u

)
= b1(3ηnu − 3ηn−1

u + ηn−2
u , un+1, φn+1

h,u )− b1(3φnh,u − 3φn−1
h,u + φn−2

h,u ,u
n+1, φn+1

h,u )

+ b1(3un
h − 3un−1

h + un−2
h , ηn+1

u , φn+1
h,u ).

For the first non-linear term, we apply (2.1) to get

∆t b1(3ηnu − 3ηn−1
u + ηn−2

u ,un+1, φn+1
h,u )

≤ C ∆t
(
3‖∇ηnu‖+ 3‖∇ηn−1

u ‖+ ‖∇ηn−2
u ‖

)
‖∇un+1‖‖∇φn+1

u,h ‖

≤ 108C ∆t ν−1
(
‖∇ηnu‖2 + ‖∇ηn−1

u ‖2 + ‖∇ηn−2
u ‖2

)
‖∇un+1‖2 +

ν∆t

16
‖∇φn+1

u,h ‖
2.

For the second term, use (2.2) together with Young’s inequality which leads to

∆t b1

(
3φnh,u − 3φn−1

h,u + φn−2
h,u ,u

n+1, φn+1
h,u

)
≤ C∆t‖3φnh,u − 3φn−1

h,u + φn−2
h,u ‖

(
‖∇un+1‖L3 + ‖un+1‖L∞

)
‖∇φn+1

h,u ‖

≤ 16 ∆t C ν−1
(
‖∇un+1‖2L3 + ‖un+1‖2L∞

)
‖3φnh,u − 3φn−1

h,u + φn−2
h,u ‖

2 +
ν∆t

32
‖∇φn+1

h,u ‖
2.

For the last non-linear term, we apply (2.1) and Young’s inequality to get

∆t b1(3un
h − 3un−1

h + un−2
h , ηn+1

u , φn+1
h,u )

≤ C ∆t ‖∇
(
3un

h − 3un−1
h + un−2

h

)
‖‖∇ηn+1

u ‖‖∇φn+1
h,u ‖

≤ 8C ν−1∆t‖∇
(
3un

h − 3un−1
h + un−2

h

)
‖2‖∇ηn+1

u ‖2 +
ν∆t

32
‖∇φn+1

h,u ‖
2.

The next two terms are estimated in a similar way:

Ri∆t
(

(3φnh,T − 3φn−1
h,T + φn−2

h,T )ξ, φn+1
h,u

)
≤ Ri∆t‖3φnh,T − 3φn−1

h,T + φn−2
h,T ‖|ξ|CP ‖∇φn+1

h,u ‖

≤ 16C2
P Ri

2ν−1∆t‖3φnh,T − 3φn−1
h,T + φn−2

h,T ‖
2|ξ|2 +

ν∆t

64
‖∇φn+1

h,u ‖
2,

and

Ri∆t
(

(3ηnT − 3ηn−1
T + ηn−2

T )ξ, φn+1
h,u

)
≤ Ri∆t‖3ηnT − 3ηn−1

T + ηn−2
T ‖|ξ|CP ‖∇φn+1

h,u ‖

≤ 16C2
P Ri

2ν−1∆t‖3ηnT − 3ηn−1
T + ηn−2

T ‖2|ξ|2 +
ν∆t

64
‖∇φn+1

h,u ‖
2.

Now take vh = φn+1
h,u in (5.8) with ε = 3/32. Then considering the resulting inequal-

ity and all these estimates above on the right hand side of (5.12) and combining
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like terms yields

