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Abstract

The main purpose in this study is to investigate some topological and algebraic properties of the double
series space |IVM |k defined by the absolute double weighted summability methods for k > 1. Beside this,

we determine the a-dual of the double series space |Np‘q |1 and the B(bp)- and y- duals of the double series

space |N,, , |k for k > 1. Finally, we characterize some new four dimensional matrix transformation classes

(|Np.q |k,v), (Wp.q |1, v) and (|Np‘q |1,Lk), where v denotes any spaces of double sequences M, and C,.

Hence, we extend some results about weighted means to double sequences.

Keywords: Double sequences, Dual spaces, Four dimensional weighted means, Four dimensional
matrix transformations, Pringsheim convergence.

1. Introduction

Recently, there has been an increased interest in studies
concerned on sequence spaces (see, [1-11]). Also, an
important area of study in sequence spaces is the
generalization of single-sequence spaces to double
sequence spaces [12-16]. The initial works on double
sequences have been given by Bromwich [17]. Also,
Zeltser [18] has studied both the theory of topological
double sequence spaces and the theory of summability of
double sequences in her PhD thesis. Later on, they were
studied by Hardy [19], Méricz [20], Méricz and Rhoades
[21], Mursaleen [22], Mursaleen and Basar [23], Demiriz
and Duyar [24], Demiriz and Erdem [25] and many
others.

A double sequence x = (x,.) is a double infinite array of
elements x,. forall r,s € N, where N = {0,1,2,...}. We
denote the set of all real or complex valued double
sequences by () which forms a vector space with
coordinatewise addition and scalar multiplication of
double sequences. Any vector subspace of (1 is called as
a double sequence space. We denote the space of all
bounded double sequences by M, , i.e.,

M, = {x = () €E Q¢ Xl = SUp x| < 00},
€

mneN
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which is a Banach space with the norm ||. ||. Consider
the double sequence x = (X,,,,) € Q. If for every given
€ > 0 there exists ny, = ng(€) € N and L € C such that
[%mn — L| < € for all m,n > n,, the double sequence
x = (Xmn) € Q is called convergent to the limit point L
in the Pringsheim’s sense, where C denotes the complex
field. Then, we write p — lim,; Xy = L, and L € C
is called the Pringsheim limit of x. By C,,, we denote the
space of all convergent double sequences in the
Pringsheim’s sense [26]. Unlike single sequences,
p —convergent double sequences need not be bounded.
Namely, the set C, — M, is not empty. Indeed,
following Boos [27], if we define the sequence x =
(Xmn) by
m;n=0,meN
Xpn: =3, m=0,n €N
0;m,n € N—{0}

for all m,n €N, then it is trivial that x € C, — M,
since p — limy, 00Xy = 0 but ||x]|o, = o0. Therefore,
we consider the set Cp,, of double sequences which are
both convergent in Pringsheim’s sense and bounded, i.e,
Cpp = C, N M. Hardy [19] proved that a sequence in
the space C, is said to be regularly convergent if it is a
single convergent sequence with respect to each index
and, C, denotes the set of all such sequences.
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Here and after, we assume that ¥ denotes any of the
symbols p, bp, or r, and k' denotes the conjugate of k,

thatis,%+%= 1f0r1<k<00,and%=0fork=1.

Let x = (x,,,) be a double sequence and define the
sequence S = (S,,) via x by

m n
Smn = Z Z Xij

i=0 j=0
for all m,n € N. Then, the pair of (x, s) and the sequence
5 = (Smn) are called as a double series and the sequence
of partial sums of the double series, respectively. For
brevity, here and in what follows we use the abbreviation
2i,j xij for the summation }.i2, 7%, x;;. If the double
sequence (S,,,) is convergent in the 9 —sense, then the
double series },;; x;; is said to be convergent in the

¥ —sense and it is denoted that ¥ —X;; x;; =9 —

11rnm,n—mosmn-

Quite recently, Basar and Sever have introduced the
Banach space £, of double sequences as

Ly = {X = (xmn) € Q:Z |xmn|k <
mn
which corresponds to the well-known classical sequence
space ¥}, of single sequences [28]. Also, for the special
case k =1, the space L, is reduced to the space L,
which was introduced by Zeltser [18].

