
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1 – 16

DOI : 10.15672/hujms.xx

Research Article

Edwards’ Theorem and matrix-valued functions

Umutcan Erdur∗, Nihat Gökhan Göğüş
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Abstract
We extend several notions such as semi-continuity and Jensen measures for matrix-valued
functions. For that purpose, we introduce Γ-order on noncommutative matrix spaces.
Afterward, we generalize the Edwards’ Theorem for a noncommutative matrix space by
exploiting properties of Γ-order given on the matrix space which we consider.
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1. Introduction
Edwards’ theorem provides a duality between a positive cone of upper semi-continuous

functions on a compact space and the set of Jensen measures for this cone. This theorem
found many applications in functional analysis, uniform algebras, pluripotential theory
and optimization. Additionally, Perron solution of Dirichlet problem heavily relies on the
investigation of upper envelopes. The purpose of this paper is to prove an analogue of
Edwards’ Theorem for matrix-valued functions. In order to achieve such result, we need a
class F of matrix-valued functions that is a cone of functions and also if {uα} is a family of
functions in F, we want the supremum supα uα to be a well-defined function that belongs
to the cone F.

The first task is to choose a suitable order on a given family of matrices. With the
well-known usual order on the class H(n) of n × n Hermitian matrices, defined by posi-
tive definiteness, H(n) becomes a partially ordered vector space but not a vector lattice.
Sherman [10] proved that a subalgebra A of a C∗-algebra of self-adjoint operators on a
complex Hilbert space forms a lattice if and only if A is commutative, and as a special
case, a subalgebra A of H(n) is a lattice if and only if A is commutative. For that reason,
we are in the need of commutativity condition on a subalgebra of H(n) in order to have a
lattice structure. Another order, so called the spectral order on H(n) (indeed, on the class
of self-adjoint operators on a Hilbert space) was defined by Olson in [8]. It was proved
in [8] that H(n) becomes a conditionally complete lattice under the spectral order but
it is not a vector lattice. It was proved again in [8] that if Y is a commutative subalge-
bra of H(n), the usual order and the spectral order on Y are equivalent to each other,
and furthermore Y with the usual order becomes a conditionally complete vector lattice.
Therefore, neither of these partial orders will be very useful in noncommutative settings.
In this paper, we introduce the notion of Γ-order that is given via a specific map Γ and
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our notion of Γ-order overcomes this difficulty. For further details on vector lattices, we
refer to Aliprantis and Burkinshaw [1].

Another novelty is the introduction of the notion of Jensen measures, which are by def-
inition operator valued measures in our settings, and the proof of an analog of Edwards’
theorem for matrix valued functions. In scalar case, Jensen measures attracted the atten-
tion of quite a number of mathematicians to explain different phenomena of pluripotential
theory.

Coifman and Semmes [2] considered subharmonic norm-valued functions Nz on a finite
dimensional complex Banach space V . In particular, they paid attention to the following
the matrix-valued Dirichlet problem

d∑
i=1

∂̄i
(
P −1∂iP

)
= 0, P = ω on ∂Ω, (1.1)

where ω is a positive definite n × n matrix-valued function from the class C(∂Ω).
Lempert [7] studied the form RP = ∂̄(P −1∂P ) on some open subset Ω of C where

P : Ω → EndV is a C∞ map attaining values in positive invertible operators. Herein, V is
a finite or an infinite dimensional separable Hilbert space, EndV is the space of continuous
linear maps on V to itself. Lempert [7] provides further information about the solution of
the mentioned Dirichlet problem.

In this paper, M(n, m) denotes the class of n × m matrices with complex entries. We
will use the notation M(n) instead of M(n, n). The real subspace of Hermitian matrices
in M(n) is denoted by H(n). We denote by ‖ · ‖ the operator norm. For A ∈ H(n), A ≥ 0
means A is positive definite that is 〈Ax, x〉 ≥ 0 for every x ∈ Cn. If A, B ∈ H(n), the
usual order A ≤ B means B − A ≥ 0. We denote by 0n×m and In the n × m zero matrix
and the n × n identity matrix, respectively.

2. Main results
The main result of this paper is the following which is a generalization of Edwards’

Theorem to noncommutative matrix spaces:

Theorem 2.1. Let (Ω, ρ) be a compact metric space and F be a cone of X-valued, Γ-order
bounded, Γ-upper semi-continuous functions on Ω. Suppose that each nontrivial cone
{λj : U∗(Γu)U = diag(λ1, λ2, . . . , λN ), u ∈ F}, j = 1, 2, . . . , N, contains all real (scalar)
constant functions. Let φ : Ω → X be a Γ-order bounded, Γ-lower semi-continuous function
on Ω. Then the X-valued upper envelope

SFφ(z) = sup{u(z) : u ∈ F, u ≤F φ on Ω}
coincides on Ω with the X-valued lower envelope

IFφ(z) = inf
{ˆ

Ω
φdµ : µ ∈ JFz

}
.

We will give the proof of Theorem 2.1 in section 4.
A real vector space V is said to be an ordered vector space if it is equipped with a

partial order relation ′′ ≤′′ possessing the following properties:
(i) If x ≤ y, then x + z ≤ y + z, for every x, y, z ∈ V,
(ii) If x ≤ y, then αx ≤ αy, for every x, y ∈ V and every α ∈ R+ = [0, +∞).

A vector lattice V is an ordered vector space such that for any given vectors x, y ∈ V,
both the supremum and the infimum of the set {x, y} exist in V. A vector lattice is said to
be Dedekind complete if both of the conditions that ”every subset with an upper bound
in V has a supremum in the vector lattice”, and ”every subset with a lower bound in V

has an infimum in the vector lattice” hold.
A nonempty subset W of a vector space is called a cone if the following conditions hold:
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(i) x + y is in W whenever x, y ∈ W ,
(ii) αx is in W whenever x ∈ W and α ∈ R+.

