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Abstract 

 

The main purpose in this study is to investigate some topological and algebraic properties of the double 

series space |𝑁𝑝,𝑞|𝑘 defined by the absolute double weighted summability methods for 𝑘 ≥ 1. Beside this, 

we determine the 𝛼-dual of the double series space |𝑁𝑝,𝑞|1 and the 𝛽(𝑏𝑝)- and 𝛾- duals of the double series 

space |𝑁𝑝,𝑞|𝑘 for 𝑘 ≥ 1. Finally, we characterize some new four dimensional matrix transformation classes 

(|𝑁𝑝,𝑞|𝑘 , 𝜐), (|𝑁𝑝,𝑞|1, 𝜐) and (|𝑁𝑝,𝑞|1, ℒ𝑘), where 𝜐 denotes any spaces of double sequences M𝓊  and 𝒞𝑝. 

Hence, we extend some results about weighted means to double sequences. 

 

Keywords: Double sequences, Dual spaces, Four dimensional weighted means, Four dimensional 

matrix transformations, Pringsheim convergence.  

 

1. Introduction 

 

Recently, there has been an increased interest in studies 

concerned on sequence spaces (see, [1-11]). Also, an 

important area of study in sequence spaces is the 

generalization of single-sequence spaces to double 

sequence spaces [12-16]. The initial works on double 

sequences have been given by Bromwich [17]. Also, 

Zeltser [18] has studied both the theory of topological 

double sequence spaces and the theory of summability of 

double sequences in her PhD thesis. Later on, they were 

studied by Hardy [19], Móricz [20], Móricz and Rhoades 

[21], Mursaleen [22], Mursaleen and Başar [23], Demiriz 

and Duyar [24], Demiriz and Erdem [25] and many 

others. 

 

A double sequence 𝑥 = (𝑥𝑟𝑠) is a double infinite array of 

elements 𝑥𝑟𝑠 for all 𝑟, 𝑠 ∈ ℕ, where ℕ = {0,1,2, . . . }. We 

denote the set of all real or complex valued double 

sequences by Ω which forms a vector space with 

coordinatewise addition and scalar multiplication of 

double sequences. Any vector subspace of Ω is called as 

a double sequence space. We denote the space of all 

bounded double sequences by M𝓊 , i.e., 

M𝓊 = {𝑥 = (𝑥𝑚𝑛) ∈ Ω ∶ ‖𝑥‖∞ = sup
𝑚,𝑛∈ℕ

|𝑥𝑚𝑛| < ∞}, 

which is a Banach space with the norm ‖. ‖∞. Consider 

the double sequence 𝑥 = (𝑥𝑚𝑛) ∈ Ω. If for every given 

𝜖 > 0 there exists 𝑛0 = 𝑛0(𝜖) ∈ ℕ and 𝐿 ∈ ℂ such that 
|𝑥𝑚𝑛 − 𝐿| < 𝜖 for all 𝑚, 𝑛 > 𝑛0, the double sequence 

𝑥 = (𝑥𝑚𝑛) ∈ Ω is called convergent to the limit point 𝐿 

in the Pringsheim’s sense, where ℂ denotes the complex 

field. Then, we write 𝑝 − lim𝑚,𝑛→∞𝑥𝑚𝑛 = 𝐿, and 𝐿 ∈ ℂ 

is called the Pringsheim limit of 𝑥. By 𝒞𝑝, we denote the 

space of all convergent double sequences in the 

Pringsheim’s sense [26]. Unlike single sequences, 

𝑝 −convergent double sequences need not be bounded. 

Namely, the set 𝒞𝑝 −M𝓊  is not empty. Indeed, 

following Boos [27], if we define the sequence 𝑥 =
(𝑥𝑚𝑛) by 

𝑥𝑚𝑛: = {
𝑚; 𝑛 = 0,𝑚 ∈ ℕ
𝑛;𝑚 = 0, 𝑛 ∈ ℕ
0;𝑚, 𝑛 ∈ ℕ − {0}

 

for all 𝑚, 𝑛 ∈ ℕ, then it is trivial that 𝑥 ∈ 𝒞𝑝 −M𝓊, 

since 𝑝 − lim𝑚,𝑛→∞𝑥𝑚𝑛 = 0 but ‖𝑥‖∞ = ∞. Therefore, 

we consider the set 𝒞𝑏𝑝 of double sequences which are 

both convergent in Pringsheim’s sense and bounded, i.e, 

𝒞𝑏𝑝 = 𝒞𝑝 ∩M𝓊. Hardy [19] proved that a sequence in 

the space 𝒞𝑝 is said to be regularly convergent if it is a 

single convergent sequence with respect to each index 

and, 𝒞𝑟 denotes the set of all such sequences.  
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Here and after, we assume that 𝜗 denotes any of the 

symbols 𝑝, 𝑏𝑝, or 𝑟, and 𝑘′ denotes the conjugate of 𝑘, 

that is, 
1

𝑘
+

1

𝑘′
= 1 for 1 < 𝑘 < ∞, and 

1

𝑘′
= 0 for 𝑘 = 1. 