‖φn+1
h,u ‖

2
G − ‖φnh,u‖2G +

1

12
‖E[φn+1

h,u ]‖2 +
ν∆t

2
‖∇φn+1

h,u ‖
2 +

γ∆t

2
‖∇ · φn+1

h,u ‖
2

≤ (ν + γ)∆t ‖∇ηn+1
u ‖2 + γ−1∆t inf

qh∈Qh

‖pn+1 − qh‖2

+ 108C ν−1 ∆t
(
‖∇ηnu‖2 + ‖∇ηn−1

u ‖2 + ‖∇ηn−2
u ‖2

)
‖∇un+1‖2

+ 16Cν−1
(
‖∇un+1‖2L3 + ‖un+1‖2L∞

)
‖3φnh,u − 3φn−1

h,u + φn−2
h,u ‖

2

+ 8C ν−1∆t‖∇
(
3un

h − 3un−1
h + un−2

h

)
‖2‖∇ηn+1

u ‖2

+ 16C2
PRi

2ν−1∆t‖3φnh,T − 3φn−1
h,T + φn−2

h,T ‖
2|ξ|2

+ 16C2
P Ri

2ν−1∆t‖3ηnT − 3ηn−1
T + ηn−2

T ‖2|ξ|2

+ Cν−1(∆t)4
(
‖Tttt‖2L2(tn−2, tn+1;L2) + ‖∇uttt‖2L2(tn−2, tn+1;L2) + ‖uttt‖2L2(tn−2, tn+1;L2)

)
.

(5.13)

Step 2 [The error bound for the temperature] First subtract (3.3) from (5.5)
and consider error notations given in (5.1) to get(

δ[en+1
T ]

∆t
, χh

)
+ κ(∇en+1

T ,∇χh) + b2(3un − 3un−1 + un−2, Tn+1, χh)

− b2(3un
h − 3un−1

h + un−2
h , Tn+1

h , χh) = Λ2(u, T, χh). (5.14)

Then using error decompositions, setting χh = ∆tφn+1
h,T and recalling (2.7) gives

‖φn+1
h,T ‖

2
G − ‖φnh,T ‖2G +

1

12
‖E[φn+1

h,T ]‖2 + κ∆t‖∇φn+1
h,T ‖

2

=

(
δ[ηn+1

T ], φn+1
h,T

)
+ κ∆t

(
∇ηn+1

T ,∇φn+1
h,T

)
+ ∆tb2(3un − 3un−1 + un−2, Tn+1, φn+1

h,T )

−∆tb2(3un
h − 3un−1

h + un−2
h , Tn+1

h , φn+1
h,T )−∆tΛ2

(
u, T, φn+1

h,T

)
. (5.15)

Proceeding in a similar way as in Step 1, we can bound the right hand side of (5.15)
as follows

‖φn+1
h,T ‖

2
G − ‖φnh,T ‖2G +

1

12
‖E[φn+1

h,T ]‖2 +
κ∆t

2
‖∇φn+1

h,T ‖
2

≤ κ∆t ‖∇ηn+1
T ‖2 + 108C κ−1 ∆t

(
‖∇ηnu‖2 + ‖∇ηn−1

u ‖2 + ‖∇ηn−2
u ‖2

)
‖∇Tn+1‖2

+ 16Cκ−1
(
‖∇Tn+1‖2L3 + ‖Tn+1‖2L∞

)
‖3φnh,T − 3φn−1

h,T + φn−2
h,T ‖

2

+ 8C κ−1∆t‖∇
(
3un

h − 3un−1
h + un−2

h

)
‖2‖∇ηn+1

T ‖2

+ C κ−1(∆t)4
(
C2

P ‖Tttt‖2L2(tn−2, tn+1;L2) + ‖∇uttt‖2L2(tn−2, tn+1;L2)

)
. (5.16)
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Step 3 [The application of the Gronwall Lemma] Add (5.13) to (5.16) to
get(
‖φn+1