2.1. Gamma order
A collection Y in M(N) is said to be simultaneously diagonalizable if there exists a

unique nonsingular matrix S ∈ M(N) so that S−1AS is diagonal for every A ∈ Y and
we say that S simultaneously diagonalizes Y. A family Y of diagonalizable matrices is
simultaneously diagonalizable if and only if Y is commutative. In addition, if Y is a
commutative family in H(N), there exists a unique (up to a unimodular constant) N × N
unitary matrix U so that U simultaneously diagonalizes Y. Note that a commutative
subspace of H(N) is at most N real dimensional.

Let Y be a commutative subspace of H(N) of real dimension N . In other words, the
vector space Ỹ = {U∗AU : A ∈ Y} has a vector space basis {Ej : j = 1, 2, . . . , N} where
Ej is the N × N canonical diagonal matrix

Ej = diag(0, 0, . . . , 0, 1, 0, . . . , 0)
with 1 as its j-th diagonal entry and U is the unitary matrix that simultaneously diago-
nalizes Y. The reason for taking such a Y is clear from the simple observation below:

Lemma 2.1. Let Y be a commuting real subspace in H(N) with N real dimension so
that Ỹ = span{Ej : j = 1, 2, . . . , N}.

(i) Let {Aα = [aij,α] : α ∈ Λ} be a collection in Y such that Aα ≤ A for some A ∈ Y.
Then, the matrix Ã = supα Aα belongs to the family Y.

(ii) Let {Aα = [aij,α] : α ∈ Λ} be a collection in Y such that Aα ≥ A for some A ∈ Y.
Then, the matrix Â = infαAα belongs to the family Y.

Proof. We will prove only (i) as (ii) is proved analogously. Let us denote Dα = U∗AαU =
diag(λj,α)1≤j≤N , where λj,α’s are eigenvalues of Aα. Note that supα λj,α, j = 1, 2, . . . , N ,
are finite real numbers. Then, D = diag(supα λj,α)1≤j≤N = supα U∗AαU ≤ U∗AU and so
UDU∗ ≤ A. Hence, Ã exists and Ã = UDU∗ ∈ Y. □

This lemma shows that Y becomes a Dedekind complete vector lattice under the usual
order ≤.

Let X be a nontrivial real subspace of M(n, m) with real dimension N and Γ : X → Y a
bijective, real linear map. The continuity of Γ then follows since X is finite dimensional.
Let us consider the partial order relation ≤Γ on X given by

A ≤Γ B ⇐⇒ Γ(A) ≤ Γ(B), A, B ∈ X.

We say that a family {Aα} in X is Γ-order bounded above if there exists some A ∈ X so
that Aα ≤Γ A for all α. The supremum of any Γ-order bounded above family {Aα} in X

belongs to X itself. Moreover, if the infimum of the family {ΓAα} for a given family {Aα}
in X exists, we have the relation

inf
α

ΓAα = − sup
α

Γ(−Aα).

and hence, we obtain the following theorem:

Theorem 2.2. (X, ≤Γ) is a Dedekind complete vector lattice.

We will provide several examples for Γ-order in section 5.

3. Matrix-valued functions
In this section, we will introduce upper semi-continuous matrix valued functions and

integral of such functions with respect to a given operator valued measure.
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3.1. Upper semi-continuity
Let (Ω, ρ) be a compact metric space and let V be a real vector subspace of M(n, m).

We denote by C(Ω;V) the space of norm continuous functions on Ω with values in V. In
particular, C(Ω;R) is the space of all real valued continuous functions on Ω.

A function u : Ω → Y is called order bounded below if there exists some constant c ∈ R
such that u ≥ cIN on Ω, order bounded above if there exists some constant d ∈ R such
that u ≤ dIN on Ω, and order bounded if it is order bounded below and above. We will say
that a function u : Ω → X is Γ-order bounded below or above if the function Γu : Ω → Y

is order bounded below or above, respectively.
We denote by B(z0, r) = {z ∈ Ω : ρ(z, z0) < r} the open ball centered at z0 with radius

r > 0. For a given function u : Ω → Y which is order bounded above, we define the
following Y-valued function on Ω for u:

Mr(u, z0) = sup
z∈B(z0,r)

u(z), r > 0.

It is clear that u(z0) ≤ Mr(u, z0) for r > 0. We define the upper semi-continuous regular-
ization of u at z0 ∈ Ω as

û(z0) = lim sup
z→z0

u(z) = inf
r>0

sup
z∈B(z0,r)

u(z).

Herein, the infimum and supremum are taken with respect to the usual order on the space
Y. By definition, we have the relation u ≤ û on Ω.

Whenever we say a function/sequence is increasing/decreasing, we mean that it in-
creases/decreases with respect to the given order. By ↗, we denote the convergence of a
function/sequence while increasing with respect to the given order, and by ↘, we denote
the convergence of a function/sequence while decreasing with respect to the given order.
It quickly follows from their definitions that Mr(u, z0) ↘ û(z0) as r ↘ 0+.

A function u : Ω → Y is said to be upper semi-continuous at z0 ∈ Ω if û(z0) = u(z0). We
say a function u : Ω → Y is lower semi-continuous at z0 ∈ Ω if −u is upper semi-continuous
at z0 . Also, u is said to be upper semi-continuous ( or lower semi-continuous ) on Ω if it
is upper semi-continuous (lower semi-continuous ) at every point z ∈ Ω. We will denote
the class of upper semi-continuous functions from Ω to Y by USC(Ω;Y). In addition, if
X, Y and the map Γ are as in section 2, we say that a function u : Ω → X is Γ-upper
semi-continuous at a point z0 ∈ Ω if the function Γu : Ω → Y is upper semicontinuous at
z0.

We have a useful observation on upper semi-continuous matrix-valued functions in con-
nection to the classical notion of upper semi-continuity.

Let u : Ω → Y be a function. Consider the diagonal matrix-valued function on Ω
U∗u(z)U = diag(λ1(z), λ2(z), . . . , λN (z)) (3.1)

where λ1(z), λ2(z), . . . , λN (z) are eigenvalues of u(z) at z ∈ Ω. Let λ̂j denote the upper
semi-continuous regularization of λj , j = 1, 2, . . . , N . If u is upper semi-continuous at a
point z ∈ Ω, then

diag(λ̂1(z), λ̂2(z), . . . , λ̂N (z)) = U∗û(z)U = U∗u(z)U
= diag(λ1(z), λ2(z), . . . , λN (z)).