 

Let 𝑥 = (𝑥𝑚𝑛) be a double sequence and define the 

sequence 𝑠 = (𝑠𝑚𝑛) via 𝑥 by 

𝑠𝑚𝑛 =∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑥𝑖𝑗  

for all 𝑚, 𝑛 ∈ ℕ. Then, the pair of (𝑥, 𝑠) and the sequence 

𝑠 = (𝑠𝑚𝑛) are called as a double series and the sequence 

of partial sums of the double series, respectively. For 

brevity, here and in what follows we use the abbreviation 
∑𝑖,𝑗 𝑥𝑖𝑗 for the summation ∑∞𝑖=0 ∑

∞
𝑗=0 𝑥𝑖𝑗 . If the double 

sequence (𝑠𝑚𝑛) is convergent in the 𝜗 −sense, then the 

double series ∑𝑖,𝑗 𝑥𝑖𝑗 is said to be convergent in the 

𝜗 −sense and it is denoted that 𝜗 − ∑𝑖,𝑗 𝑥𝑖𝑗 = 𝜗 −

lim𝑚,𝑛→∞𝑠𝑚𝑛 . 
 

Quite recently, Başar and Sever have introduced the 

Banach space ℒ𝑘 of double sequences as 

ℒ𝑘 = {𝑥 = (𝑥𝑚𝑛) ∈ Ω:∑

𝑚,𝑛

|𝑥𝑚𝑛|
𝑘 < ∞}, 

which corresponds to the well-known classical sequence 

space ℓ𝑘 of single sequences [28]. Also, for the special 

case 𝑘 = 1, the space ℒ𝑘 is reduced to the space ℒ𝑢 , 
which was introduced by Zeltser [18]. 

 

Let 𝜆 and 𝜇 be two double sequence spaces, and 𝐴 =

(𝑎𝑚𝑛𝑖𝑗) be any four dimensional complex infinite matrix. 

Then, we say that 𝐴 defines a four dimensional matrix 

mapping from 𝜆 into 𝜇, if for every double sequence 𝑥 =

(𝑥𝑖𝑗) ∈ 𝜆, 𝐴𝑥 = {(𝐴𝑥)𝑚𝑛}𝑚,𝑛∈ℕ, the 𝐴-transform of 𝑥, is 

in 𝜇, where 

(𝐴𝑥)𝑚𝑛 = 𝜗 −∑

𝑖,𝑗

𝑎𝑚𝑛𝑖𝑗𝑥𝑖𝑗                     (1.1) 

provided that the double series exists for each 𝑚, 𝑛 ∈ ℕ. 
By (𝜆, 𝜇), we denote the set of such all four dimensional 

matrices transforming from the space 𝜆 into the space 𝜇. 

Thus, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (𝜆, 𝜇) if and only if the double 

series on the right side of (1.1) converges in the sense of 

𝜗 for each 𝑚, 𝑛 ∈ ℕ and 𝐴𝑥 ∈ 𝜇 for all 𝑥 ∈ 𝜆. 
 

The 𝛼-𝑑𝑢𝑎𝑙 𝜆𝛼 , 𝛽(𝜗)-𝑑𝑢𝑎𝑙 𝜆𝛽(𝜗) in regard to the 

𝜗 −convergence for 𝜗 ∈ {𝑝, 𝑏𝑝, 𝑟}, and 𝛾-𝑑𝑢𝑎𝑙 𝜆𝛾  of the 

double sequence space 𝜆 are defined by, respectively, 

𝜆𝛼: = {𝑎 = (𝑎𝑘𝑙) ∈ Ω ∶ ∑

𝑘,𝑙

|𝑎𝑘𝑙𝑥𝑘𝑙| < ∞, for all (𝑥𝑘𝑙)

∈ 𝜆}, 

 

𝜆𝛽(𝜗): = {𝑎 = (𝑎𝑘𝑙) ∈ Ω 

∶ 𝜗 −∑

𝑘,𝑙

𝑎𝑘𝑙𝑥𝑘𝑙  exists, for all (𝑥𝑘𝑙)

∈ 𝜆}, 

and 

𝜆𝛾: = {𝑎 = (𝑎𝑘𝑙) ∈ Ω ∶ sup
𝑚,𝑛∈ℕ

|∑

𝑚,𝑛

𝑘,𝑙=0

𝑎𝑘𝑙𝑥𝑘𝑙|

< ∞, for all (𝑥𝑘𝑙) ∈ 𝜆}. 

 

We define the 𝜗 −summability domain 𝜆𝐴
(𝜗)

 of 𝐴 =

(𝑎𝑚𝑛𝑖𝑗) in a space 𝜆 of double sequences by 

𝜆𝐴
(𝜗)

= {𝑥 = (𝑥𝑖𝑗) ∈ Ω ∶ 𝐴𝑥

= (𝜗 −∑

𝑖,𝑗

𝑎𝑚𝑛𝑖𝑗𝑥𝑖𝑗)

𝑚,𝑛∈ℕ

 exists and is in 𝜆}. 

