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Abstract 

 

In this paper, we introduce an alternative approach centered around an alternative moving frame for finding 

the position vector of a general helix given its curvature and torsion. Our methodology begins by 

formulating a vector differential equation, leveraging the unit principal normal vector of a general helix 

with the assistance of the alternative moving frame. Then, by solving this differential equation, we obtain 

the position vector of the general helix. This innovative technique is then applied to ascertain the position 

vector of a circular helix. To illustrate the effectiveness of our method, we showcase parametric 

representations of various general helices, each defined by unique curvature and torsion functions. 

 

Keywords: Alternative moving frame, curvatures, general helix, position vector 

1. Introduction 

 

The fundamental theorem for curves states that a space 

curve can be uniquely determined up to rigid motions by 

its curvature and torsion [1,2]. The problem of 

determining the position vector of this curve is known as 

solving natural or intrinsic equations and is usually 

achieved by solving a certain complex Riccati equation 

[3]. However, the solution usually cannot be obtained 

explicitly. Explicit solutions have only been found for 

some special curves. First known example is an explicit 

integral formula by Euler for a planar curve, which is one 

of these special curves [4]. Recently, Ali constructed a 

vector differential equation according to the Frenet 

vectors by the aid of Frenet formulae to find the position 

vector of a space curve. Since this vector differential 

equation has variable coefficients, he did not find a 

general solution for an arbitrary curve. For the special 

cases of general helices and slant helices, he solved the 

vector differential equations and obtained the parametric 

representations of these curves in Euclidean 3-space 

[5,6]. After that, this problem has been investigated for 

different types of curves such as general helices, circular 

helices, slant helices, 𝑘-slant helices, relatively normal-

slant helices, and isophote curves. These studies that 

constitute a vast literature on this subject include the 

handling of the curves in Euclidean, Minkowski, and 

Galilean spaces with the help of different moving frames 

such as Frenet frame, Darboux frame, type-2 Bishop 

frame, and alternative moving frame [7-16]. 

 

There are two important reasons why the problem of 

finding the position vector of a curve still attracts 

researchers. Firstly, in Galilean space, this problem has 

been resolved by Ali in [7], however in Euclidean and 

Minkowski spaces, it remains unresolved for any curve. 

Secondly, since the trajectory followed by a particle 

moving in space can be thought of as a curve, examining 

the position vector of the curve is an important goal for 

determining the behavior of the particle. 

 

This paper presents an approach utilizing an alternative 

moving frame to ascertain the position vector of a general 

helix given its curvature and torsion. Initially, we delve 

into the fundamentals of Frenet and alternative moving 

frames for space curves. Leveraging the derivative 

formulae of alternative moving frame, we formulate a 

vector differential equation based on the principal normal 

vector of the general helix. Solving this equation yields 

the position vector expressed in terms of the first 

alternative curvature. Subsequently, we extend this 

method to find the position vector of a circular helix. 

Finally, through practical application, we derive 

parametric representations of various examples of 

general helices, considering some certain functions for 

curvature and torsion. 
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With the method presented in this paper, the problem of 

determining the position vector of a curve, one of the 

important problems in the theory of curves, has been 

solved for both general helices and circular helices. The 

method presented in this paper is simpler and more 

practical than the method which is based on the use of 

Frenet frame in the literature. Moreover, the helix 

examples obtained by using the method in this paper add 

diversity to the helix examples in the literature. 

 

2. The Frenet and Alternative Moving Frame 

 

In this section, we briefly introduce the Frenet and 

alternative moving frames of a space curve in Euclidean 

3-space denoted by 𝐸3 and give some basic concepts of 

these frames. 

 

Let 𝛼 = 𝛼(𝑠) be a curve in 𝐸3. 𝛼(𝑠) is said to be a unit 

speed curve if ‖𝛼′(𝑠)‖ = 1, where 𝑠 is the arc-length 

parameter of 𝛼. The Frenet frame of the curve 𝛼 consists 

of three mutually orthonormal vectors  𝑻(𝑠), 𝑵(𝑠), 𝑩(𝑠) 
defined by 

 

𝑻(𝑠) = 𝛼′(𝑠),𝑵(𝑠) =
1

‖𝑻′(𝑠)‖
𝑻′(𝑠),𝑩(𝑠) = 𝑻(𝑠) × 𝑵(𝑠). 