Hence, each λj is upper semi-continuous at z ∈ Ω. Conversely, if every λj in (3.1) is upper
semi-continuous at z ∈ Ω, then u is upper semi-continuous at z.

It is a well known fact that a scalar-valued function is upper semi-continuous if and
only if it is the pointwise limit of a decreasing sequence of continuous functions. For a
function u : Ω → Y, we have

U∗u(z)U = diag(λ1(z), λ2(z), . . . , λN (z)).
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If u is upper semi-continuous, i.e. each λj : Ω → R is upper semi-continuous on Ω, then we
can find decreasing sequences {λ

(k)
j } of continuous functions on Ω so that λj is pointwise

limit of the sequence {λ
(k)
j } . It is clear that {uk},

uk = Udiag
(
λ

(k)
1 , λ

(k)
2 , . . . , λ

(k)
N

)
U∗,

is a decreasing sequence in C(Ω;Y). Moreover, ‖uk(z) − u(z)‖ → 0 for every z ∈ Ω as
k → ∞.

In addition, the last relation also implies that if u : Ω → Y is the pointwise limit of a
decreasing sequence in C(Ω;Y), then u is upper semi-continuous on Ω. Thus, we have the
following proposition.

Proposition 3.1. Let (Ω, ρ) be a compact metric space and u : Ω → Y a function that
is order bounded above. Then, u is upper semi-continuous on Ω if and only if it is the
pointwise limit of a decreasing sequence in C(Ω;Y).

Let F be a cone of upper semi-continuous functions with values in Y. If u ∈ F, then we
can write U∗u(·)U = diag(λ1(·), λ2(·), . . . , λN (·)) and each λj(z) is the jth eigenvalue of
u(z), z ∈ Ω. One may notice that for some j, the functions λj may be identically zero for ev-
ery u ∈ F. As a result, for those j, the cones Fj = {λj : U∗uU = diag(λ1, λ2, . . . , λN ), u ∈
F}, j = 1, 2, . . . , N , consist of only the zero function on Ω. Let us denote the set of those
j by JF. Then, whenever j /∈ JF, the cone Fj contains a function other than the zero
function on Ω. Throughout the paper, to distinguish a cone Fj which contains a function
other than the zero function on Ω, we alternatively say that Fj is a nontrivial cone of
functions.

3.2. Integration of matrix-valued functions
A countably additive set function µ on the collection Σ of all Borel subsets of Ω with

values in a Banach space V is called a (vector) measure. For given subset A of Ω, we define

|µ|(A) = sup
I

∑
i∈I

‖µ(Ai)‖

where the supremum is taken over all finite families {Ai}i∈I of pairwise disjoint sets from
the collection Σ so that ∪i∈IAi = A. The set function |µ| is called the variation of µ on
A and it is a positive Borel measure on Ω. We say that µ has finite variation if |µ|(Ω) is
finite. For the rest of the paper, we assume that all measures are of finite variation.

Let E, Ẽ be Banach spaces and let V be as in the previous paragraph. Let us consider
a bilinear mapping (ν, x) 7→ νx of V × E into Ẽ such that ‖νx‖ ≤ ‖ν‖‖x‖ holds for every
(ν, x) ∈ V×E. Assume that E is separable as well. Let µ : Σ → V be a measure with finite
variation. We immediately see that functions of the class C(Ω;E) and, more specifically
semi-continuous functions are Borel measurable when E = X or Y.

A function of the form
s(z) =

∑
i∈I

χAi(z)xi

is called a simple function where I is a finite set, Ai ∈ Σ are pairwise disjoint subsets of
Ω, χAi is the characteristic function of Ai and xi ∈ E for every i ∈ I. We will call the
integral of s with respect to µ over A ∈ Σ the element of Ẽ, denoted by

´
A sdµ, given by

ˆ
A

sdµ =
∑
i∈I

µ(Ai ∩ A)xi.
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We say that a function f : Ω → E is µ-integrable or integrable with respect to µ if there
exists a sequence {sn} of simple functions so that

lim
n→∞

ˆ
Ω

‖sn − f‖d|µ| = 0.

The integral of f with respect to µ over A ∈ Σ,
´

A fdµ ∈ Ẽ is then given by the relationˆ
A

fdµ = lim
n→∞

ˆ
A

sndµ.

As we deal with measures of finite variation, one can show that a Borel measurable function
f is µ-integrable over a set A ∈ Σ if and only if ‖f(·)‖E is |µ|-integrable over A. In such
case, we have that ∥∥∥∥ˆ

A
fdµ

∥∥∥∥
Ẽ

≤
ˆ

A
‖f‖Ed|µ|.

Let (Ω, ρ) be a compact metric space. Then, functions of the class C(Ω;E) are integrable
with respect to a measure µ of finite variation with values in V.

We denote by M(Ω;V) the real vector space of all V-valued Borel measures given on
Σ with finite variation. One can show that the map µ 7→ |µ|(Ω) is a norm function on
M(Ω;V). We say that a subset A of M(Ω;V) is bounded if supµ∈A |µ|(Ω) < +∞. Let
B(E) = {T : E → E : T is continuous, linear operator} and consider the bilinear mapping
(T, x) → Tx of B(E) ×E into E. We will pay great attention to the space M(Ω; B(E)), the
real vector space of all B(E)-valued Borel measures given on Σ with finite variation.

Let us consider the space E = X or Y equipped with the partial order ≤Γ and ≤,
respectively. We denote by E+ the cone of positive elements of E. We say that a measure
µ with values in B(E) is positive if for any µ-integrable φ with values in E+,

´
A φdµ

belongs to E+ for every A ∈ Σ. We now present a generalization of Monotone Convergence
Theorem to vector lattice settings.