 

We write throughout for simplicity in notation for all 

𝑚, 𝑛, 𝑘, 𝑙 ∈ ℕ that 

 Δ10𝑥𝑚𝑛 = 𝑥𝑚𝑛 − 𝑥𝑚+1,𝑛  , 

 Δ01𝑥𝑚𝑛 = 𝑥𝑚𝑛 − 𝑥𝑚,𝑛+1  , 

Δ11𝑥𝑚𝑛 = Δ01(Δ10𝑥𝑚𝑛) = Δ10(Δ01𝑥𝑚𝑛) 
and 

 Δ10
𝑘𝑙 𝑎𝑚𝑛𝑘𝑙 = 𝑎𝑚𝑛𝑘𝑙 − 𝑎𝑚𝑛,𝑘+1,𝑙  , 

 Δ01
𝑘𝑙 𝑎𝑚𝑛𝑘𝑙 = 𝑎𝑚𝑛𝑘𝑙 − 𝑎𝑚𝑛𝑘,𝑙+1 , 

Δ11
𝑘𝑙 𝑎𝑚𝑛𝑘𝑙 = Δ01

𝑘𝑙 (Δ10
𝑘𝑙 𝑎𝑚𝑛𝑘𝑙) = Δ10

𝑘𝑙 (Δ01
𝑘𝑙 𝑎𝑚𝑛𝑘𝑙). 

 

Now, we give some definitions about fundamental four 

dimensional matrix methods. The four dimensional 

Cesàro matrix 𝐶 = (𝑐𝑚𝑛𝑖𝑗) of order one is defined by 

𝑐𝑚𝑛𝑖𝑗 = {

1

𝑚𝑛
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

0, otherwise
 

for all 𝑚, 𝑛, 𝑖, 𝑗 ∈ ℕ − {0} [23]. The four dimensional 

Cesàro matrix 𝐶 = (𝑐𝑚𝑛𝑖𝑗) is extended by means of the 

four dimensional Riesz matrix. 

 

Let 𝑝 = (𝑝𝑘), 𝑞 = (𝑞𝑘) be two sequences of positive 

numbers, and 𝑃𝑛 = ∑
𝑛
𝑘=0 𝑝𝑘 , and 𝑄𝑛 = ∑

𝑛
𝑘=0 𝑞𝑘 . Then, 

the four dimensional Riesz matrix 𝑅𝑝𝑞 = (𝑟𝑚𝑛𝑖𝑗
𝑝𝑞

) is 

defined by 

𝑟𝑚𝑛𝑖𝑗
𝑝𝑞

= {

𝑝𝑖𝑞𝑗

𝑃𝑚𝑄𝑛
, 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛

0,                otherwise
 

for all 𝑚, 𝑛, 𝑖, 𝑗 ∈ ℕ [29]. Note that in the case 𝑝𝑘 = 𝑞𝑘 =
1 for all 𝑘 ∈ ℕ, the Riesz matrix 𝑅𝑝𝑞 is reduced to the 

four dimensional Cesàro matrix of order one. 
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Let ∑𝑖,𝑗 𝑥𝑖𝑗  be an infinite double series with partial sums 

(𝑠𝑚𝑛). The double weighted mean transformation 𝑅𝑚𝑛
𝑝𝑞

 of 

a double sequence 𝑠 = (𝑠𝑚𝑛) by means of the four 

dimensional Riesz matrix is defined as 

𝑅𝑚𝑛
𝑝𝑞 (𝑠) =

1

𝑃𝑚𝑄𝑛
∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑝𝑖𝑞𝑗𝑠𝑖𝑗  , (𝑚, 𝑛 ∈ ℕ). 

We say that 𝑠 = (𝑠𝑚𝑛) is (𝑁, 𝑝𝑛, 𝑞𝑛) summable or Riesz 

summable to some number ℓ if, (see, [30]) 

𝑝 − lim
𝑚,𝑛→∞

𝑅𝑚𝑛
𝑝𝑞 (𝑠) = ℓ. 

A double series ∑𝑖,𝑗 𝑥𝑖𝑗 is called summable |𝑁, 𝑝𝑛 , 𝑞𝑛|𝑘 

or absolute double weighted summability ([31]), if 

∑

∞

𝑚=0

∑

∞

𝑛=0

(
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

)
𝑘−1

|Δ11𝑅𝑚−1,𝑛−1
𝑝𝑞 (𝑠)|

𝑘
< ∞, 

where, 𝑘 ≥ 1 and for 𝑚, 𝑛 ≥ 1 

Δ11(𝑅𝑚−1,−1
𝑝𝑞

) = 𝑅𝑚0
𝑝𝑞
− 𝑅𝑚−1,0

𝑝𝑞
, 

Δ11(𝑅−1,𝑛−1
𝑝𝑞

) = 𝑅0𝑛
𝑝𝑞
− 𝑅0,𝑛−1

𝑝𝑞
, 

and 

Δ11(𝑅𝑚−1,𝑛−1
𝑝𝑞

) = 𝑅𝑚𝑛
𝑝𝑞
− 𝑅𝑚−1,𝑛

𝑝𝑞
− 𝑅𝑚,𝑛−1

𝑝𝑞
+ 𝑅𝑚−1,𝑛−1

𝑝𝑞
. 