Let A and u be two double sequence spaces, and A =
(amm- j) be any four dimensional complex infinite matrix.
Then, we say that A defines a four dimensional matrix
mapping from A into y, if for every double sequence x =
(xij) € 4, Ax = {(AX) mn}mmnen- the A-transform of x, is
in g, where

(Ax)mn =9 - Z AmnijXij (1.1
iJ

provided that the double series exists for each m,n € N.
By (4, 1), we denote the set of such all four dimensional
matrices transforming from the space 4 into the space p.
Thus, A = (@mni;) € (4, 1) if and only if the double
series on the right side of (1.1) converges in the sense of
9 foreachm,n € N and Ax € u forall x € A

The a-dual A%, B(9)-dual 2*® in regard to the
9 —convergence for 9 € {p, bp, r}, and y-dual A¥ of the
double sequence space A are defined by, respectively,

A% = {a =(ay) €Q : Z | @y x| < oo, for all (xy,;)
KL

e A},

160

/13(19): = [a = (akl) e

:9 — Z Ay Xy exists, for all (x;)

k1
e A}

A= [a =(ay) €N :

]

and

g
3

sup
mneN

Ag1 Xkl
0

Kl

< oo, for all (xy;) € /1}.

We define the ¥ —summability domain /129) of A=
(amm- j) in a space 1 of double sequences by

2

x=(xij)€Q:Ax

v - Z AmnijXij

ij

exists and isin A ;.

mneN

We write throughout for simplicity in notation for all
m,n, k,l € N that
A10xmn =Xmn — Xm+1n »
Bo1Xmn = Xmn — Xmn+1 »
A1 %mn = Bo1 (B10Xmn) = D19 (Bo1Xmn)
and
AIﬁ)amnkl = Amnkl — Amnk+1,1
Aléllamnkl = Amnkl — Amnk,l+1
A,fllamnkl = Aléll (Alﬁ)amnkl) = Alﬁ) (Agllamnkl)-

Now, we give some definitions about fundamental four
dimensional matrix methods. The four dimensional
Cesaro matrix C = (cmm- j) of order one is defined by
Cmnij = ymn’
0, otherwise
for all m,n,i,j € N—{0} [23]. The four dimensional

Cesaro matrix C = (cmm- j) is extended by means of the
four dimensional Riesz matrix.

1<i<m, 1<j<n

Let p = (pr), q = (q,) be two sequences of positive
numbers, and B, = Y¢_, Pr, and Q, = D}¥— qx- Then,
the four dimensional Riesz matrix RP? = (rflzij) is
defined by

piq; , .
0<i<m 0<j<n
pqa  _ ’ =l=m, =J=
7”mnij - PMQTI
0, otherwise

forallm,n,i,j € N [29]. Note that in the case p, = q; =
1 for all k € N, the Riesz matrix RP? is reduced to the
four dimensional Cesaro matrix of order one.
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Let }; ; x;; be an infinite double series with partial sums
(Spmn)- The double weighted mean transformation RE, of
a double sequence s = (s;,,) by means of the four
dimensional Riesz matrix is defined as

RIS =55 Zzplq,sl,, (m,n € N).

i=0 j=
We say that s = (S,,,,) is (N, Pn» Gn) summable or Riesz
summable to some number ¢ if, (see, [30])
p— llm RPI(s)=+¢

A double series }; ; xL ; is called summable |N, p,,, Gn i
or absolute double weighted summability ([31]), if

® * P Q k-1 X
z Z (pmqn) |AL Ry, 1 ()] < oo,
m4un

m=0 n=0
where, k = 1 and form,n>1

Au(Rm 1,- 1) qu _Rzzq 1,0
A11 (R ,-1) = R — Ron-s,

and
A11(Rm 1n— 1) qu _Rrelq 1,n

Further, it is easﬂy seen that

n
1
Rﬁ&(s)=P 0 ZZPinSij
M0 j=0

m
__1 Z
FnQn & 4
m n P Q.
= Z Z XL] ( l_1> (1 - ]_1). (1.2)
i L P Qn
i=0 j=0
Also, throughout the paper for brevity, we show RPY (s)
defined as in (1.2) by RPY.