The vector fields 𝑻,𝑵, 𝑩 are called unit tangent vector 

field, unit principal normal vector field and unit binormal 

vector field, respectively [3]. The derivatives of the 

Frenet vectors are known as Frenet formulae and can be 

given as 

 

 𝑻′(𝑠) = 𝜅(𝑠)𝑵(𝑠),  

 𝑵′(𝑠) = −𝜅(𝑠)𝑻(𝑠) + 𝜏(𝑠)𝑩(𝑠), 

 𝑩′(𝑠) = −𝜏(𝑠)𝑵(𝑠), 

where 𝜅(𝑠) and 𝜏(𝑠) are called the curvature and the 

torsion of the curve 𝛼, respectively. They can be found 

as 𝜅(𝑠) = ‖𝑻′(𝑠)‖ and 𝜏(𝑠) = −⟨𝑩′(𝑠), 𝑵(𝑠)⟩ [3]. 

 

With the help of curvature and torsion of a curve, some 

geometric properties of the curve can be revealed. The 

curve is a straight line, for instance, if 𝜅 = 0, and the 

curve is a planar curve if 𝜏 = 0 [17,18]. Moreover, thanks 

to curvature and torsion functions, it can be determined 

whether a curve is one of the special curves such as 

general helix, slant helix or spherical curve. For example, 

if the function 𝜏/𝜅 is a constant, then the curve is a 

general helix which is defined by the property that 

tangent vectors along the curve make a constant angle 

with a fixed vector [3]. The curve is referred to as a 

circular helix or a W-curve if the curvature and torsion 

are both non-zero constants [17,19]. 

 

The Frenet frame is an important tool for studying 

differential geometric properties of curves. However, 

there are other frames besides the Frenet frame that can 

be used to examine differential geometric properties of a 

curve. Recently, there has been established a novel frame 

known as alternative moving frame and started to be used 

in many areas. Three vectors that are orthonormal to one 

another make up the alternative moving frame. These 

vectors are the principal normal vector 𝑵(𝑠) that also 

exists in Frenet frame, the vector 𝑪(𝑠) defined by 𝑪(𝑠) =
𝑵′(𝑠) ‖𝑵′(𝑠)‖⁄ , and the vector 𝑾(𝑠) which is in the 

direction of the instantaneous rotation vector of the 

Frenet frame and can be written as 𝑾(𝑠) = 𝑵(𝑠) × 𝑪(𝑠) 
[20,21]. The derivative formulae of the alternative 

moving frame {𝑵(𝑠), 𝑪(𝑠),𝑾(𝑠)} can be given in matrix 

form as 

 

     [
𝑵′(𝑠)

𝑪′(𝑠)

𝑾′(𝑠)
] = [

0 𝑓(𝑠) 0

−𝑓(𝑠) 0 𝑔(𝑠)

0 −𝑔(𝑠) 0

] [

𝑵(𝑠)

𝑪(𝑠)

𝑾(𝑠)
]      (1) 

where 𝑓 and 𝑔 are referred to as first and second 

alternative curvatures, respectively [21]. By applying 

relations between Frenet and alternative moving frames, 

it is possible to derive the alternative curvatures as 

follows [21]: 

 

       𝑓 = √𝜅2 + 𝜏2,                            (2) 

and 

 

𝑔 =
𝜅2

𝜅2 + 𝜏2
(
𝜏

𝜅
)
′

.     (3) 

On the other hand, the alternative curvatures may be used 

to express the curvatures 𝜅(𝑠) and 𝜏(𝑠) as follows [22]: 

 

𝜅(𝑠) = 𝑓(𝑠) 𝑐𝑜𝑠 (∫𝑔(𝑠)𝑑𝑠),     (4) 

and 

 
𝜏(𝑠) = 𝑓(𝑠) 𝑠𝑖𝑛 (∫𝑔(𝑠)𝑑𝑠).     (5) 

Remark 2.1. In many studies examining curves with the 

help of alternative moving frame, it has been observed 

that some mathematical expressions cannot be produced 

only in terms of alternative moving frame apparatus and 

that both Frenet frame apparatus and alternative moving 

frame apparatus are combined improperly. This problem 

can be overcome with the help of the relations between 

the curvatures given by Eq. (4) and Eq. (5). 

 

The alternative curvatures have a significant impact on 

the characterization of curves. This notion is supported 

by the following theorems. 

  

Theorem 2.1. ([22]) Let 𝛼 be a curve in 𝐸3, provided 

𝑓 ≠ 0. The curve 𝛼 is a general helix if and only if 

𝑔 = 0. 
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Theorem 2.2. Let 𝛼 be a curve in 𝐸3, provided 𝑓 ≠ 0. 