h,u ‖
2
G + ‖φn+1

h,T ‖
2
G

)
−
(
‖φnh,u‖2G + ‖φnh,T ‖2G

)
+

1

12

(
‖E[φn+1

h,u ]‖2 + ‖E[φn+1
h,T ]‖2

)
+
ν∆t

2
‖∇φn+1

h,u ‖
2 +

κ∆t

2
‖∇φn+1

h,T ‖
2 +

γ∆t

2
‖∇ · φn+1

h,u ‖
2

≤ (ν + γ−1)∆t‖∇ηn+1
u ‖2 + κ∆t‖∇ηn+1

u ‖2 + γ−1∆t inf
qh∈Qh

‖pn+1 − qh‖2

+ 108C∆t
[
ν−1‖∇un+1‖2 + κ−1‖∇Tn+1‖2

] [
‖∇ηnu‖2 + ‖∇ηn−1

u ‖2 + ‖∇ηn−2
u ‖2

]
+ 16Cν−1∆t

[
‖∇un+1‖2L3 + ‖un+1‖2L∞

]
‖3φnh,u − 3φn−1

h,u + 3φn−2
h,u ‖

2

+ 16Cκ−1∆t
[
‖∇Tn+1‖2L3 + ‖Tn+1‖2L∞

]
‖3φnh,u − 3φn−1

h,u + 3φn−2
h,u ‖

2

+ 8C∆t(ν−1‖∇ηn+1
u ‖2 + κ−1‖∇ηn+1

T ‖2)‖∇(3un
h − 3un−1

h + un−2
h )‖2

+ 16C2
PRi

2ν−1∆t‖3φnh,T − 3φn−1
h,T + φn−2

h,T ‖
2|ξ|2

+ 16C2
P Ri

2ν−1∆t‖3ηnT − 3ηn−1
T + ηn−2

T ‖2|ξ|2

+ Cν−1(∆t)4
(
‖∇uttt‖2L2(tn−2, tn+1;L2) + ‖Tttt‖2L2(tn−2, tn+1;L2) + ‖uttt‖2L2(tn−2, tn+1;L2)

)
+ Cκ−1(∆t)4

(
‖∇uttt‖2L2(tn−2, tn+1;L2) + ‖Tttt‖2L2(tn−2, tn+1;L2)

)
.

Then summing over time steps and using approximating properties produces

‖φNh,u‖2G + ‖φNh,T ‖2G +
1

12

N−1∑
n=0

[
‖E[φn+1

h,u ]‖2 + ‖E[φn+1
h,T ]‖2

]
+

∆t

2

N−1∑
n=0

[
ν‖∇φn+1

h,u ‖
2 + κ‖∇φn+1

h,T ‖
2
]

+
γ∆t

2

N−1∑
n=0

‖∇ · φn+1
h,u ‖

2

≤ C∆t

N−1∑
n=0

Mn+1
[
‖3φnh,u − 3φn−1

h,u + φn−2
h,u ‖

2 + ‖3φnh,T − 3φn−1
h,T + φn−2

h,T ‖
2
]

+ ∆t

N−1∑
n=0

4C
[
ν−1‖∇ηn+1

u ‖2 + κ−1‖∇ηn+1
T ‖2

]
‖∇(3un

h − 3un−1
h + un−2

h ‖2

+ C(ν−1 + κ−1)‖|ηn+1
u ‖|22,0 + CRi2ν−1‖|ηn+1

T ‖|22,0
+ Cγ−1 inf

qh∈Qh

‖|p− qh|‖22,0

+ C∆t4
[
(ν−1 + κ−1)(‖∇uttt‖22,0 + ‖Tttt‖22,0) + ν−1‖uttt‖22,0

]
+ ‖φ0

h,u‖2G + ‖φ0
h,T ‖2G,

where

Mn+1 := max{16Cν−1[‖∇un+1‖2L3 + ‖un+1‖2L∞ ], 16Cκ−1[‖∇Tn+1‖2L3 + ‖Tn+1‖2L∞ ],

16C2
PRi

2ν−1|ξ|2}.
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Now apply the Gronwall’s Lemma to get

‖φNh,u‖2G + ‖φNh,T ‖2G +
1

12

N−1∑
n=0

[
‖E[φn+1

h,u ]‖2 + ‖E[φn+1
h,T ]‖2

]
+

∆t

2

N−1∑
n=0

[
ν‖∇φn+1

h,u ‖
2 + κ‖∇φn+1

h,T ‖
2
]

+
γ∆t

2

N−1∑
n=0

‖∇ · φn+1
h,u ‖

2

≤ exp

(
∆t

N−1∑
n=0

Mn+1

)
(

∆t

N−1∑
n=0

C
(
ν−1 + κ−1

)
‖∇(3un

h − 3un−1
h + un−2

h ‖2 + C(ν−1 + κ−1)‖|ηn+1
u ‖|22,0

+ CRi2ν−1‖|ηn+1
T ‖|22,0 + Cγ−1 inf

qh∈Qh

‖|p− qh|‖22,0

+ C∆t4
[
(ν−1 + κ−1)(‖∇uttt‖22,0 + ‖Tttt‖22,0) + ν−1‖uttt‖22,0

])
Using the stability result on the right hand side, drooping the third left hand side
term and applying the triangle inequality to the error terms finishes the proof. �

6. Numerical Studies

In this section, we impose two numerical experiments. The first numerical ex-
periment verify our convergence rates obtained in Theorem 5.2 while the second
one reveals the effectiveness of the proposed algorithm. The numerical experiment
was implemented using the software package FreeFem++, [9].

