

International Electronic Journal of Algebra

Published Online: May 5, 2024 DOI: 10.24330/ieja.1478925

THE RING $R\{X\}$

Emad Abuosba and Mariam Al-Azaizeh

Received: 22 October 2023; Revised: 12 December 2023; Accepted: 15 December 2023 Communicated by Burcu Üngör

ABSTRACT. Let R be a commutative ring with unity and $W = \{f(X) \in R[X] : f(0) = 1\}$. We define $R\{X\} = W^{-1}R[X]$. We show that the maximal ideals of $R\{X\}$ are of the form $W^{-1}(M,X)$ where M is a maximal ideal of R, and so if R is finite dimensional, then $\dim R\{X\} = \dim R[X]$. We show that $R\{X\}$ is a Prüfer ring if and only if R is a von Neumann regular ring, and so if $R\{X\}$ satisfies one of the Prüfer conditions, it satisfies all of them.

Mathematics Subject Classification (2020): 13A15, 13B25, 13B30, 13F05 Keywords: Prime ideal, localization, over ring, polynomial ring, Prüfer conditions

1. Introduction

Throughout, R will denote a commutative ring with unity and X an indeterminate over R. For each polynomial $f(X) = \sum_{i=0}^{n} f_i X^i \in R[X]$, the content of f, denoted by c(f) is the ideal (f_0, \ldots, f_n) . Many multiplicative closed subsets of R[X]were defined to reduce an overring of R[X], such as $S = \{f(X) \in R[X] : c(f) = R\}$ and $U = \{f(X) \in R[X] : f \text{ is monic}\}$. The Nagata ring $R(X) = S^{-1}R[X]$ and Serre's conjecture ring $R\langle X\rangle=U^{-1}R[X]$ are widely known and were studied by many mathematicians in the last decades, see for example [1], [3], [8] and for detailed newly bibliography, see [6]. For more multiplicative closed subsets of R[X], see [4] and [5]. Let $W = \{f(X) \in R[X] : f(0) = 1\}$. Then clearly W is a multiplicative closed subset of R[X], and thus we can define an overring for R[X] using this set. Let $R\{X\} = W^{-1}R[X]$. This ring was suggested in [1, page 97] as it has applications in automata theory. We didn't find any mentioning of this ring since then. In this article, we are interested in knowing if R has a certain property whether $R\{X\}$ has this property and conversely. We characterize maximal ideals in $R\{X\}$, we show that there is a one-to-one correspondence between the maximal ideals of R and the maximal ideals of $R\{X\}$ given by $M \leftrightarrow W^{-1}(M,X)$. We also show that there is a one-to-one correspondence between the minimal prime ideals of R and the minimal prime ideals of $R\{X\}$ given by $P \leftrightarrow W^{-1}P[X]$. We show that for each $M \in Max(R)$, we have $R_M\{X\} \approx R[X]_{(M,X)} \approx R\{X\}_{W^{-1}(M,X)R}$. Thus we conclude that if R is a finite dimensional ring, then $\dim R[X] = \dim R\{X\}$. Then we turn to the problem of characterizing when $R\{X\}$ satisfies any of the Prüfer conditions. We show that a ring R is von Neumann regular if and only if $R\{X\}$ is a Prüfer ring. So we conclude if $R\{X\}$ satisfies any one of the Prüfer conditions, it satisfies all of them. There are still a lot of properties to be investigated in this ring.

2. Construction

Let R be a ring, X an indeterminate over R, and let R[X] be the polynomial ring of R. Let $W = \{f(X) \in R[X] : f(0) = 1\}$. Then W is a multiplicative closed subset of R[X], and thus we can define an overring for R[X] using this set. Let $R\{X\} = W^{-1}R[X]$. One notice immediately that $R\{X\} \subseteq R(X) \subseteq T(R[X])$, the total quotient ring of R[X], and so we can use some properties of R(X) to study properties of $R\{X\}$, for instance the idempotents of $R\{X\}$ are those of R, since we have the same case in R(X). Also Z(R) = Nil(R) if and only if $Z(R\{X\}) = Nil(R\{X\})$.