Further, it is easily seen that 

𝑅𝑚𝑛
𝑝𝑞 (𝑠) =

1

𝑃𝑚𝑄𝑛
∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑝𝑖𝑞𝑗𝑠𝑖𝑗                                          

              =
1

𝑃𝑚𝑄𝑛
∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑥𝑖𝑗(𝑃𝑚 − 𝑃𝑖−1)(𝑄𝑛 − 𝑄𝑗−1)   

=∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑥𝑖𝑗 (1 −
𝑃𝑖−1
𝑃𝑚

) (1 −
𝑄𝑗−1

𝑄𝑛
).       (1.2) 

Also, throughout the paper for brevity, we show 𝑅𝑚𝑛
𝑝𝑞 (𝑠) 

defined as in (1.2) by 𝑅𝑚𝑛
𝑝𝑞

. 

 

So, we can calculate for 𝑚, 𝑛 = 0, 
Δ11𝑅𝑚−1,𝑛−1

𝑝𝑞
= 𝑥00 ,                           (1.3) 

and, for 𝑚, 𝑛 ≥ 1, 

Δ11𝑅𝑚−1,−1
𝑝𝑞

=
𝑝𝑚

𝑃𝑚𝑃𝑚−1
∑

𝑚

𝑖=1

𝑃𝑖−1𝑥𝑖0 ,               (1.4) 

Δ11𝑅−1,𝑛−1
𝑝𝑞

=
𝑞𝑛

𝑄𝑛𝑄𝑛−1
∑

𝑛

𝑗=1

𝑄𝑗−1𝑥0𝑗  ,               (1.5) 

and 

Δ11𝑅𝑚−1,𝑛−1
𝑝𝑞

=
𝑝𝑚𝑞𝑛

𝑃𝑚𝑃𝑚−1𝑄𝑛𝑄𝑛−1
∑

𝑚

𝑖=1

∑

𝑛

𝑗=1

𝑃𝑖−1𝑄𝑗−1𝑥𝑖𝑗 .                    (1.6) 

 

Now, considering Sarıgöl [31], we show the double series 

space |𝑁𝑝,𝑞|𝑘 by the set of all double series summable by 

absolute double weighted summability method 

|𝑁, 𝑝𝑚 , 𝑞𝑛|𝑘, that is,  

|𝑁𝑝,𝑞|𝑘

= {𝑥 = (𝑥𝑖𝑗) ∈ Ω

∶ ∑ ∑ 𝑥𝑖𝑗  is summable |𝑁, 𝑝𝑚, 𝑞𝑛|𝑘}, 

which is a Banach space [15]. 

 

Many single sequence spaces have been defined by using 

the matrix domain of Riesz means [32,33,34]. Bodur and 

Güleç [13] have essentially studied some topological 

properties of double series space |𝐶1,1|𝑘, determined 

certain dual spaces and characterized the classes of four 

dimensional matrix transformations. Also, Yeşilkayagil 

and Başar [29,35] have introduced the spaces 

(M𝓊 )𝑅𝑞𝑡 , (𝒞𝑝)𝑅𝑞𝑡 , (𝒞𝑏𝑝,)𝑅𝑞𝑡 , 
(𝒞𝑟)𝑅𝑞𝑡 and (ℒ𝑠)𝑅𝑞𝑡 as the 

domain of four dimensional Riesz mean 𝑅𝑞𝑡 in the spaces 

M𝓊, 𝒞𝑝, 𝒞𝑏𝑝, 𝒞𝑟 and ℒ𝑠, respectively.  In this paper, we 

investigate some topological and algebraic properties of 

the absolutely double series space |𝑁𝑝,𝑞|𝑘 taking account 

of absolute double weighted summability method for 𝑘 ≥
1. Beside this, we determine the 𝛼-dual of the double 

series space |𝑁𝑝,𝑞|1 and the 𝛽(𝑏𝑝)- and 𝛾- duals of the 

double series spaces |𝑁𝑝,𝑞|𝑘 for 𝑘 ≥ 1. Finally, we 

characterize some new classes of the four dimensional 

matrix transformations. 

 

2. The Absolutely Double Series Space of Double 

Weighted Means 

 

In this section, we give some properties of the absolutely 

double weighted series spaces |𝑁𝑝,𝑞|𝑘 for 𝑘 ≥ 1. Also, 

we determine the 𝛼- dual of the double series space 

|𝑁𝑝,𝑞|1, 𝛽
(𝑏𝑝)- and 𝛾- duals of the double series spaces 

|𝑁𝑝,𝑞|𝑘 for 1 ≤ 𝑘 < ∞. 

 

Theorem 2.1. The set |𝑁𝑝,𝑞|𝑘 becomes a linear space 

with the coordinatewise addition and scalar 

multiplication, and |𝑁𝑝,𝑞|𝑘 is a Banach space with the 

norm 

‖𝑥‖|𝑁𝑝,𝑞|𝑘
= (∑

∞

𝑚=0

∑

∞

𝑛=0

(
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

)
𝑘−1

|Δ11𝑅𝑚−1,𝑛−1
𝑝𝑞

|
𝑘
)

1/𝑘

< ∞,                                                  (2.1) 
and it is linearly norm isomorphic to the space ℒ𝑘 for 1 ≤
𝑘 < ∞, where 𝑅𝑚𝑛

𝑝𝑞
 is defined as in (1.3 − 1.6). 

 

Proof. Since the initial assertion is routine verification 

and so we omit it. 