The curve 𝛼 is a circular helix if and only if 𝑔 = 0 and 𝑓 

is a constant. 

 

Proof. Let 𝛼 be a circular helix. The curvature and 

torsion of this curve are both non-zero constants. From 

Eqs. (2) and (3), we have 𝑔 = 0 and 𝑓 is a constant. 

 

Conversely, let 𝑔 = 0 and 𝑓 be a constant. From Eqs. (4) 

and (5), it can be seen that κ and τ are both constant. So, 

the curve 𝛼 is a circular helix which completes the proof. 

 

3. Finding the Position Vector of a General Helix 

 

This section commences with the formulation of a vector 

differential equation, employing the principal normal 

vector of a general helix through the utilization of 

alternative moving frame. Subsequently, solving this 

equation yields the determination of the position vector 

of the general helix uniquely up to translation and 

rotation in 𝐸3. In this section, we initially use the 

derivative formulae of alternative moving frame to help 

us develop a vector differential equation in terms of the 

principal normal vector of a general helix. Since the 

principal normal vector is in Euclidean 3-space, this 

vector differential equation leads to a system of 

differential equation consisting of three differential 

equations. The position vector of the general helix is then 

obtained uniquely up to translation and rotation in 𝐸3 by 

solving this system. Furthermore, we apply this 

technique to solve the problem of determining the 

position vector of a circular helix. 

 

Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. Since the unit 

tangent vector of the curve 𝛼 is defined by 

 

𝑻(𝑠) = 𝛼′(𝑠), 

the curve 𝛼 can be written as 

 

𝛼(𝑠) = ∫𝑻(𝑠)𝑑𝑠 

or can be rewritten by using the Frenet formula as 

 

          𝛼(𝑠) = ∫(∫𝜅(𝑠)𝑵(𝑠)𝑑𝑠) 𝑑𝑠.    (6) 

Substituting Eq. (4) into Eq. (6), we have 

 

    𝛼(𝑠) = ∫(∫𝑓(𝑠)𝑐𝑜𝑠 (∫𝑔(𝑠)𝑑𝑠)𝑵(𝑠)𝑑𝑠) 𝑑𝑠.  (7) 

If curvature and torsion functions of a curve are given, 

alternative curvatures 𝑓 and 𝑔 can be found with the help 

of Eqs. (2) and (3). The only thing required to determine 

the position vector of the curve is to find the vector 𝑵(𝑠) 
in Eq. (7). 

 

The subsequent theorem establishes a vector differential 

equation concerning the vector 𝑵(𝑠) for a general helix. 

 

Theorem 3.1. Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. 

If 𝛼 is a general helix, then the principal normal vector 

𝑵(𝑠) of the curve 𝛼 satisfies the following vector 

differential equation 

 

𝑵′′(𝑠) = 𝑓′(𝑠)
1

𝑓(𝑠)
𝑵′(𝑠) − 𝑓2(𝑠)𝑵(𝑠),           (8) 

 

where 𝑓 is the first alternative curvature of 𝛼. 

 

Proof. Let 𝛼 = 𝛼(𝑠) be a unit speed general helix in 𝐸3. 

Differentiating the first equation of Eq. (1) and using the 

second equation of Eq. (1), we have 

 

   𝑵′′(𝑠) = 𝑓′(𝑠)𝑪(𝑠) + 𝑓(𝑠)(−𝑓(𝑠)𝑵(𝑠) + 𝑔(𝑠)𝑾(𝑠)).   (9) 

 

We get 𝑔 = 0 from Theorem 2.1 because the curve 𝛼 is 

a general helix. Thus the Eq. (9) becomes 

 

  𝑵′′(𝑠) = 𝑓′(𝑠)𝑪(𝑠) − 𝑓2(𝑠)𝑵(𝑠).              (10) 

 
 

Substituting the first equation in Eq. (1) into Eq. (10), Eq. 

(8) is obtained which completes the proof. 

 

If the vector 𝑵(𝑠) obtained by solving Eq. (8) is 

substituted into Eq. (7), the position vector of the general 

helix can be determined. The following theorem provides 

the position vector of a general helix in terms of first 

alternative curvature. 

 

Theorem 3.2. Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. 