The saturation set of W is $W^* = \{f(X) \in R[X] : f(X) \text{ is a unit in } R\{X\}\} = \{f(X) \in R[X] : f(0) \text{ is a unit in } R\}$, and in this case W^* is the largest multiplicatively closed subset of R[X] containing W such that $W^{-1}R[X] = W^{*^{-1}}R[X]$. Thus $R\{X\} \subset R(X) \subset T(R[X])$.

It is clear that R is an integral domain if and only if so is $R\{X\}$. Similar results are obtained if R is reduced or Noetherian, since $R\{X\}$ is faithful flat over R. Note that if $\frac{f(X)}{g(X)} = \frac{a}{b} \in R\{X\} \cap T(R)$, then bf(0) = a, and so $\frac{f(X)}{g(X)} = \frac{f(0)}{1} \in R$, that is $R\{X\} \cap T(R) = R$, and so if $R\{X\}$ is integrally closed, then so is R. If R was an integral domain, then the converse would be also true.

The Nagata ring $R(X) = S^{-1}R[X]$ and Serre's conjecture ring $R\langle X \rangle = U^{-1}R[X]$ are very related to our new ring $R\{X\}$. Since $W \subset S$, $R\{X\}$ is a subring of R(X), while it is incomparable with $R\langle X \rangle$. The three rings share many properties being overrings for R[X], faithfully flat, have the same shape of minimal prime ideals. The ring $R\{X\}$ as R(X) has a concrete shape of maximal ideals $(M,X)R\{X\}$ (MR(X)) where $M \in Max(R)$, while this not the only shape of maximal ideals in $R\langle X \rangle$. Since X is not a unit in $R\{X\}$, unlike R(X) and $R\langle X \rangle$, dim $R\{X\} = \dim R[X]$, while it is dim R[X] - 1 for R(X) and $R\langle X \rangle$. This also leads to that $R\{X\}$ is never a Hilbert ring, unlike R(X) and $R\langle X \rangle$.

3. Prime ideals in $R\{X\}$

We try to relate prime ideals of $R\{X\}$ with those of R. We first characterize maximal ideals in $R\{X\}$, and then use it to characterize some prime ideals. In R(X) the maximal ideals are of the form MR(X), where M is a maximal ideal in R, while for the ring $R\langle X\rangle$ the maximal ideals are of the form $MR\langle X\rangle$, where M is a maximal ideal in R, or of the form $QR\langle X\rangle$ for some prime ideal Q of R[X] which is an upper to a non-maximal prime ideal P of R.

Lemma 3.1. Let \mathcal{M} be a maximal ideal in R[X] with $f(0) \neq 1$ for each $f(X) \in \mathcal{M}$. Then $\mathcal{M} = (M, X)$ for some maximal ideal M of R.

Proof. Let $M = \{f(0) : f(X) \in \mathcal{M}\}$. Then clearly M is a proper ideal of R. Assume N is an ideal of R with $M \subset N \subseteq R$, and let $n \in N - M$. Then $n \notin \mathcal{M}$, and so $nR[X] + \mathcal{M} = R[X]$. Whence ng(X) + m(X) = 1 for some $g(X) \in R[X]$ and $m(X) \in \mathcal{M}$. So $1 = ng(0) + m(0) \in N$, hence M is a maximal ideal of R. But $\mathcal{M} \subseteq (M, X) \subset R[X]$. By maximality of \mathcal{M} , we get the result. \square

Theorem 3.2. There is a one-to-one correspondence between the maximal ideals of R and the maximal ideals of $R\{X\}$ given by $M \leftrightarrow W^{-1}(M,X)$.