To prove the fact that |𝑁𝑝,𝑞|𝑘 is norm isomorphic to the 

space ℒ𝑘, we should show the existence of a linear and 

norm preserving bijection between the spaces |𝑁𝑝,𝑞|𝑘 and 

ℒ𝑘 for 1 ≤ 𝑘 < ∞. Consider the transformation 𝑈 

defined by 

𝑈 ∶ |𝑁𝑝,𝑞|𝑘 → ℒ𝑘 

 

                                  𝑥 → 𝑦 = 𝑈(𝑥), 

where 𝑈(𝑥) = (𝑈𝑚𝑛(𝑥)) = (𝑦𝑚𝑛) is stated by 

𝑈𝑚𝑛(𝑥) = 𝑦𝑚𝑛 = (
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

)
1−1/𝑘

Δ11𝑅𝑚−1,𝑛−1
𝑝𝑞

      (2.2) 
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for 𝑚, 𝑛 ≥ 0 and Δ11𝑅𝑚−1,𝑛−1
𝑝𝑞

 is given as in (1.3 − 1.6). 

The linearity of 𝑈 is clear. Also, 𝑥 = 𝜃 whenever 𝑈(𝑥) =
𝜃, where 𝜃 denotes the zero vector. This says us that 𝑈 is 

injective. 

Let 𝑦 = (𝑦𝑚𝑛) ∈ ℒ𝑘 and define the sequence 𝑥 = (𝑥𝑚𝑛) 
via 𝑦 = (𝑦𝑚𝑛) by 

𝑥𝑚𝑛 =
1

𝑃𝑚−1𝑄𝑛−1
Δ11 (𝑦𝑚−1,𝑛−1 (

𝑃𝑚−1𝑄𝑛−1

𝑝𝑚−1𝑞𝑛−1
)
1/𝑘

𝑃𝑚−2𝑄𝑛−2) , (2.3)  

 

𝑥𝑚0 =
1

𝑃𝑚−1
Δ̅10 (𝑦𝑚0 (

𝑃𝑚
𝑝𝑚
)
1/𝑘

𝑃𝑚−1),              (2.4) 

𝑥0𝑛 =
1

𝑄𝑛−1
Δ̅01 (𝑦0𝑛 (

𝑄𝑛
𝑞𝑛
)
1/𝑘

𝑄𝑛−1),               (2.5) 

for 𝑚, 𝑛 ≥ 1, and 

𝑥00 = 𝑦00,                                            (2.6) 
where Δ̅10 and  Δ̅01 refer to the back difference notations, 

that is, Δ̅10(𝑥𝑚𝑛) = 𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛,  

Δ̅01(𝑥𝑚𝑛) = 𝑥𝑚,𝑛 − 𝑥𝑚,𝑛−1 for all 𝑚, 𝑛 ∈ ℕ.  
In that case, it is seen that 

‖𝑥‖|�̅�𝑝,𝑞|𝑘
= ‖𝑈(𝑥)‖ℒ𝑘 = (∑

𝑚,𝑛

|𝑈𝑚𝑛(𝑥)|
𝑘)

1/𝑘

= ‖𝑦‖ℒ𝑘 < ∞ 

for 1 ≤ 𝑘 < ∞. So, this yields that 𝑈 is surjective and 

norm preserving. Thus, 𝑈 is a linear and norm preserving 

bijection which says the spaces |𝑁𝑝,𝑞|𝑘 and ℒ𝑘 are norm 

isomorphic for 1 ≤ 𝑘 < ∞, as desired. 

 

Now, we may show that |𝑁𝑝,𝑞|𝑘 is a Banach space with 

the norm defined by (2.1). To prove this, we can consider 

"Let (𝐸, 𝜌) and (𝐹, 𝜎) be semi-normed spaces and Ψ ∶
(𝐸, 𝜌) → (𝐹, 𝜎) be an isometric isomorphism. Then 

(𝐸, 𝜌) is complete if and only if (𝐹, 𝜎) is complete. In 

particular, (𝐸, 𝜌) is a Banach space if and only if (𝐹, 𝜎) 
is a Banach space." which can be found section (b) of 

Corollary 6.3.41 in [27]. Since the transformation 𝑈 

defined from |𝑁𝑝,𝑞|𝑘 into ℒ𝑘 by (2.2) is an isometric 

isomorphism and the double sequence space ℒ𝑘 is a 

Banach space from Theorem 2.1 in [28], we deduce that 

the space |𝑁𝑝,𝑞|𝑘 is a Banach space. This is the result that 

we desired. 

 

Now, we calculate the 𝛼-, 𝛽(𝑏𝑝)- and 𝛾- duals of the 

double series spaces |𝑁𝑝,𝑞|𝑘 for 𝑘 ≥ 1. Before we give 

some results based on their duals, we need to state the 

following significant lemma which is essential for 

proving next theorems. 