Proposition 3.2 (Monotone Convergence Theorem). Let µ ∈ M(Ω; B(E)) be a positive
measure on a compact metric space (Ω, ρ) and {uk}, uk : Ω → E, an order bounded, in-
creasing sequence of µ-integrable functions on Ω. Then the pointwise limit u = limk→∞ uk

exists and it is a E- valued, µ-integrable function on Ω satisfying
´

Ω ukdµ ↗
´

Ω udµ andˆ
Ω

udµ = lim
k→∞

ˆ
Ω

ukdµ.

Proof. Since E with the given order relation is a Dedekind complete vector lattice, the
pointwise limit

u = lim
k→∞

uk

exists as a Borel measurable, order bounded function with values in E. Hence, ‖u(·)‖E
is a bounded, Borel measurable function on Ω. Then, ‖u(·)‖E is |µ|-integrable on Ω, and
equivalently u is a µ-integrable function on Ω. We observe that

0 ≤
∥∥∥∥ˆ

Ω
(u − uk)dµ

∥∥∥∥ ≤
ˆ

Ω
‖u − uk‖d|µ| → 0, as k → ∞.

Since uk ↗ u, the last part of the proposition follows.
□

Thus, we have an analogue result for decreasing, order bounded sequences of µ-integrable
functions as follows:

Corollary 3.1. Let µ ∈ M(Ω; B(E)) be a positive measure on a compact metric space
(Ω, ρ) and {uk}, uk : Ω → E, an order bounded, decreasing sequence of µ-integrable
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functions on Ω. Then, the pointwise limit u = limk→∞ uk exists and it is a E- valued,
µ-integrable function on Ω satisfying

´
Ω ukdµ ↘

´
Ω udµˆ

Ω
udµ = lim

k→∞

ˆ
Ω

ukdµ.

We lastly emphasize that order bounded semi-continuous functions f : Ω → E are
integrable with respect to a measure µ. We refer to Dinculeanu [4] for further details
about vector measures and integration theory.

We now present a version of Riesz Representation Theorem with operator valued mea-
sures which is a consequence of results on dominated operators. In that regard, we refer
to Dinculeanu [4].

Proposition 3.3. Let (Ω, ρ) be a compact metric space and S : C(Ω;E) → E be a contin-
uous linear operator. Then there exists a unique measure µ ∈ M(Ω; B(E)) such that

S(Φ) =
ˆ

Ω
Φdµ

holds for every Φ ∈ C(Ω;E) and the operator norm ‖S‖ of S is equal to |µ|(Ω).

Notice that Y can be interpreted as a subset of B(Y). Hence, there is a whole subclass
of M(Ω; B(Y)) that consists of measures with values in Y.

3.3. A connection between measures with values in B(X) and B(Y)
We can alternatively define the integral of a Γ-order bounded, Γ-upper semi-continuous

function u : Ω → X with respect to a B(X)-valued measure µ with finite variation as
follows:

We start with the case where u ∈ C(Ω;X). Let L be a continuous linear map on
C(Ω;Y) = Γ(C(Ω;X)) = {Γ(u) : u ∈ C(Ω;X)} given by

L(Γ(u)) = Γ
(ˆ

Ω
udµ

)
∈ Y, u ∈ C(Ω;X). (3.2)

As a consequence of Proposition 3.3, there exists a unique measure ν on Ω with values
in B(Y) so that

L(Γ(u)) =
ˆ

Ω
Γ(u)dν.

Now, we consider the case where u : Ω → X is a Γ-order bounded, Γ-upper semi-
continuous function. We can find a sequence {uk} in C(Ω;X) so that uk+1 ≤Γ uk on Ω, for
any k ∈ N and u is the pointwise limit of the sequence {uk}. Then, we define the integral
of u with respect to µ by the limit relation

Γ
(ˆ

Ω
udµ

)
=
ˆ

Ω
Γ(u)dν = lim

k→∞

ˆ
Ω

Γ(uk)dν.

Conversely, let ν be a measure on Ω with values in B(Y) and with finite variation. We
define the continuous linear operator L̃ : C(Ω;X) → X as follows:

L̃(u) = Γ−1
(ˆ

Ω
Γ(u)dν

)
, u ∈ C(Ω;X). (3.3)

By Proposition 3.3, we can find a unique measure µ on Ω with values in B(X) so that

L̃(u) =
ˆ

Ω
udµ, u ∈ C(Ω;X).

Moreover, ˆ
Ω

Γ(u)dν = Γ
(ˆ

Ω
udµ

)
(3.4)

for any Γ-order bounded, Γ- upper semi-continuous function u : Ω → X.
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3.4. Weak-∗ convergence on M(Ω;V)
The Banach-Alaoglu theorem states that for a normed space E, the unit closed ball

ballE∗ of E∗, the continuous dual space of E, is weak-∗ compact. A particular case of the
Banach-Alaoglu Theorem is that if (Ω, ρ) is a compact metric space, then any bounded
subset of the dual space C∗(Ω;R) (when C(Ω;R) is equipped with the supremum norm)
is weak-∗ compact. We refer to Conway [3] in connection with the classical definition of
weak-∗ convergence and topology. We, in addition, recall that C(Ω;R) equipped with the
supremum norm is a separable Banach space. Then, we can easily show that if E is a finite
dimensional Banach space, then the space C(Ω;E) is a separable Banach space with the
norm ‖u‖∞ = supz∈Ω ‖u(z)‖.

Let E, Ẽ and V be Banach spaces as in the beginning of subsection 3.2. We say that a
sequence {µk} in M(Ω;V) converges to µ ∈ M(Ω;V) if

lim
k→∞

ˆ
Ω

Φdµk =
ˆ

Ω
Φdµ.

is satisfied for every Φ ∈ C(Ω;E). The weak-∗ convergence on M(Ω;V) induces a topology
on M(Ω;V) and we call the induced topology as the weak-∗ topology. We denote ballE =
{x ∈ E : ‖x‖ ≤ 1} and ballM(Ω;V) = {µ ∈ M(Ω;V) : |µ|(Ω) ≤ 1}.

It is known that on metric spaces, compactness and sequential compactness coincide.

Proposition 3.4. Assume that E and V are finite dimensional Banach spaces. Let (Ω, ρ)
be a compact metric space and {µk} a bounded sequence in M(Ω;V). Then {µk} has a
subsequence {µkl

} which weak-∗ converges to some ν ∈ M(Ω;V).