Proof. Let $M \in Max(R)$, and let $\mathcal{M} = W^{-1}(M,X)$. Then clearly, \mathcal{M} is a prime ideal in $R\{X\}$. Assume \mathcal{N} is an ideal of $R\{X\}$ with $\mathcal{M} \subset \mathcal{N} \subseteq R\{X\}$. Let $\frac{f}{g} \in \mathcal{N} - \mathcal{M}$. Then $f \notin (M,X)$ and so $f(0) \notin M$. By maximality of M, there exist $a \in R$ and $m \in M$ such that 1 = f(0)a + m, and so $af + m \in W$. But $\frac{af}{g} + \frac{m}{g} \in \mathcal{N}$. Therefore $\mathcal{N} = R\{X\}$ and \mathcal{M} is a maximal ideal in $R\{X\}$.

Conversely, let $\mathcal{M} \in Max(R\{X\})$ and let $M = \{f(0) : \frac{f}{g} \in \mathcal{M}\}$. Then M is a proper ideal of R since $1 \notin M$. Assume N is an ideal of R with $M \subset N \subseteq R$, and let $n \in N-M$. Then $n \notin \mathcal{M}$, and so $nR\{X\}+\mathcal{M}=R\{X\}$. Thus $1=\frac{nf}{\alpha}+\frac{m}{\beta}$ with $\frac{f}{\alpha} \in R\{X\}$ and $\frac{m}{\beta} \in \mathcal{M}$, which implies that $\alpha\beta=nf\beta+m\alpha$. Thus $1=\alpha(0)\beta(0)=nf(0)\beta(0)+m(0)\alpha(0)\in N$, i.e., $M\in Max(R)$. But $\mathcal{M}\subseteq W^{-1}(M,X)\subset R\{X\}$, and so by maximality of \mathcal{M} , we have $\mathcal{M}=W^{-1}(M,X)$.

For the case of minimal prime ideals, we have a one-to-one correspondence between the minimal prime ideals of R and the minimal prime ideals of R(X) (R(X)) given by $P \leftrightarrow PR(X)$ ($P \leftrightarrow PR(X)$). A similar result is also true for $R\{X\}$.

Theorem 3.3. There is a one-to-one correspondence between the minimal prime ideals of R and the minimal prime ideals of $R\{X\}$ given by $P \leftrightarrow W^{-1}P[X]$.

Proof. Let $P \in Min(R)$. Then $W^{-1}P[X]$ is a prime ideal of $R\{X\}$. If $Q \subseteq W^{-1}P[X]$ is a prime ideal of $R\{X\}$, then $Q = W^{-1}I$ for some prime ideal I of R[X]. Clearly, $P_0 = I \cap R$ is a prime ideal of R with $P_0 \subseteq P$. By minimality of P, we must have $P_0 = P$. So $P[X] = P_0[X] \subseteq I \subseteq P[X]$. Thus $Q = W^{-1}P[X]$.

Conversely, let $\mathcal{P} \in Min(R\{X\})$ and let I be a prime ideal of R[X] with $\mathcal{P} = W^{-1}I$. The ideal $P = I \cap R$ is a prime ideal in R with $P[X] \subseteq I$. Thus $W^{-1}P[X] \subseteq W^{-1}I = \mathcal{P}$. By minimality of \mathcal{P} , we have $\mathcal{P} = W^{-1}P[X]$. Now if P_0 is a prime ideal of R with $P_0 \subseteq P$, then $W^{-1}P_0[X] \subseteq W^{-1}P[X] = \mathcal{P}$, and so $W^{-1}P_0[X] = W^{-1}P[X]$. If $a \in P$, then $\frac{a}{1} \in W^{-1}P[X] = W^{-1}P_0[X]$, and so $\frac{a}{1} = \frac{f}{g}$ with $f \in P_0[X]$ and $g \in W$. Thus $a = ag(0) = f(0) \in P_0$. Hence $P \in Min(R)$. \square

The following result can not be found in R(X) nor R(X), since in these rings X is a unit.