 

Lemma 2.2. [35] Let 𝐴 = (𝑎𝑚𝑛𝑖𝑗) be any four 

dimensional infinite matrix. At that case, the following 

statements are satisfied: 

(a) Let 0 < 𝑘 ≤ 1. Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (ℒ𝑘,M𝓊) iff 

Λ1 = sup
𝑚,𝑛,𝑖,𝑗∈ℕ

|𝑎𝑚𝑛𝑖𝑗| < ∞.                (2.7) 

 

(b) Let 1 < 𝑘 < ∞. Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (ℒ𝑘 ,M𝓊) iff 

Λ2 = sup
𝑚,𝑛∈ℕ

∑

𝑖,𝑗

|𝑎𝑚𝑛𝑖𝑗|
𝑘 
′

< ∞.        (2.8) 

 

(c) Let 0 < 𝑘 ≤ 1 and 1 ≤ 𝑘1 < ∞. Then, 𝐴 =

(𝑎𝑚𝑛𝑖𝑗) ∈ (ℒ𝑘, ℒ𝑘1) iff 

sup
𝑖,𝑗∈ℕ

∑

𝑚,𝑛

|𝑎𝑚𝑛𝑖𝑗|
𝑘1
< ∞. 

 

(d) Let 0 < 𝑘 ≤ 1.Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (ℒ𝑘 , 𝒞𝑏𝑝) iff the 

condition (2.7) holds and there exists a (𝜆𝑖𝑗) ∈ Ω such 

that 

𝑏𝑝 − lim
𝑚,𝑛→∞

𝑎𝑚𝑛𝑖𝑗 = 𝜆𝑖𝑗 .                 (2.9) 

 

(e) Let 1 < 𝑘 < ∞. Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (ℒ𝑘, 𝒞𝑏𝑝) iff 

(2.8) and (2.9) are satisfied. 

 

To shorten the following theorems and their proofs, let us 

denote the sets 𝐸𝑘 with 𝑘 ∈ {1,2,3,4} as follows for 𝜉 =
(𝜉𝑚𝑛) ∈ Ω : 

𝐸1 = {𝜉 ∈ Ω ∶ sup
𝑖,𝑗∈ℕ

∑

𝑚,𝑛

|𝑓𝑚𝑛𝑖𝑗| < ∞},       (2.10) 

𝐸2 = {𝜉 ∈ Ω ∶ 𝑏𝑝 − lim
𝑚,𝑛→∞

𝑑𝑚𝑛𝑖𝑗
(𝑘)  exists} , (2.11) 

 

𝐸3 = {𝜉 ∈ Ω ∶ sup
𝑚,𝑛,𝑖,𝑗∈ℕ

|𝑑𝑚𝑛𝑖𝑗
(1) | < ∞},   (2.12) 

𝐸4 = {𝜉 ∈ Ω ∶ sup
𝑚,𝑛∈ℕ

∑

𝑖,𝑗

|𝑑𝑚𝑛𝑖𝑗
(𝑘) |

𝑘  
′

< ∞} , (2.13) 

where the four dimensional matrices 𝐷(𝑘) = (𝑑𝑚𝑛𝑖𝑗
(𝑘) ) and 

𝐹 = (𝑓𝑚𝑛𝑖𝑗) are defined by 
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𝑑𝑚𝑛𝑖𝑗
(𝑘) =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
𝜉00 , 𝑚 = 𝑛 = 0,

𝜉𝑚0 (
𝑃𝑚
𝑝𝑚
)
1/𝑘

, 𝑛 = 0 and 𝑖 = 𝑚,

𝜉0𝑛 (
𝑄𝑛
𝑞𝑛
)
1/𝑘

, 𝑚 = 0 and 𝑗 = 𝑛,

𝑃𝑖−1 (
𝑃𝑖
𝑝𝑖
)
1/𝑘

Δ10 (
𝜉𝑖0
𝑃𝑖−1

) , 𝑛 = 0 and 1 ≤ 𝑖 ≤ 𝑚 − 1,

𝑄𝑗−1 (
𝑄𝑗

𝑞𝑗
)

1/𝑘

Δ01 (
𝜉0𝑗

𝑄𝑗−1
) , 𝑚 = 0 and 1 ≤ 𝑗 ≤ 𝑛 − 1,

Δ11 (
𝜉𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
) (
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1, 1 ≤ 𝑖 ≤ 𝑚 − 1 and 1 ≤ 𝑗 ≤ 𝑛 − 1,                    (2.14)

Δ10 (
𝜉𝑖𝑛
𝑃𝑖−1

) (
𝑃𝑖𝑄𝑛
𝑝𝑖𝑞𝑛

)
1/𝑘

𝑃𝑖−1, 1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑗 = 𝑛,

Δ01 (
𝜉𝑚𝑗

𝑄𝑗−1
) (
𝑃𝑚𝑄𝑗

𝑝𝑚𝑞𝑗
)

1/𝑘

𝑄𝑗−1, 𝑖 = 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 − 1,

𝜉𝑚𝑛 (
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

)
1/𝑘

, 𝑖 = 𝑚 and  𝑗 = 𝑛,

0,                                        otherwise,                                                                        

 

 

and 

 