6.1. Convergence rate verification. To verify theoretical findings, we pick true
velocity, pressure and temperature solutions

u(x, t) =

(
cos(π(y − t))
sin(π(x+ t))

)
exp(t),

p(x, t) = sin(x+ y)(1 + t2), T (x, t) = sin(πx) + y exp(t),

on region Ω = (0, 1)× (0, 1) with ν = κ = Ri = γ = 1.0. Forcing terms f and g are
calculated from (1.1)-(1.2). We impose the following boundary conditions:

uh(x, t) = u(x, t), Th(x, t) = T (x, t) on ∂Ω.

To verify the spatial convergence rates, fix end time t∗ = 0.001 with a time step
∆t = t∗/8, and use (P2, P1, P2) finite elements Then we run Algorithm 3.1 on suc-
cessively mesh refinements. The calculated rates show that the spatial convergence
for both velocity and temperate are of second order, see Table 1 .
For the temporal convergence rate verification, we fix mesh size h = 1/128, and
take end time t∗ = 1. Then we calculate the solutions of Algorithm 3.1 for
∆t = 1/4, 1/8, 1/16, 1/32, 1/64. The errors and rates obtained from these cal-
culations are presented in Table 2 and verify our theoretical findings.
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h ‖|∇(u− uh)‖|2,0 Rate ‖|∇(T − Th)‖|2,0 Rate
1/4 8.8479e-5 – 6.2564e-5 –
1/8 2.2657e-5 1.9653 1.6021e-5 1.9978
1/16 5.6982e-6 1.9914 4.0292e-6 1.9654
1/32 1.4267e-6 1.9978 1.0088e-6 1.9978
1/64 3.5681e-7 1.9995 2.52230e-7 1.9994

Table 1. Spatial velocity and temporal errors and rates.

∆t ‖|∇(u− uh)‖|2,0 Rate ‖|∇(T − Th)‖|2,0 Rate
1/4 2.0299e-3 – 1.4317e-3 –
1/8 5.1350e-4 1.9829 3.6024e-2 1.9840
1/16 1.2974e-4 1.9845 9.0220e-5 1.9829
1/32 3.2319e-5 2.0052 2.2566e-5 1.9993
1/64 8.0195e-6 2.0108 5.6420e-6 1.9999

Table 2. Temporal velocity and temperature errors and rates.

6.2. Marsigli’s experiment. This numerical experiment tests and aims to show
the effectiveness of Algorithm 3.1 on a physical situation which demonstrates that
when two fluids with different densities meet, a motion driven by the gravitational
force is created: the fluid with higher density rises over the lower one. Since the
density differences can be modelled by the temperature differences with the help
of the Boussinesq approximation, this physical problem is modelled by the incom-
pressible Boussinesq system (1.1)-(1.3) studied herein. For the experiment’s set-up,
we follow the paper written by Johnston and co-workers, [17]. The domain is an
insulated box, Ω = [0, 8]× [0, 1] and dimensionless flow parameters are set to be

Re = 1.000, Ri = 4.0, P r = 1.0, γ = 1.0.

We take time step ∆t = 0.2 and use (P2, P1, P2) finite element spaces for the
velocity, the pressure and temperature. We run both our algorithm and BLEBDF
without grad-div stabilization. The obtained results presented in Figure 1 and
Figure 2 indicate that Algorithm 3.1 catches very well the flow pattern at each
time level. However, BLEBDF without grad-div stabilization creates very poor
solutions and builds significant oscillations as time progresses.
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Figure 1. The temperature contours and velocity streamlines of
BLEBDF without grad-div stabilization and of Algorithm 3.1, re-
spectively, from a coarse mesh computation at t∗ = 2, 4.
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t∗ = 6
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Figure 2. The temperature contours and velocity streamlines of
BLEBDF without grad-div stabilization and of Algorithm 3.1, re-
spectively, from a coarse mesh computation at t∗ = 6, 8.
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7. Conclusion

In this paper, we used grad-div stabilized finite element method for approximat-
ing natural convection flow problems. We applied a new class second order time
stepping called linearized blended tree-step BDF in time. The proposed scheme is
unconditionally stable over finite time interval and of second order convergent both
in time and space. The numerical experiments presented here verifies theoretical
convergence rates, and reveals the reliability of the proposed scheme.
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