— RN +R)T

m-1n-1*

-

xij(Pm - Pi—1)(Qn - Qj—l)

0

So, we can calculate for m,n = 0,

Ays Ry ey = Xoo, (1.3)
and, form,n > 1,
m
p
ARy, = B Pm Z Pi_1x, (14)
m-1 4~
n
q
A11R_1n 1= 0 Qn z Qj—lxoj: (1.5)
n<¥n—-1 j=1
and
A11Rm 1n-1
Pmn Z Z
P,_1Q;_1x (1.6)
" PuPro1QuQur g IR

Now, considering Sarigdl [31], we show the double series
space |1Vp,q |k by the set of all double series summable by

absolute  double weighted summability —method
|N, Pm» qnlks that iS,

|Np,q |k

={x= (x;;) €Q

: Z Z x;; is summable [N, pp,, ink};

which is a Banach space [15].

Many single sequence spaces have been defined by using
the matrix domain of Riesz means [32,33,34]. Bodur and
Giileg [13] have essentially studied some topological
properties of double series space |Cl,1| o determined
certain dual spaces and characterized the classes of four
dimensional matrix transformations. Also, Yesilkayagil
and Basar [29,35] have introduced the spaces
(M, )gat, (Cp)th, (Cbp,)th, (C/)gat and (L) pat as the
domain of four dimensional Riesz mean R?¢ in the spaces
M., Cp, Cpp, Gy and Ly, respectively. In this paper, we
investigate some topological and algebraic properties of
the absolutely double series space |IVM |k taking account
of absolute double weighted summability method for k >
1. Beside this, we determine the a-dual of the double
series space |va‘q|1 and the B(bp)- and y- duals of the

double series spaces |Np'q|k for k = 1. Finally, we

characterize some new classes of the four dimensional
matrix transformations.

2. The Absolutely Double Series Space of Double
Weighted Means

In this section, we give some properties of the absolutely
double weighted series spaces |va_q|k for k = 1. Also,

we determine the a- dual of the double series space
|1Vp‘q |1, B (bp)- and y- duals of the double series spaces

|NPJ‘1|;¢ for1 <k < oo.

Theorem 2.1. The set |1Vp,q|k becomes a linear space

with  the coordinatewise addition and scalar
multiplication, and |NM|k is a Banach space with the

norm

o o) PQ k=1 1/k
mxn
= (D) () ot

2.1)
and it is linearly norm 1som0rphlc to the space £, for 1 <
k < oo, where R, is defined as in (1.3 — 1.6).

Proof. Since the initial assertion is routine verification
and so we omit it.

To prove the fact that |IVp_q|k is norm isomorphic to the
space L, we should show the existence of a linear and
norm preserving bijection between the spaces |IVp,q |k and
L, for 1<k <o, Consider the transformation U
defined by

U: |Np.fI|k - Lk

x->y=Uk),
where U(x) = (Umn (x)) = (Ypmn) is stated by
Pan 1-1/k
Upn (X) = Y = < ) A11Rm 1,n-1 (2.2)
Pmdn

161
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form,n > 0and A;;RP? 1n-1is givenasin (1.3 — 1.6).
The linearity of U is clear. Also, x = 6 whenever U(x) =
6, where 6 denotes the zero vector. This says us that U is
injective.

Lety = (V) € Ly and define the sequence x =
viay = (Ymn) by

11 (J’m—Ln—l (

(Xmn)

Pt 1) P20z, (23)

Pm-19n-1

1 _ P\
Xmo = mAm (J/mo (p_) P )' (24)
1 Qn\'
Xon = A ( ) Q,— ), 2.5
on 0y 01 (3’0n . n-1 (2.5)
form,n > 1, and
X00 = Yoo» (2.6)

where A, and A, refer to the back difference notations,
that is, Ao (Xmn) = Xmn
Ao (Xmn) = Xmp — Xmn—q forallm,n € N.
In that case, it is seen that

Il = IV, = (Z |Umn(x)|k>

= Iyllg, <oo
for 1 < k < . So, this yields that U is surjective and
norm preserving. Thus, U is a linear and norm preserving
bijection which says the spaces |Np_q |k and L, are norm

— Xm-1n

isomorphic for 1 < k < oo, as desired.