If 𝛼 is a general helix, then the position vector 𝛼(𝑠) =

(𝛼1(𝑠), 𝛼2(𝑠), 𝛼3(𝑠)) can be given in terms of first 

alternative curvature as follows: 

 

{
 
 

 
 

  

𝛼1(𝑠) = ∫(∫𝑓(𝑠)𝑐𝑜𝑠(𝑐1)𝑐𝑜𝑠 (∫𝑓(𝑠)𝑑𝑠)𝑑𝑠)𝑑𝑠,

𝛼2(𝑠) = ∫(∫𝑓(𝑠)𝑐𝑜𝑠(𝑐1)𝑠𝑖𝑛 (∫𝑓(𝑠)𝑑𝑠)𝑑𝑠)𝑑𝑠,

𝛼3(𝑠) = ∫𝑐2𝑑𝑠,

 
  (11) 

 

where 𝑐1 and 𝑐2 are real constants. 

 

Proof. Given that 𝛼 is a general helix, it follows that 

 

         〈𝑻(𝑠), 𝑼〉 = 𝑐𝑜𝑠𝜃,                         (12) 
 

where 𝑼 is a constant vector parallel to the axis of the 

curve 𝛼 and 𝜃 is a constant angle between 𝑻 and 𝑼. 

Differentiating Eq. (12) and using the first equation of 

Frenet formulae, we have 

 
〈𝑵(𝑠), 𝑼〉 = 0. 
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The unit principal normal vector can be written with the 

standard basis of 𝐸3 as 𝑵(𝑠) = 𝑁1𝒆𝟏 + 𝑁2𝒆𝟐 +𝑁3𝒆𝟑.  

We can select 𝒆𝟑 as the axis of the curve 𝛼 without losing 

generality. So, we have 

 
〈𝑵(𝑠), 𝒆𝟑〉 = 𝑁3 = 0. 

Since 𝑵(𝑠) is a unit vector, we have the following 

relation between the components of 𝑵(𝑠): 
 

               𝑁1
2 + 𝑁2

2 = 1.          (13) 

 

From Eq. (13), the components 𝑁1 and 𝑁2 can be written 

as 

𝑁1(𝑠) = cos[𝑡(𝑠)] and 𝑁2(𝑠) = sin[𝑡(𝑠)], 

where 𝑡 is a function of the arc-length parameter 𝑠. Thus, 

the vector 𝑵(𝑠) can be written according to the function 

of 𝑡(𝑠) as 

 

𝑵(𝑠) = (cos[𝑡(𝑠)] , sin[𝑡(𝑠)] , 0). 

Each component of the vector 𝑵(𝑠) must meet Eq. (8). It 

is easy to see that  𝑁3 = 0 satisfies Eq. (8). When the 

components 𝑁1 and 𝑁2 are substituted into Eq. (8), we 

obtain the following differential equations of 𝑡(𝑠): 
 

(−(𝑡′)2 + 𝑓2)𝑐𝑜𝑠𝑡 + (−𝑡′′ +
𝑓′

𝑓
𝑡′) 𝑠𝑖𝑛𝑡 = 0,      (14)  

(𝑡′′ −
𝑓′

𝑓
𝑡′) 𝑐𝑜𝑠𝑡 + (−(𝑡′)2 + 𝑓2)𝑠𝑖𝑛𝑡 = 0.       (15) 

 

From Eqs. (14) and (15), we have the following 

differential equations 

 

−(𝑡′)2 + 𝑓2 = 0,                           (16) 

  −𝑡′′ +
𝑓′

𝑓
𝑡′ = 0.                            (17) 

 

From Eq. (16), we get 

 

𝑡′ = 𝑓, 
 

or 

 

𝑡′ = −𝑓. 
 

Since the above equations satisfy Eq. (17), we have 

 

𝑡 = ∫𝑓(𝑠)𝑑𝑠, 

 
or 

 

𝑡 = −∫𝑓(𝑠)𝑑𝑠. 

 

Consequently, the principal normal vector 𝑵(𝑠) of the 

general helix 𝛼 can be found as 

 

𝑵(𝑠) = (𝑐𝑜𝑠 (∫ 𝑓(𝑠)𝑑𝑠) , 𝑠𝑖𝑛 (∫𝑓(𝑠)𝑑𝑠) , 0)  (18) 

 

or 

 

 

𝑵(𝑠) = (𝑐𝑜𝑠 (∫ 𝑓(𝑠)𝑑𝑠) , −𝑠𝑖𝑛 (∫𝑓(𝑠)𝑑𝑠) , 0). (19) 

 

Then by substituting Eq. (18) or Eq. (19) into Eq. (7) and 

by using Theorem 2.1, we have Eq. (11) which completes 

the proof.  