𝑓𝑚𝑛𝑖𝑗 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝜉00, 𝑚 = 𝑛 = 0,

𝜉𝑚0
𝑃𝑚
𝑝𝑚

, 𝑛 = 0 and 𝑖 = 𝑚,

−
𝜉𝑚0𝑃𝑚−2
𝑝𝑚−1

, 𝑛 = 0  and 𝑖 = 𝑚 − 1,

𝜉0𝑛
𝑄𝑛
𝑞𝑛
, 𝑚 = 0  and 𝑗 = 𝑛,

−
𝜉0𝑛𝑄𝑛−2
𝑞𝑛−1

, 𝑚 = 0 and 𝑗 = 𝑛 − 1,

𝜉𝑚𝑛𝑃𝑚−2𝑄𝑛−2
𝑝𝑚−1𝑞𝑛−1

, 𝑖 = 𝑚 − 1 and 𝑗 = 𝑛 − 1,

−
𝜉𝑚𝑛𝑃𝑚−2𝑄𝑛
𝑝𝑚−1𝑞𝑛

,    𝑖 = 𝑚 − 1 and 𝑗 = 𝑛,

−
𝜉𝑚𝑛𝑄𝑛−2𝑃𝑚
𝑝𝑚𝑞𝑛−1

,    𝑖 = 𝑚 and 𝑗 = 𝑛 − 1,

𝜉𝑚𝑛
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

, 𝑖 = 𝑚 and 𝑗 = 𝑛,

0,                               otherwise                                     

                                                                      (2.15) 

 

 

respectively. 

 

Now, we give the theorems determining the 𝛼- dual of 

the double series space |𝑁𝑝,𝑞|1 and 𝛽(𝑏𝑝)- and 𝛾- duals 

of the double series spaces |𝑁𝑝,𝑞|𝑘 for 𝑘 ≥ 1. 

 

 

 

 

 

 

 

Theorem 2.3. Let the set 𝐸1 and the four dimensional 

matrix 𝐹 = (𝑓𝑚𝑛𝑖𝑗) be defined as in (2.10) and (2.15), 

respectively. Then, (|𝑁𝑝,𝑞|1)
𝛼

= 𝐸1. 

 

Proof. Let 𝑥 = (𝑥𝑚𝑛) ∈ |𝑁𝑝,𝑞|1, 𝜉 = (𝜉𝑚𝑛) ∈ Ω. Taking 

account of relations in (2.3 − 2.6) for 𝑚, 𝑛 ≥ 0, we can 

calculate the following equalities: 

for 𝑚, 𝑛 ≥ 1, 
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𝜉𝑚𝑛𝑥𝑚𝑛 =
𝜉𝑚𝑛

𝑃𝑚−1𝑄𝑛−1
((
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

) 𝑃𝑚−1𝑄𝑛−1𝑦𝑚𝑛

− (
𝑃𝑚𝑄𝑛−1
𝑝𝑚𝑞𝑛−1

) 𝑃𝑚−1𝑄𝑛−2𝑦𝑚,𝑛−1 

−(
𝑃𝑚−1𝑄𝑛
𝑝𝑚−1𝑞𝑛

) 𝑃𝑚−2𝑄𝑛−1𝑦𝑚−1,𝑛

+ (
𝑃𝑚−1𝑄𝑛−1
𝑝𝑚−1𝑞𝑛−1

) 𝑃𝑚−2𝑄𝑛−2𝑦𝑚−1,𝑛−1) 

=
𝜉𝑚𝑛

𝑃𝑚−1𝑄𝑛−1
      

∑

𝑚

𝑖=𝑚−1

∑

𝑛

𝑗=𝑛−1

(−1)𝑚+𝑛−(𝑖+𝑗) (
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
) 𝑦𝑖𝑗𝑃𝑖−1𝑄𝑗−1 

= (𝐹𝑦)𝑚𝑛 ,      
 

for 𝑛 = 0 and 𝑚 ≥ 1, 

𝜉𝑚0𝑥𝑚0 = 𝜉𝑚0
1

𝑃𝑚−1
((
𝑃𝑚
𝑝𝑚
) 𝑃𝑚−1𝑦𝑚0

− 𝑃𝑚−2 (
𝑃𝑚−1
𝑝𝑚−1

) 𝑦𝑚−1,0) 

= 𝜉𝑚0
1

𝑃𝑚−1
∑

𝑚

𝑖=𝑚−1

(−1)𝑚−𝑖 (
𝑃𝑖
𝑝𝑖
) 𝑃𝑖−1𝑦𝑖0 

= (𝐹𝑦)𝑚0 , 
 

for 𝑚 = 0 and 𝑛 ≥ 1, 

𝜉0𝑛𝑥0𝑛 = 𝜉0𝑛
1

𝑄𝑛−1
((
𝑄𝑛
𝑞𝑛
)𝑄𝑛−1𝑦0𝑛

− 𝑄𝑛−2 (
𝑄𝑛−1
𝑞𝑛−1

) 𝑦0,𝑛−1) 

= 𝜉0𝑛
1

𝑄𝑛−1
∑

𝑛

𝑗=𝑛−1

(−1)𝑛−𝑗 (
𝑄𝑗

𝑞𝑗
)𝑄𝑗−1𝑦0𝑗  

= (𝐹𝑦)0𝑛 , 
 

and for 𝑛 = 𝑚 = 0, 

𝜉00𝑥00 = 𝜉00𝑦00 = (𝐹𝑦)00 , 
 

where the four dimensional matrix 𝐹 = (𝑓𝑚𝑛𝑖𝑗) is 

defined by (2.15). In this fact, we obtain that 𝜉𝑥 =
(𝜉𝑚𝑛𝑥𝑚𝑛) ∈ ℒ𝑢 whenever 𝑥 ∈ |𝑁𝑝,𝑞|1 if and only if 

𝐹𝑦 ∈ ℒ𝑢 whenever 𝑦 ∈ ℒ𝑢 . This implies that 𝜉 =

(𝜉𝑚𝑛) ∈ (|𝑁𝑝,𝑞|1)
𝛼

 iff 𝐹 ∈ (ℒ𝑢 , ℒ𝑢). Then, we deduce 

by using (c) of Lemma 2.2 with 𝑘1 = 𝑘 = 1 that 

sup
𝑖,𝑗∈ℕ

∑

𝑚,𝑛

|𝑓𝑚𝑛𝑖𝑗| < ∞. 