Theorem 3.4. If Q is a prime ideal in $R\{X\}$ with $X \in Q$, then $Q = W^{-1}(P, X)$ for some prime ideal P of R.

Proof. Let Q be a prime ideal of R[X] such that $Q = W^{-1}Q$, and let $P = Q \cap R$. Then we have $P[X] \subset (P, X) \subseteq Q$. Thus Q = (P, X), since the prime ideal P has at most two prime ideals of R[X] lying over it, see [2, Corollary 30.2].

Corollary 3.5. If Q is a P-primary ideal in R, then

- (1) $W^{-1}(Q, X)$ is $W^{-1}(P, X)$ -primary in $R\{X\}$.
- (2) $W^{-1}Q$ is $W^{-1}P$ -primary in $R\{X\}$.

For any maximal ideal M of R, we have $R_M(X) \approx R[X]_{M[X]} \approx R(X)_{MR(X)}$, while if \mathcal{M} is a maximal ideal of $R\langle X\rangle$, $Q = \mathcal{M} \cap R[X]$ and $P = Q \cap R$, then $R\langle X\rangle_{\mathcal{M}} \approx R[X]_Q \approx R_P[X]_{Q_{R\backslash P}}$.

Theorem 3.6. For each $M \in Max(R)$, we have

$$R_M\{X\} \approx R[X]_{(M,X)} \approx R\{X\}_{W^{-1}(M,X)}.$$

Proof. Let $\varphi_1 \colon R[X]_{(M,X)} \longrightarrow R_M\{X\}$ be defined by $\varphi_1\left(\frac{f}{g}\right) = \frac{\frac{f}{g(0)}}{\frac{g}{g(0)}}$. Then clearly, φ_1 is a monomorphism.

Let $\frac{\sum \frac{a_i}{\alpha_i} x^i}{\sum \frac{b_i}{\beta_i} x^i} \in R_M\{X\}, a_j^{'} = \frac{a_j}{\alpha_j} \alpha, b_j^{'} = \frac{b_j}{\beta_j} \beta$, where $\alpha = \prod \alpha_i$ and $\beta = \prod \beta_i$, and note that $b_0^{'} = \beta$. Now,

$$\varphi_1\left(\frac{\beta}{\alpha} \frac{\sum a_i' x^i}{\sum b_i' x^i}\right) = \frac{\frac{1}{\alpha}}{\frac{1}{\beta}} \frac{\sum a_i' x^i}{\sum b_i' x^i} = \frac{\sum \frac{a_i}{\alpha_i} x^i}{\sum \frac{b_i}{\beta_i} x^i}.$$

Thus $R_M\{X\} \approx R[X]_{(M,X)}$.

Note that we can write

$$R_M\{X\} = \left\{ \frac{f}{1+xq} : f, g \in R_M[X] \right\}.$$

Let $\varphi_2 \colon R_M\{X\} \longrightarrow R\{X\}_{W^{-1}(M,X)}$ be defined by $\varphi_2\left(\frac{f}{1+xg}\right) = \frac{\frac{f}{1}}{\frac{1+xg}{1}}$. Then clearly, φ_2 is a monomorphism.

clearly,
$$\varphi_2$$
 is a monomorphism. Let $\frac{\frac{f}{1+xg}}{\frac{h}{1+xk}} \in R\{X\}_{W^{-1}(M,X)}$. Then $h(0) \notin M$, and so $\frac{\frac{1}{h(0)}f(1+xk)}{\frac{1}{h(0)}h(1+xg)} \in R_M\{X\}$,

thus we have
$$\varphi_2\left(\frac{\frac{1}{h(0)}f(1+xk)}{\frac{1}{h(0)}h(1+xg)}\right) = \frac{\frac{\frac{1}{h(0)}f(1+xk)}{1}}{\frac{\frac{1}{h(0)}h(1+xg)}{1}} = \frac{\frac{f}{1+xg}}{\frac{h}{1+xk}}.$$

Hence $R_M\{X\} \approx R\{X\}_{W^{-1}(M,X)}$.