 

Substituting Eq. (2) and Eq. (4) into Eq. (11), the position 

vector of a general helix can be given in terms of 

curvatures of Frenet frame as in the following corollary. 

 

Corollary 3.1. Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. 

If 𝛼 is a general helix, then the position vector 𝛼(𝑠) =

(𝛼1(𝑠), 𝛼2(𝑠), 𝛼3(𝑠)) is expressed as 

 

    

{
 
 

 
 

 

𝛼1(𝑠) = ∫(∫𝜅(𝑠)𝑐𝑜𝑠 (∫√𝜅
2(𝑠) + 𝜏2(𝑠) 𝑑𝑠) 𝑑𝑠)𝑑𝑠,

𝛼2(𝑠) = ∫(∫𝜅(𝑠)𝑠𝑖𝑛 (∫√𝜅2(𝑠) + 𝜏2(𝑠) 𝑑𝑠) 𝑑𝑠) 𝑑𝑠,

𝛼3(𝑠) = ∫𝑐2𝑑𝑠,                                                                        

      (20) 

where 𝑐2 is a constant. 

 

From Theorem 2.2 and Theorem 3.2, the position vector 

of a circular helix can be given in terms of first alternative 

curvature as in the following corollary. 

 

Corollary 3.2. Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. 

If 𝛼 is a circular helix, then the position vector 𝛼(𝑠) =

(𝛼1(𝑠), 𝛼2(𝑠), 𝛼3(𝑠)) can be computed as 

 

{
 
 

 
 

  

𝛼1(𝑠) = −
1

𝑓
cos(𝑐1) cos(𝑓𝑠) ,

𝛼2(𝑠) = −
1

𝑓
cos(𝑐1) sin(𝑓𝑠) ,

𝛼3(𝑠) = 𝑓𝑐𝑜𝑠(𝑐1)𝑐2𝑠,              

 

 

where 𝑐1 and 𝑐2 are real constants. 

 

Since the curvature 𝜅 and torsion 𝜏 of a circular helix are 

both non-zero constants, Eq. (20) which gives the 

position vector of a general helix in terms of curvatures 

of Frenet frame can be adapted for the position vector of 

a circular helix as in the following corollary. 

 

Corollary 3.3. Let 𝛼 = 𝛼(𝑠) be a unit speed curve in 𝐸3. 

If 𝛼 is a circular helix, then the position vector 𝛼(𝑠) =

(𝛼1(𝑠), 𝛼2(𝑠), 𝛼3(𝑠)) can be given as 
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{
 
 

 
 𝛼1(𝑠) = −

𝜅

𝜅2 + 𝜏2
𝑐𝑜𝑠 (√𝜅2 + 𝜏2 𝑠),                                 

𝛼2(𝑠) = −
𝜅

𝜅2 + 𝜏2
𝑠𝑖𝑛 (√𝜅2 + 𝜏2 𝑠),                                 

𝛼3(𝑠) = 𝜅𝑐2𝑠,                                                                            

 

 

where 𝑐2 is a real constant. 

 

4. Examples 

 

In this section, we obtain position vectors for some 

examples of general helices given some special functions 

for curvature and torsion with the help of the alternative 

approach described in the previous section. In the process 

of finding the parametric representations, we choose the 

integral constants in Eq. (11) or Eq. (20) as some real 

numbers so that the general helices are curves with unit 

speed. The axes of all the general helices in the following 

examples are chosen as parallel to 𝒆3. 

 

Example 4.1. Let curvature and torsion functions be 

given as 𝜅 = 1/𝑠 and = 1/𝑠 , respectively. From Eqs. (2) 

and (3), we have the alternative curvatures as 𝑓 = √2/𝑠 
and 𝑔 = 0. By using Eq. (11), the position vector of the 

general helix can be obtained in the parametric 

representation as 

 

𝛼(𝑠) = (
1

3√2
(𝑠 sin(√2 ln 𝑠) − √2 s cos(√2 ln 𝑠)), 

−
1

3√2
(𝑠 cos(√2 ln 𝑠) + √2 s sin(√2 ln 𝑠)),

1

√2
 𝑠). 

 

An illustration of the curve 𝛼 is given in Figure 4.1. 