Proof. Let {e1, e2, . . . , en} and {v1, v2, . . . , vm} be vector space bases for E and V, re-
spectively. Let Φ ∈ C(Ω;E) be given. Then, Φ =

∑n
i=1 Φiei and µk =

∑m
j=1 µj,kvj where

each Φi belongs to the class C(Ω;R), and µj,k, j = 1, . . . , m, are real valued regular Borel
measures on Ω.

Since any bounded subset of C∗(Ω;R) is weak-∗ compact, {µ1,k} has a subsequence
{µ1,k}, k ∈ S1 ⊂ N, that is weak-∗ convergent to some ν1 ∈ C∗(Ω;R). By the same
argument, {µ2,k} has a subsequence {µ2,k}, k ∈ S2 ⊂ S1, that is weak-∗ convergent to some
ν2 ∈ C∗(Ω;R). Continuing the procedure, on the mth step, we can find a subsequence of
{µm,k}, say {µm,k}, k ∈ Sm ⊂ Sm−1 ⊂ . . . ⊂ S2 ⊂ S1, which is weak-∗ convergent to some
νm ∈ C∗(Ω;R). Then,

lim
k→∞

ˆ
Ω

Φidµj,k =
ˆ

Ω
Φidνj , k ∈ Sm, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.

Let us consider the subsequence of {µk} with terms

µk =
m∑

j=1
µj,kvj , k ∈ Sm

and ν =
∑m

j=1 νjvj . Notice that ν is a measure of finite variation with values in V. For
given Φ ∈ C(Ω;E),

lim
k→∞

ˆ
Ω

Φdµk = lim
k→∞

∑
i,j

(ˆ
Ω

Φidµj,k

)
vjei =

∑
i,j

(ˆ
Ω

Φidνj

)
vjei =

ˆ
Ω

Φdν.

□

In the case where all three of E, Ẽ and V are Y, we have the following corollary:

Corollary 3.2. If {µk} is a sequence of measures with values in Y only, then {µk} has a
subsequence {µkl

} which weak-∗ converges to a measure ν with values in Y only.
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4. Jensen measures
Let Y be the commutative subspace of H(N) as in section 2. If F is a cone of order

bounded above, upper semi-continuous Y- valued functions on Ω so that each nontrivial
cone Fj = {λj : U∗uU = diag(λ1, λ2, . . . , λN ), u ∈ F} contains all real constant functions,
we say that F has the constant function property.

Let F be a cone of order bounded above, upper semi-continuous Y-valued functions on
Ω. A positive µ ∈ M(Ω; B(Y)) is said to be a Jensen measure for F with barycenter z ∈ Ω
if the following condition is satisfied for any u ∈ F:

u(z) ≤
ˆ

Ω
udµ.

We denote by JFz the class of Jensen measure for F with barycenter z. For instance, the
measure δzIN belongs to JFz .

For given x ∈ Y and µ ∈ JFz , x ≤
´

Ω xdµ and −x ≤
´

Ω −xdµ and so
´

Ω xdµ = x. In
other words, µ(Ω) = IN and then |µ|(Ω) ≥ 1. Let {Ai : i ∈ I} be a finite collection of
pairwise disjoint Borel subsets of Ω so that ∪i∈IAi = Ω. Since Ai are pairwise disjoint,
there exists only one i0 ∈ I so that z ∈ Ai0 . Then,

´
Ω xdµ =

∑
i

´
Ω χAixdµ = µ(Ai0)x and

this implies that µ(Ω) = µ(Ai0) = IN . If we consider the definition of variation of µ over
Ω, we conclude that |µ|(Ω) = 1.

Proposition 4.1. Let {µk} be a sequence in JFz so that µk weak-∗ converges to µ. Then,
µ is an element of JFz .

Proof. Let Φ : Ω → Y be a function from the cone F. By Proposition 3.1, we find a
decreasing sequence {Φj} in C(Ω;Y) so that Φ is the pointwise limit of {Φj} on Ω. Then,
Φ ≤ Φj on Ω for every j ∈ N, and

Φ(z) ≤
ˆ

Ω
Φdµk ≤

ˆ
Ω

Φjdµk.

By our assumption, we have that limk→∞
´

Ω Φjdµk =
´

Ω Φjdµ for j ∈ N, and so,

Φ(z) ≤
ˆ

Ω
Φjdµ, j ∈ N.

It follows by Proposition 3.2 that

Φ(z) ≤ lim
j→∞

ˆ
Ω

Φjdµ =
ˆ

Ω
Φdµ.

Since µj are positive measures, the measure µ is also positive. Therefore, µ belongs to
JFz . □

Let φ : Ω → Y be an order bounded Borel measurable function. We define the upper
and lower envelopes of φ at z ∈ Ω respectively by

SFφ(z) = sup{u(z) : u ∈ F, u ≤ φ on Ω},

IFφ(z) = inf
{ˆ

Ω
φdµ : µ ∈ JFz

}
.

Note that SFφ(z) exists in Y at any given z ∈ Ω and SFφ(z) ≤ φ(z). Notice also that
u(z) ≤

´
Ω udµ ≤

´
Ω φdµ holds for any for any µ ∈ JFz and any u ∈ F satisfying u ≤ φ on

Ω. Thus, IFφ(z) always exists in Y at any given point z ∈ Ω. As δzIN ∈ JFz , we have the
relation SFφ(z) ≤ IFφ(z) ≤ φ(z) at our disposal.
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Proposition 4.2. Let (Ω, ρ) be a compact metric space. Let φ ∈ C(Ω;Y) and z ∈ Ω.
Then, there exists a Y-valued measure µ ∈ JFz such that

IFφ(z) =
ˆ

Ω
φdµ.

Proof. Let us consider first the case where φ ∈ C(Ω;R). Let {εj} be a nonnegative
sequence in R so that εj ↘ 0. For each j, there exists some µj ∈ JFz so that

IFφ(z) + εj ≥
ˆ

Ω
φdµj ≥ IFφ(z).