We end up this section with calculating the Krull dimension of $R\{X\}$.

Theorem 3.7. If R is a finite dimensional ring, then dim $R\{X\} = \dim R[X]$.

Proof. Let \mathcal{M} be a maximal ideal in R[X] of maximal height. Then $M = \mathcal{M} \cap R$ is a maximal ideal in R. By [2, page 368] and [7, page 25], we may find a chain of maximal length in R[X] of the form $P \subset \cdots \subset M[X] \subset \mathcal{M}$, and so $P \subset \cdots \subset M[X] \subset (M,X)$ is a chain of maximal length too, since there are no prime ideals properly between M[X] and M[X]. Thus dim M[X] and M[X].

It was shown in [8, Theorem 2.1] that for a finite dimensional ring, dim $R\langle X\rangle=\dim R[X]-1$, and so for a Noetherian ring, dim $R\langle X\rangle=\dim R$. A similar result is also true for the ring R(X). Thus we can conclude the following corollary.

Corollary 3.8. Let R be a Noetherian ring. Then

$$\dim R + 1 = \dim R(X) + 1 = \dim R(X) + 1 = \dim R[X] = \dim R[X].$$

A ring R is called a Hilbert ring if any prime ideal of R is the intersection of all maximal ideals containing it. It was shown in [1, Lemma 4.1] that R(X) is Hilbert if and only if R is Hilbert and every prime ideal of R is the extension of a prime ideal of R. Here $R\{X\}$ is never a Hilbert ring, since if P is a prime ideal of R, $W^{-1}P[X]$ is a prime ideal in $R\{X\}$ that is not an intersection of maximal ideals, since $X \notin W^{-1}P[X]$.

4. Prüfer conditions

In this section, we characterize the case at which the ring $R\{X\}$ is a Prüfer ring. But first we give some definitions and facts. The six well known Prüfer conditions:

- (1) R is a Prüfer ring (every finitely generated regular ideal in R is invertible).
- (2) R is a strongly Prüfer ring (every finitely generated dense ideal in R is locally principal).
- (3) R is a Gaussian ring (for every $f, g \in R[X], c(fg) = c(f)c(g)$).
- (4) R is an arithmetical ring (every finitely generated ideal of R is locally principal).
- (5) $w.\dim(R) \le 1$ (every finitely generated ideal of R is flat).
- (6) R is semihereditary (every finitely generated ideal of R is projective).

It is known that if R is an integral domain, then (1) to (6) are all equivalent, but if R is not an integral domain, then (6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1), while the reverse implications are all false.

One of the main questions raised for the rings R(X) and $R\langle X\rangle$ were when they satisfy one of the Prüfer conditions. Full characterizations can be found in [1] and [6]. We now use [6, Remark 2.1] to study when $R\{X\}$ satisfies the Prüfer conditions. We first recall the correspondent results for R(X) and $R\langle X\rangle$.

Proposition 4.1. ([1, Theorem 3.2]) Let R be a commutative ring with 1.

- (1) R(X) is a Prüfer ring if and only if R is strongly Prüfer.
- (2) $R\langle X\rangle$ is a Prüfer ring if and only if R is strongly Prüfer, dim $R\leq 1$, and R_P is a field for every non-maximal prime ideal P of R.

Lemma 4.2. Let I be an ideal of a ring R. Then I is finitely generated and locally principal if and only if $W^{-1}I$ is finitely generated and locally principal.

Proof. The result follows easily by Theorem 3.6, since for any $M \in Max(R)$, we have $I_M = I_{W^{-1}(M,X)}$.

Theorem 4.3. R is von Neumann regular if and only if $R\{X\}$ is a Prüfer ring.

Proof. (\Rightarrow) If R is von Neumann regular, then R[X] is a Prüfer ring, and so is its localization $R\{X\}$.