Now, we may show that |va,q |k is a Banach space with

the norm defined by (2.1). To prove this, we can consider
"Let (E,p) and (F, o) be semi-normed spaces and ¥ :
(E,p) » (F,0) be an isometric isomorphism. Then
(E, p) is complete if and only if (F,0) is complete. In
particular, (E, p) is a Banach space if and only if (F, o)
is a Banach space." which can be found section (b) of
Corollary 6.3.41 in [27]. Since the transformation U
defined from |Np’q|k into £, by (2.2) is an isometric

isomorphism and the double sequence space L, is a
Banach space from Theorem 2.1 in [28], we deduce that
the space | N, , |k is a Banach space. This is the result that

we desired.

Now, we calculate the a-, B(bp)- and y- duals of the
double series spaces |IVp_q|k for k = 1. Before we give
some results based on their duals, we need to state the
following significant lemma which is essential for
proving next theorems.

162

Lemma 2.2. [35] Let A= (amm-j) be any four
dimensional infinite matrix. At that case, the following
statements are satisfied:

(a) Let 0 < k < 1. Then, A = (ampnij) € (L, M,,) iff
A= sup |amnij| < oo, (2.7)
mn,i,jEN
(b) Let 1 < k < o0. Then, A = (ampij) € (L, M,,) iff
k !
A, = sup Z |amm-j| < oo, (2.8)
m,neN 77

(¢) Let 0<k<1 and 1<k; <oo. Then, A=
(@mnij) € (L, Ly,) iff

Z |‘7lmm'j|k1 < .
mmn

(d)Let0 < k < 1.Then, A = (amni;) € (Lx, Cpp) iff the
condition (2.7) holds and there exists a (Ai]-) € ) such
that

i,jeN

bp — lim apy; = (2.9)

mmn—oo

A

(e) Let 1 < k < 0. Then, A = (ayni;) € (L, Cpp) iff
(2.8) and (2.9) are satisfied.

To shorten the following theorems and their proofs, let us
denote the sets E), with k € {1,2,3,4} as follows for § =

(Smn) €Q:

E, = {f €Q: sup Z | frnnis| < w], (2.10)
1)

E; = {E €EQ:bp— 11m dfnn” exists} ,(2.11)
- €))
E; = {f €Q: sup |dmm]| < oo}, (2.12)
mnl jeEN
E,={¢€q: |a® 2.13
4 E sup mnij '( . )
mneN T

where the four dimensional matrices D® = (dfr’fr)li j) and

F = (fimnij) are defined by
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m=n=0,

EOO ’

$io

)

Q,)“" <€o;
(=] A

Qj 1<qj 01 Qj—l
<fij

(i) G
P_10Q;-1

piq;
fin PiQn 1k

Aqg — Py,
P/ \piqn

Aos (

a®

mnij

= 9
Ayy

Qj— mej

and

( $oo m=n=0,
P
fmo_m'

m
_ EmOPm—Z

’

n=0andi=m,

Pm-1
Qn
f _l
on an
_ SCOnQn—Z
In-1
fman_z Qn—z

’

m=0 andj =n,

fmnij =1
Pm-19n-1
_ fmnpm—ZQn
Pm-1Gn
_ Scann—ZPm
PmGn-1
B

i=mandj=n,
" Pmn

$m
0;

otherwise

respectively.

Now, we give the theorems determining the a- dual of
the double series space |1Vp_q |1 and B(bp)- and y- duals

of the double series spaces |IVp_q|k fork = 1.

n=0andi=m,

m=0andj =n,

1/k
) P_1Qj_4, 1<i<m-land1<j<n-1,

163

n=0and1<i<m-1,

), m=0and1<j<n-1,

(2.14)

1<i<m-—1landj=n,
N\ [P0\
)(m—Q]> Qj-1, i=mandl1<j<n-—1,

i=mand j =n,

otherwise,

n=0andi=m-—1,

m=0andj=n-1,

(2.15)

i=m-—1landj=n-1,
=m-—1andj=n,

i=mandj=n-1,

Theorem 2.3. Let the set E; and the four dimensional
matrix F = (fmnij) be defined as in (2.10) and (2.15),

_ a
respectively. Then, (|Np,q|1) = E;.