As any bounded subset of C∗(Ω;R) is weak-∗ compact and by Proposition 4.1 for the
case N = 1, {µj} has a subsequence {µjk

} that is weak-∗ convergent to some µ ∈ JFz .
Then, the following holds for every k;

IFφ(z) + εjk
≥
ˆ

Ω
φdµ ≥ IFφ(z).

Taking limit in the inequality as k → ∞ shows that

IFφ(z) =
ˆ

Ω
φdµ.

Now we prove the claim for the case where φ ∈ C(Ω;Y). Consider the cones Fj = {λj :
U∗uU = diag(λ1, λ2, . . . , λN ), u ∈ F}, j = 1, 2, . . . , N . We have the identity U∗IFφ(z)U =
diag(IF1φ1(z), . . . , IFN φN (z)) where U∗φU = diag(φ1, . . . , φN ). Note also that if Fj is
trivial for some j, then IFj φj(z) = 0. Hence,

U∗IFφ(z)U = diag

(
IF1φ1(z), . . . , IFN φN (z)

)
= diag

(ˆ
Ω

φ1dµ1, . . . ,

ˆ
Ω

φN dµN

)
= U∗

(ˆ
Ω

φdµ

)
U

where µj ∈ J
Fj
z , j = 1, 2, . . . , N , and µ = Udiag(µ1, . . . , µN )U∗. Since µj ∈ J

Fj
z , j =

1, 2, . . . , N , one can prove that µ is in JFz . □

In noncommutative settings of the space X, a positive measure µ on Ω with values in
B(X) is called a Jensen measure for a cone F of X-valued, Γ-order bounded above, Γ-upper
semi-continuous functions on Ω with barycenter z ∈ Ω if

u(z) ≤Γ

ˆ
Ω

udµ

holds for all u ∈ F and we denote the class of such measures by JFz . The measure δzIn is
in JFz for given z ∈ Ω. We can prove that |µ|(Ω) = 1 for any µ ∈ JFz as we proved before.

Let φ : Ω → X be a Γ-order bounded, Borel measurable function. We define the upper
and lower envelopes of φ at z ∈ Ω respectively by

SFφ(z) = sup{u(z) : u ∈ F, u ≤Γ φ on Ω},

IFφ(z) = inf
{ˆ

Ω
φdµ : µ ∈ JFz

}
.

Herein, the infimum and supremum in the definitions of envelopes are taken with respect
to the Γ-order given on X.
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If µ ∈ JFz , by our argument in subsection 3.3, there exists some ν ∈ M(Ω; B(Y)) so that
for given u ∈ F, the following holds:

Γu(z) ≤ Γ
(ˆ

Ω
udµ

)
=
ˆ

Ω
Γudν, (4.1)

hence, ν ∈ J
Γ(F)
z .

On the other had, if a measure ν ∈ J
Γ(F)
z is given, via the operator L̃ given in (3.3) and

the relation (3.4), we can find a measure µ which belongs to JFz satisfying (4.1).

4.1. Edwards’ Theorem
The classical Edwards’ Theorem states that if F is cone of real valued, upper bounded,

upper semi-continuous functions on Ω which contains real constant functions, and φ :
Ω → R is a bounded lower semi-continuous function, then SFφ(z) = IFφ(z) for any point
z ∈ Ω. In regards to the classical Edwards’ Theorem, we refer to Edwards [5], Gamelin
[6] and Wikström [11].

Let X be a real vector space. A function p : X → R is said to be sublinear if
(i) p(x1 + x2) ≤ p(x1) + p(x2) for all x1, x2 ∈ X,
(ii) p(αx) = αp(x) for any x ∈ X and any α ∈ R+.

A function p : X → Y is called superlinear if −p is sublinear. We refer to Rudin [9] for
further details on the following version of the Hahn-Banach Theorem.

Proposition 4.3 (Hahn-Banach Theorem). Let X be a real vector space and p : X → R
a sublinear function. If Z is a vector subspace of X and S : Z → R is a linear map such
that S(x) ≤ p(x) for all x ∈ Z, then there exists a linear map S̃ : X → R such that:

(i) S̃ = S on Z.
(ii) S̃(x) ≤ p(x) for every x ∈ X.

By the Hahn-Banach Theorem and Proposition 3.3, we provide a functional analytical
proof of Edwards’ Theorem in matrix space settings.

Theorem 4.4 (Edwards’ Theorem- Matrix Case). Let (Ω, ρ) be a compact metric space.
Let F ⊂ USC(Ω;Y) be a cone of order bounded above functions which satisfies the constant
function property. For given φ ∈ C(Ω;Y), SFφ = IFφ on Ω.

Proof. Since we already showed that SFφ(z) ≤ IFφ(z), we will only prove the reverse
relation. As φ is order bounded, we without loss of generality assume that φ ≤ −εIN for
some ε > 0.

We define the map
SF : C(Ω;Y) → Y

Φ 7→ SFΦ

Let z ∈ Ω be given. The map SF satisfies the following three properties:
(i) SF(αΦ) = αSFΦ for any α ∈ R+:

SF(αΦ)(z) = sup{u(z) : u ∈ F, u ≤ αΦ} = sup{αu(z) : u ∈ F, u ≤ Φ}

= α sup{u(z) : u ∈ F, u ≤ Φ} = αSFΦ(z).

(ii) SFΦ1 + SFΦ2 ≤ SF(Φ1 + Φ2):
It is obvious for any given u, v ∈ F with u ≤ Φ1, v ≤ Φ2 that u + v ≤ Φ1 + Φ2,

u+v ∈ F, and hence u(z)+v(z) ≤ SF(Φ1 +Φ2)(z). For a fixed v ∈ F with v ≤ Φ2,
the relation u(z) + v(z) ≤ SF(Φ1 + Φ2)(z) holds for any u ∈ F with u ≤ Φ1. Then,

A = sup{u(z) + v(z) : u ∈ F, u ≤ Φ1} ≤ SFΦ1(z) + v(z).
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On the other hand, A− v(z) ≥ u(z) for arbitrary u ∈ F with u ≤ Φ1, and hence
A − v(z) ≥ SFΦ1(z). Thus, sup{u(z) + v(z) : u ∈ F, u ≤ Φ1} = SFΦ1(z) + v(z).
Similarly, we can show that

sup{SFΦ1(z) + v(z) : v ∈ F, v ≤ Φ2} = SFΦ1(z) + SFΦ2(z).