(\Leftarrow) Assume now that $R\{X\}$ is a Prüfer ring. Then R(X) Prüfer being a localization of $R\{X\}$ and so R is strongly Prüfer. We want to show that R_M is a field for each $M \in Max(R)$. So let $M \in Max(R)$, $m \in M - \{0\}$ and I = (m, X). Then I is a finitely generated regular ideal in R[X], and so $IR\{X\}$ is invertible. Let $\mathcal{M} = W^{-1}(M,X)_W$. Then $I_{(M,X)} = W^{-1}I_M$ is principal, since $W^{-1}I$ is invertible. But $R[X]_{(M,X)} \approx R\{X\}_{W^{-1}(M,X)}$ is Prüfer with (M,X) is the unique regular maximal ideal of $R[X]_{(M,X)}$, and so it is a valuation ring (i.e., for any ideals A and B of $R[X]_{(M,X)}$, we have $A \subseteq B$ or $B \subseteq A$). Thus $I_{(M,X)} = (X)_{(M,X)}$, since we

can not have $(X)_{(M,X)} \subseteq (m)_{(M,X)}$. So there exist $f,g \in R[X]$, with $g \notin (M,X)$ with $\frac{m}{1} = X\frac{f}{g}$, and hence mgh = Xfh for some $h \notin (M,X)$. Thus we have mg(0)h(0) = 0, and so $\frac{m}{1} = \frac{0}{1}$ in R_M , since g(0) and h(0) are units in R_M . This yields that $M_M = 0$ in R_M , and so R_M is a field for each $M \in Max(R)$.

Corollary 4.4. If $R\{X\}$ satisfies any of the Prüfer conditions, then it satisfies all the Prüfer conditions.

Proof. If $R\{X\}$ satisfies any of the Prüfer conditions, then it is Prüfer, and so R is a von Neumann regular ring. Thus it follows by [6, Remark 2.1] that R[X] is semihereditary, which implies that $R\{X\}$ is semihereditary, hence the result. \square

Note that if $R\{X\}$ satisfies any of the Prüfer conditions, then so are R(X) and $R\langle X\rangle$, because in this case R[X] is semihereditary, which implies that R(X) and $R\langle X\rangle$ are semihereditary, being localizations of R[X]. On the other hand since the ring of integers $\mathbb Z$ is semihereditary and $\mathbb Z_{(0)}=\mathbb Q$ is a field, the integral domains $\mathbb Z(X)$ and $\mathbb Z\langle X\rangle$ are semihereditary, but $\mathbb Z\{X\}$ is not Prüfer, since $\mathbb Z$ is not a von Neumann regular ring.

Acknowledgement. The authors are very grateful for the valuable comments and advises given by the referee that made our manuscript more readable.

Disclosure statement. The authors report there are no competing interests to declare.

References

- [1] D. D. Anderson, D. F. Anderson and R. Markanda, The rings R(X) and $R\langle X\rangle$, J. Algebra, 95(1) (1985), 96-115.
- [2] R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.
- [3] J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- [4] J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math., 31 (1980), 167-196.
- [5] J. A. Huckaba and I. J. Papick, A localization of R[x], Canadian J. Math., 33(1) (1981), 103-115.

- [6] M. Jarrar and S. Kabbaj, *Prüfer conditions in the Nagata ring and the Serre's conjecture ring*, Comm. Algebra, 46(5) (2018), 2073-2082.
- [7] I. Kaplansky, Commutative Rings, Revised Edition, University of Chicago Press, Chicago, 1974.
- [8] L. R. le Riche, The ring $R\langle X\rangle$, J. Algebra, 67 (1980), 327-341.

Emad Abuosba (Corresponding Author) and Mariam Al-Azaizeh

Department of Mathematics

The University of Jordan

Amman, Jordan

e-mails: eabuosba@ju.edu.jo (E. Abuosba)

maalazaizeh15@sci.just.edu.jo (M. Al-Azaizeh)