Proof. Let x = () € |1Vp‘q|1, & = (&mn) € Q. Taking
account of relations in (2.3 — 2.6) for m,n = 0, we can
calculate the following equalities:

form,n > 1,
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3 PnQ _ B(bp) _ B(bp)
Emnxmn = P m(; ((pm qn) Pm—lQn—lymn (|Np.q|1> = EZ n E3 and (|Npq| ) = E2 n E4
mot n_lme;n_ln for1 < k < oo.
- <p q )Pm—lQn—ZYm,n—l
Pp_10n min Proof. Let § = (§np) € Q and x = () € [Ny g, be
B (pm_lqn)Pm‘ZQ"‘ly m-=1n given. Then, we deduce from Theorem 2.1 that there
Po_1Qn-1 p exists a double sequence y = (yi j) € L. Therefore, by
+ Pm—1Gn-1 m-2Cn-2Ym-1n-1) using the equations (2.3 — 2.6) we can calculate that
fmn
= m n
m 1Qn 1 —
) - Z Z £y (2.16)
Z Z (—1)m*n- (L+J)< )ylj 101 i=0 j=0
i=m-1 j=n-1 P; 1/k
= (FY)mn » = $00Yoo + Z $ioYio (;)
i=1 :
m
forn=0andm > 1, z £y, (Pi—l) % p,_,
oYi-10\——
_ L ((Pn), e T TRV
Emoxmo - Emo P_ p_ m-1Ymo n 1/k n 1
m " + f Q] _ f Q]—l kQ]—Z
Py 0;jYoj q 0jYo,j-1 p 0
— m-2 (_) Ym-1,0 j=1 j=2 Jj-1 Jj—1
Pm-1 m n f
. n z U
- meP iy Z ( 1)m L( L) i-1Yio i=1 j=1 Pl—lQ]—1
=m-

=(Fy)m0’
form=0andn > 1,

SonXon = fOn%((S:) Qn-1Yon

= Qn—2 (2: i)J’o,n—1>
= fom Z (-1 ’(Q’>Q, 1Yoj

j=n-1
=(F}’)0n,

and forn =m =0,
00%00 = $00Yoo = (F¥)oo »

where the four dimensional matrix F = (fpn;) is
defined by (2.15). In this fact, we obtain that &x =
(&nXmn) € L, whenever x € |IVM|1 if and only if
Fy € L, whenever y € L,. This implies that & =
(Emn) € (|1Vp'q|1)a iff F € (£,,£,). Then, we deduce
by using (c¢) of Lemma 2.2 with k; = k = 1 that

sup Z |fmnij| < .

ijeN &=

— a .
Hence, we get (|N1’r‘I|1) = E,, as desired.
This step concludes the proof.

Theorem 2.4. Let the sets E,, E;, E, and the four
dimensional matrix D® = (dgr)lij) be defined as in
(2.11 — 2.13) and (2.14), respectively. Then, we have

164

for every i,j € N. Also, by the generalized Abel
transformation for double sequences we obtain that
mn
Umn = Z A1 X1

k,1=0
m-1n-1 m-—1

= Z Sl11a + Z Sknf10Qxn

k,1=0 k=0
n-1

+ z SmlA()laml + SmnAmn»
1=0

where

mn

Smn = Xkl

k,1=0
for every m,n € N [29]. With the generalized Abel
transformation for double sequences, we can calculate
relation (2.16) as follows:

B MK
Zmn = €00Y00 + $moYmo (p )

e Sio
oS () sul2)
-1

Q 1/k
+€0ny0n < n)
an

n-1

Q. \"* i
+ Z YojQj-1 (q—j) Doy <Q]_O_jl>

j=1
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m-1n-1 1/k . a .. PQ
f.. P.Q. A(L,]) mnij i¥j p. ] < 3.2
* Z A11< ; Yij — Pi_1Qj-1 milg‘)eN HA\P1Q-1 ) \pig; i-1Qj-a| < -(32)
&= Pi_1Qj-1 piq; b J J
m-1 1/k _
in PQn () Let 1<k<o. Then, A= (anu)€
+ Ao (P- 0 )yin< . ) Pi_1Qn—1 = " v if
= i-1¢n-1 Pidn (|NP"I|k‘ Mu) if and only i
n— 1/k _ B(bp)
$myj Pn0Q;
+Z Aoy (ﬁ Vmj = ] Pr_1Qjq Amn € (|Np'q|k) (3:3)
= m-1¥j-1 me} and
P Q)" K )
+ EmnYmn (—) @@n ( Amnij ) (Pi QJ>
sup A — || — P_,Q;_
Pmfn mneN 4= oA\P_1Qj-1) \pig; o
UL < oo, 3.4
55 - e
mnij/tj
i=0 j=0 Proof. Part (a) can be proved using Lemma 2.2 (a) in a
- (D k) y)) _ manner similar to that used in the proof of part (b) of
mn

Thus, we see that £x = (§pnXmn) € CSpp Whenever x =
(Xmn) € |1Vp,q|k if and only if z= (zpny) €Cyy
whenever y = (yl- ]-) € L. This leads to the fact that & =
— B(bp) .
(Emn) € (INpql,) if and only if DU € (£, Cpp),
(k)-.) is
mnij
defined in (2.14) for every m,n,i,j € N. Hence, we
— B(bp) — B(bp)
deduce (|N1’1‘1|1) =E, N E; and (|Np_q|k) =

E, NE, for 1 < k < oo from parts (d) and (e) of Lemma
2.2, respectively.

where the four dimensional matrix D™ = (d

Theorem 2.5. Let the sets E;, E, and the four
dimensional matrix D® = (dr(,’fr)lij) be defined as in
(2.12), (2.13) (2.14), Then,

and respectively.

— Y _ Y
(INpql,) = Es and (Npql, ) = Eq for1 <k < oo,
Proof. The proof of this theorem is similar to the proof
Theorem 2.4 using Parts (a) and (b) of Lemma 2.2 in
place of parts (d) and (e) of Lemma 2.2, respectively. To
avoid the repetition of similar statements, we omit the
details.

3. Characterizations of Some Classes of Four
Dimensional Matrices

In the present section, we characterize some four
dimensional matrix mappings from the double series
spaces | N, , |1 and [N, , |k to the double sequence spaces

My, Cppand L for 1 < k < co.

Theorem 3.1. Suppose that A = (amm- j) be an arbitrary
four dimensional infinite matrix. Then, the following
statements hold:

(a4 = (amm-]-) € (|Np_q|1, Mu) if and only if

_ B (bp)
A € (INpql,) (3.1)

and
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Theorem 3.1. To avoid repeating similar statements, we
prove for 1 < k < oo,

() Let1 <k <ooandx = (x;;) € |va_q|k. Then, from

Theorem 2.1 there exists a double sequence y = (V) €
L, via x by (2.2). Then, using the equalities (2.3 — 2.6),
for (s,t)th rectangular partial sum of the series
Zi,j amm-jxl-j, we obtain that

st

z AmnijXij

iJ

[s,t]
mn T

(Ax) (3.5)

pAME 0\ /¥
= mnooYoo T AmnsoYso (p_> + AmnotYor (q_)
¢

S

s—1
P; 1/k .. a .
+ Z YioPi—1 (_l) A%) (;n_mo)
=~ Pi i-1

t-1 Q 1/k a
) y oi
+ Z yonj—l <_]> Ag{)( . ]>
= q; Qj—l
j=1
s—=1,t—1 l/k
@[ Gmnij P,Q;
3 ), (A",
L M A\P1Qio1) Y \piay et
i,j=1
Amnit PiQt

s—1
@in
) 8
s 10 \P_1Qe—1

t—-1
+ Z A (
=1

1/k
)yit <PiCIt> Pi_1Q¢1

Pst 1k

Ps%' Ps—le—l

o
PQ,

1/k
+ AmnstYst (E)