It follows that SFΦ1(z) + SFΦ2(z) ≤ SF(Φ1 + Φ2)(z).
Hence, SF is a superlinear map on the space C(Ω;Y). If Φ1 ≤ Φ2 ≤ 0 and u ∈ F with
u ≤ Φ1, we have u ≤ Φ2. Then, SFΦ1 ≤ Φ2, and so SFΦ1 ≤ SFΦ2.

Define the linear map S : span{φ} → Y by αφ 7→ αSFφ(z), α ∈ R. By the definition of
the map S, SΦ ≥ SFΦ(z) holds for all Φ ∈ span{φ}. We note that the map S : span{φ} →
Y given by Φ 7→ SFΦ(z) is superlinear.

It is easily shown that SFφ = Udiag(SFj φj)U∗ where φ = Udiag(φj)U∗ and Fj =
{λj : U∗uU = diag(λ1, λ2, . . . , λN ), u ∈ F}, j = 1, 2, . . . , N . Let us define the linear
maps Sj : span{φj} → R by αφj 7→ αSFj φj(z), j = 1, 2, . . . , N and each one of them
satisfies SjΦj ≥ SFj Φj(z) where Φj = αφj . It follows from Hahn-Banach Theorem that,
for each j, there exists a linear extension S̃j of Sj to C(Ω;R) so that S̃j(Φj) ≥ SFj Φj(z),
Φj ∈ C(Ω;R). Notice that each S̃j is a positive map. By the classical Riesz Representation
Theorem, for each j, there exists a regular positive Borel measure µj on Ω so that

S̃jΦj =
ˆ

Ω
Φjdµj , Φj ∈ C(Ω;R).

Let S̃ : C(Ω;Y) → Y be the linear map given by

S̃(Φ) =
ˆ

Ω
Φdµ,

where µ = Udiag(µj)U∗ is a positive measure of finite variation on Ω with values in Y.
For given u ∈ F, there exists a decreasing sequence {uk} in C(Ω;Y) so that uk ↘ u

pointwise on Ω. Clearly, S̃uk ≥ SFuk(z) ≥ SFu(z) = u(z), k ∈ N. Since uk’s are µ-
integrable and uk ↘ u, we obtain thatˆ

Ω
udµ ≥ SFu(z) = u(z).

Hence, µ ∈ JFz . This further implies that

IFφ(z) ≤
ˆ

Ω
φdµ = SFφ(z).

□

We remind that a lower semi-continuous function u : Ω → Y is the pointwise limit of an
increasing sequence in C(Ω;Y). Thus, we can further extend Edwards’ Theorem for order
bounded lower semi-continuous functions via the following lemma.

Lemma 4.1. Let (Ω, ρ) be a compact metric space. Suppose that φ : Ω → Y is an
order bounded lower semi-continuous function on Ω, and {φk} is an increasing sequence
in C(Ω;Y) so that φk ↗ φ pointwise on Ω. Let F ⊂ USC(Ω;Y) be a cone of order bounded
functions which has the constant function property. Then, IFφk ↗ IFφ pointwise on Ω.

Proof. It is clear that SFφk = IFφk ≤ IFφ on Ω for every k. Let z ∈ Ω, and ε > 0 be
arbitrary. Let us write φk = Udiag(φ(1)

k , φ
(2)
k , . . . , φ

(N)
k )U∗ for fixed k. We already know

for fixed k that IFφk(z) = Udiag(IFj φ
(j)
k (z))U∗, and for each j, there exists a ν

(j)
k ∈ J

Fj
z so

that IFj φ
(j)
k (z) =

´
Ω φ

(j)
k dν

(j)
k . Then IFφk(z) =

´
Ω φkdνk where νk = Udiag(ν(j)

k )U∗ ∈ JFz .
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We can assume without loss of generality that {νk} weak-∗ converges some ν ∈ JFz that
attains values only in Y. Let j ∈ N be fixed. It is trivial that for j < k,

SFφ(z) ≥ SFφk(z) = IFφk(z) =
ˆ

Ω
φkdνk ≥

ˆ
Ω

φjdνk,

SFφ(z) ≥ lim
k→∞

SFφk(z) = lim
k→∞

IFφk(z) = lim
k→∞

ˆ
Ω

φkdνk

≥ lim
k→∞

ˆ
Ω

φjdνk =
ˆ

Ω
φjdν.

By Proposition 3.2, we have ˆ
Ω

φjdν ↗
ˆ

Ω
φdν, as j → ∞.

Obviously,
´

Ω φdν ≥ IFφ(z). The last inequality brings out that limk→∞ IFφk(z) ≥
IFφ(z). □

Theorem 4.5. Let (Ω, ρ) be a compact metric space and φ : Ω → Y be an order bounded
lower semi-continuous function. Suppose that F ⊂ USC(Ω;Y) is a cone of order bounded
functions possessing the constant function property. Then, IFφ = SFφ on Ω.

Proof. Since φ is order bounded and lower semi-continuous on Ω, there exists an increas-
ing sequence {φk} in C(Ω;Y) so that φk ↗ φ pointwise on Ω. By Lemma 4.1, IFφk ↗ IFφ
on Ω. As each φk belongs to the class C(Ω;Y), by Theorem 4.4, we have SFφk = IFφk on
Ω for each k ∈ N. Then, SFφ ≥ limk→∞ SFφk = limk→∞ IFφk = IFφ on Ω. □

4.2. Noncommutative settings
As we prepared the necessary background in the previous parts, we can now prove

Theorem 2.1.