 

 

Figure 4.1. The general helix with 𝜅 = 1/𝑠 and 𝜏 = 1/𝑠 

 

Example 4.2. If we take 𝜅 =
1

2√2𝑠
 and =

1

2√2𝑠
 , then we 

get 𝑓 =
1

2√𝑠
 and 𝑔 = 0. By using Eq. (11), the position 

vector 𝛼(𝑠) of the general helix is expressed as 

 

𝛼(𝑠) = (√2 (𝑠𝑖𝑛(√𝑠) − √𝑠 𝑐𝑜𝑠(√𝑠)), 

                     −√2(√𝑠 𝑠𝑖𝑛(√𝑠) + 𝑐𝑜𝑠(√𝑠)) ,
1

√2
 𝑠). 

 

The shape of the curve 𝛼 is given in Figure 4.2. 

 

 
Figure 4.2. The general helix with 𝜅 =

1

2√2𝑠
 and 𝜏 =

1

2√2𝑠
 

 

Example 4.3. Let consider the general helix 𝛼(𝑠) with 

curvature 𝜅 =
1

√2−2𝑠2
 and torsion 𝜏 =

1

√2−2𝑠2
. Without 

finding the alternative curvatures, by using Eq. (20), the 

position vector of the general helix is obtained as follows: 

 

𝛼(𝑠) = (
𝑠2

2√2
 , −

𝑠 √1 − 𝑠2 + 𝑠𝑖𝑛−1(𝑠)

2√2
 ,
1

√2
𝑠  ). 

 

One can see the shape of the curve 𝛼 in Figure 4.3. 

 

 
Figure 4.3. The general helix with 𝜅 =

1

√2−2𝑠2
 and 

 𝜏 =
1

√2−2𝑠2
 

 

Example 4.4. The position vector 𝛼(𝑠) of the general 

helix with 𝜅 =
1

√2(𝑠2+1)
 and 𝜏 =

1

√2(𝑠2+1)
 can be found in 

parametric form as 
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𝛼(𝑠) = (
√1 + 𝑠2

√2
,−
𝑠𝑖𝑛ℎ−1(𝑠)

√2
,
1

√2
𝑠 ). 

The shape of the curve 𝛼 is given in Figure 4.4. 

 

Figure 4.4. The general helix with 𝜅 =
1

√2(𝑠2+1)
  and 

𝜏 =
1

√2(𝑠2+1)
 

 

 

5. Conclusions 

 

The problem of determining the position vector of an 

arbitrary curve given its curvature and torsion, known as 

solving natural or intrinsic equations, is still an open 

problem in Euclidean 3-space. In this study, we proposed 

a method based on alternative moving frame to solve this 

problem for general helices. Using the derivative 

formulae of alternating moving frame, we first built a 

vector differential equation correspond to a system of 

three differential equations in terms of the principal 

normal vector of a general helix. Then, by solving this 

system, we found the principal normal vector of the 

general helix, which allows us to find the position vector 

of the general helix. We gave the position vector of the 

general helix, which depends only on the first alternative 

curvature, in parametric form as in Eq. (11). By using the 

relation between the first alternative curvature and 

curvatures of Frenet frame as given in Eq. (2), we also 

gave the parametric representation of the general helix in 

terms of curvatures of Frenet frame as in Eq. (20). So, we 

have two ways to find the position vector of a general 

helix given its curvature and torsion. The first is to use 

Eq. (20) directly, and the second is to use Eq. (11) after 

finding the first alternative curvature with the help of Eq. 

(2). Moreover, we adapted these two ways to find the 

position vector of a circular helix. 

 

The problem discussed in the present paper was solved 

by a method based on the use of the Frenet frame in [5]. 

In that paper, a vector differential equation was 

constructed in terms of unit tangent vector by the aid of 

Frenet formulae and solved to find the position vector of 

a general helix. It can be said that the method based on 

the alternative moving frame used in the present paper 

for determining the position vector of a general helix is 

simpler and more practical compared to the method in 

[5]. While parameter change is required to obtain the 

vector differential equation for finding the position 

vector of a general helix in [5], it is another advantage of 

the present paper that this vector differential equation can 

be constructed according to the arc-length parameter of 

the curve without any parameter change. 

 

Since helices are used in many different fields such as 

biology, chemistry, mechanical engineering, and 

computer-aided geometric design, we hope that this study 

will contribute scientifically to the relevant fields. 

Furthermore, we expect that the examples of general 

helices obtained in the previous section can add variety 

to the examples of general helices in the literature. 
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