Amns i

Ps—le—l

s,t
= Z g;rtlinjyij = (Gmny)[s,t]
ij

for every t,s,m,n € N, where the four dimensional
matrix G, = (g;;l{;) is defined by
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Amnio
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AN
) st (),
l
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Amnoos s=t= 0'
1/k
Amnso ) , t=0andi=s,
amnm( ) , s=0andj =t,

t=0and1<i<s-—1,

a .
( ) (”)<M>, s=0and1<j<t-—-1,
o Qj-1
Istij = a PO, 1/k
A(”)< mnij )(#) Pi1Qj-1, 1<i<s—land1<j<t-1,
l 1Q} 1 pin
a P.OAVE
(U) ( mmt)( LQt) P;_q, 1<i<s—1landj=t,
piq:
1/k
.~ fa A\ (P.Q;
Ag?(ﬂ)( SQ’) Q-1 i=sand1<j<t-—-1,
Qj-1 ) \Psq;
PO .
Amnst (ﬁ) , i=sandj=t
0, otherwise
for every s,t,i,j € N[ Then, from (3.5), we have PG 1/k . k'
t . . .. .
ADE = Grn)is 11 (36)  sup (—f) Pi1Qj-1ASY (—""‘” )
mneN piq; Pl'—le—l

Therefore, it follows from (3.6) that the bp-convergence
of (Ax)[s ] and the statement Gmn € (Lk, C’bp) are
Np,q|k and m,n € N. Hence, the
condition (3.3) is satisfied for each fixed m,n € N, that

_ _ B(bP)
is, Apn € (|NT"‘1|k) for each fixed m,n € N and
1<k<oo.

equivalent for all x € |

If we take bp-limit in the terms of the matrix G,,, =
(gsn]) while s,t — oo, we obtain that

bp - llm gstl]

P,Q;
piq;

amnij

3.7
P_1Qj4 (37)

1
k ..
) Pi—le—lAgli]) (

With the relation (3.7), we can define the four
dimensional matrix G = (gmm- ]-) as

Jk
PQ;\' .
Imnij = ( - }> Pi—1Qj—1A§li])<

piq;
In this situation, we deduce from the equations (3.6) and
(3.7) that

bp — 11m 1 (AX)mn s = pp

amnij

P_1Qj4

(3.8)

“)

), by considering the relation

—lim(Gy)mn-

Thus, one can write that 4 = (amm- j) € (| |

if and only if G € (L, M
(3.8).

Therefore, using Lemma 2.2 (b), we calculate that
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< oo,
which gives the condition (3.4).

So, we conclude that 4 = (ayn;j) € (|Np"1|k’ Mu) if
and only if the conditions (3.3) and (3.4) are satisfied.

This step completes the proof.

Theorem 3.2. Suppose that A = (amm- j) be an arbitrary
four dimensional infinite matrix. In that case, the
following statements hold:

@) A = (aynij) € (|Nyql, Cop) if and only if (3.1),
(3.2) are satisfied, and there exists (ai(]-l)) €  such that
—_ @

(Pin) 10 1A(”)( >_ o,

piq;
(b) Let 1 < k < o0. Then, 4 = (aynij) € (|Npql, Cop)
if and only if (3.3), (3.4) are satisfied, and there exists

(a(k)) € Q such that

P.0; 1/k B
< : ]) Pi—le—lAglij)

k

piq;
ij
Proof. This theorem is easily proved by proceeding as in
the proof of Theorem 3.1 by using parts (d) and (e) of
Lemma 2.2.

Amni j

P_10Qj4

bp — lim

m,n—oo

amnij

P_1Qj4

bp — lim

m,n—oo
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Theorem 3.3. Suppose that A = (amni j) be an arbitrary
four dimensional infinite matrix. Then, A € (|Np,q |1, Lk)
if and only if (3.1) and

el

PO,
Proof. This theorem is easily proved by proceeding as in
the proof of Theorem 3.1 by using part (¢) of Lemma
2.2.

amnij

P_1Qj1

@nN

11 <o

sup
L’}ENm,n piq;

holds for 1 < k < oo.
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