Proof of Theorem 2.1. By our observations in sections 3 and 4, one can show that the
upper and lower envelope of a function φ : Ω → X satisfies

SΓ(F)Γ(φ)(z) = Γ(SFφ(z)),

IΓ(F)Γ(φ)(z) = Γ(IFφ(z)),

for given z ∈ Ω. Theorem 4.5 shows that SΓ(F)Γφ(z) = IΓ(F)Γφ(z), z ∈ Ω. Hence,
SFφ(z) = IFφ(z), z ∈ Ω. □

5. Examples
5.1. Circulant matrices

A matrix C ∈ M(n) is called circulant if it is of the form

C = circ(c) =


c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
cn−2 cn−1 . . . cn−3

...
...

...
...

c1 c2 . . . c0


where c = (c0, c1, . . . , cn−1) is a given vector in Cn. Notice that the rows of C are actually
cyclic permutations of the vector c. We will denote the class of n×n circulant matrices by
Circ(n), and its subclass of Hermitian circulant matrices by CircH(n). It is a known fact
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that Circ(n) is a commutative algebra. The eigenvalues of a C = circ(c0, c1, . . . , cn−1) ∈
Circ(n) are given by

λj = c0 + c1ωj + c2ω2j + · · · + cn−1ω(n−1)j

where ω = exp (2iπ/n) is a primitive nth root of unity, and the corresponding normalized
eigenvectors are

xj = 1√
n

(1, ωj , ω2j . . . , ω(n−1)j)>, j = 0, 1, . . . , n − 1.

The unitary matrix
U = (x0|x1| . . . |xn−1)

is called the n-dimensional Fast Fourier Transform (FFT) matrix. It is a well known fact
that U simultaneously diagonalizes Circ(n). We point out that CircH(n) is a nontrivial
example for a commutative subspace Y of H(n) that Ỹ is generated by all diagonal matrices
Dk

Dk = diag

(
0, 0, . . . , 0, 1, 0 . . . , 0, . . . , 0

)
, k = 1, 2, . . . , n.

where 0 as all entries except its kth main diagonal entry and 1 as its kth main diagonal
entry. One can easily show that CircH(n) is an algebra.

5.2. Examples in noncommutative settings
For a given matrix A = [aij ] ∈ M(n, m), we can construct a circulant Hermitian matrix

Γ0A as in the following:

Γ0A =


0 a11 a12 . . . anm anm an(m−1) . . . a12 a11

a11 0 a11 a12 . . . anm anm . . . a12
a12 a11 0 . . . . . . . . . . . . . . . a13
...

...
...

...
...

...
...

...
...

a11 a12 . . . anm anm an(m−1) . . . a12 a11 0


By employing this method of construction, we define an injective, continuous, real-linear
operator Γ0 : M(n, m) → CircH(N), N = 2nm + 1.

We now turn our attention to noncommutative subspaces of matrices and present ex-
amples of lattice structures on such spaces. We have two basic methods of constructing
examples of lattices on matrix spaces, one via using simultaneous diagonalization and one
via using the map Γ0.

Example 5.1. Let X be a nontrivial real vector subspace of M(n, m) of real dimension
k and {Êj : j = 1, 2, . . . k} a basis for X. Let Y = span{UEjU∗ : j = 1, 2, . . . , k} where
k ≤ N , Ej are the N × N canonical diagonal matrices and U is the N -dimensional FFT
matrix. Note that Y is a commutative subalgebra of CircH(N) as well as a Dedekind
complete vector lattice with the usual order. Let us define the map Γ : X → Y as
ΓÊj = UEjU∗, j = 1, 2, . . . , k. The map Γ is a bijective, real linear map, and hence,
(X, ≤Γ) is a Dedekind complete vector lattice.

Example 5.2. Let T (n) = {A ∈ M(n) : tr(A) ∈ R} where tr(A) is the trace of A ∈ M(n).
T (n) is a real subspace of M(n) with real dimension 2n2−n. Let {Êj : j = 1, 2, . . . , 2n2−n}
be a basis of T (n).

Let us define the operator Γ : T (n) → Y as ΓA = Γ0A + tr(A)IN , A ∈ T (n) with the
image Y = span{Ẽj = ΓÊj : j = 1, 2, . . . , 2n2−n}. It is straightforward to prove that Γ is a
bijective real-linear operator and (T (n), ≤Γ) is a Dedekind complete vector lattice. Notice
that any eigenvalue λj(ΓA) of ΓA is equal to λj(Γ0A)+tr(A). Moreover, one can show that
‖Γ0‖ = 1. For a given positive definite matrix A ∈ H(n), ‖Γ0A‖ ≤ ‖A‖ ≤ tr(A) holds.
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Since Γ0A is Hermitian, Γ0A + ‖Γ0A‖IN is positive definite and Γ0A + ‖Γ0A‖IN ≤ ΓA.
Therefore, ΓA is positive definite whenever A ∈ H(n) is.

Example 5.3. Let s, t > 0 be given scalars and {Êj : j = 1, 2, . . . , 2n2} a real vector basis
of M(n). Consider the map Γs,t : M(n) → Y given by Γs,t(A) = Γ0A + s(tr(ReA))IN +
t(tr(ImA))IN where ReA = (A + A∗)/2, ImA = (A − A∗)/2i and Y = span{Γs,tÊj :
j = 1, 2, . . . , 2n2} ⊂ CircH(N). One can easily show that Γs,t is a bijective real linear
operator. Similarly, we demonstrate that (M(n), ≤Γs,t) is a Dedekind complete vector
lattice. Let A ∈ H(n) be a positive definite matrix. Then, Γs,t(A) = Γ0A + str(A)IN . If
s ≥ 1, we can show that Γs,t(A) is positive definite as we did in the previous example.

6. Final remarks
We propose to extend notions such as upper semi-continuity and Jensen measures for

cones of functions with values in operator spaces on an infinite dimensional Hilbert spaces
and also obtain Edwards’ Theorem for functions with values in operator spaces in future
works. The notion of Γ-order on a real matrix space provides a Dedekind complete vector
lattice structure on the given matrix space. This result lays foundation for Edwards’
Theorem in noncommutative matrix spaces. For that reason, we first suggest to find a
generalization of Γ-order on operator spaces. Furthermore, we are of the opinion that the
functional analytic proof of Edwards’ Theorem can be generalized to the case of functions
with values in the class of self-adjoint operators on an infinite dimensional complex Hilbert
space.
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