Hence, we get (|𝑁𝑝,𝑞|1)
𝛼

= 𝐸1, as desired. 

 

This step concludes the proof. 

 

Theorem 2.4. Let the sets 𝐸2, 𝐸3, 𝐸4 and the four 

dimensional matrix 𝐷(𝑘) = (𝑑𝑚𝑛𝑖𝑗
(𝑘) ) be defined as in 

(2.11 − 2.13) and (2.14), respectively. Then, we have 

(|𝑁𝑝,𝑞|1)
𝛽(𝑏𝑝)

= 𝐸2 ∩ 𝐸3 and (|𝑁𝑝,𝑞|𝑘)
𝛽(𝑏𝑝)

= 𝐸2 ∩ 𝐸4 

for 1 < 𝑘 < ∞. 
 

Proof. Let 𝜉 = (𝜉𝑚𝑛) ∈ Ω and 𝑥 = (𝑥𝑚𝑛) ∈ |𝑁𝑝,𝑞|𝑘 be 

given. Then, we deduce from Theorem 2.1 that there 

exists a double sequence 𝑦 = (𝑦𝑖𝑗) ∈ ℒ𝑘 . Therefore, by 

using the equations (2.3 − 2.6) we can calculate that 

 

𝑧𝑚𝑛 =∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝜉𝑖𝑗𝑥𝑖𝑗                                                     (2.16) 

= 𝜉00𝑦00 +∑

𝑚

𝑖=1

𝜉𝑖0𝑦𝑖0 (
𝑃𝑖
𝑝𝑖
)
1/𝑘

−∑

𝑚

𝑖=2

𝜉𝑖0𝑦𝑖−1,0 (
𝑃𝑖−1
𝑝𝑖−1

)
1/𝑘 𝑃𝑖−2

𝑃𝑖−1
 

+∑

𝑛

𝑗=1

𝜉0𝑗𝑦0𝑗 (
𝑄𝑗

𝑞𝑗
)

1/𝑘

−∑

𝑛

𝑗=2

𝜉0𝑗𝑦0,𝑗−1 (
𝑄𝑗−1

𝑞𝑗−1
)

1
𝑘 𝑄𝑗−2

𝑄𝑗−1

+∑

𝑚

𝑖=1

∑

𝑛

𝑗=1

𝜉𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
𝑟𝑖𝑗  , 

where 

𝑟𝑖𝑗 = Δ11 (𝑦𝑖−1,𝑗−1 (
𝑃𝑖−1𝑄𝑗−1

𝑝𝑖−1𝑞𝑗−1
)

1/𝑘

𝑃𝑖−2𝑄𝑗−2) 

 

for every 𝑖, 𝑗 ∈ ℕ. Also, by the generalized Abel 

transformation for double sequences we obtain that 

𝑢𝑚𝑛 = ∑

𝑚,𝑛

𝑘,𝑙=0

𝑎𝑘𝑙𝑥𝑘𝑙                                            

                  = ∑

𝑚−1,𝑛−1

𝑘,𝑙=0

𝑠𝑘𝑙Δ11𝑎𝑘𝑙 + ∑

𝑚−1

𝑘=0

𝑠𝑘𝑛Δ10𝑎𝑘𝑛

+∑

𝑛−1

𝑙=0

𝑠𝑚𝑙Δ01𝑎𝑚𝑙 + 𝑠𝑚𝑛𝑎𝑚𝑛 , 

where 

𝑠𝑚𝑛 = ∑

𝑚,𝑛

𝑘,𝑙=0

𝑥𝑘𝑙  

for every 𝑚, 𝑛 ∈ ℕ [29]. With the generalized Abel 

transformation for double sequences, we can calculate 

relation (2.16) as follows: 

 

𝑧𝑚𝑛 = 𝜉00𝑦00 + 𝜉𝑚0𝑦𝑚0 (
𝑃𝑚
𝑝𝑚
)
1/𝑘

+ ∑

𝑚−1

𝑖=1

𝑦𝑖0𝑃𝑖−1 (
𝑃𝑖
𝑝𝑖
)
1/𝑘

Δ10 (
𝜉𝑖0
𝑃𝑖−1

) 

+𝜉0𝑛𝑦0𝑛 (
𝑄𝑛
𝑞𝑛
)
1/𝑘

+∑

𝑛−1

𝑗=1

𝑦0𝑗𝑄𝑗−1 (
𝑄𝑗

𝑞𝑗
)

1/𝑘

Δ01 (
𝜉0𝑗

𝑄𝑗−1
)         
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+ ∑

𝑚−1,𝑛−1

𝑖,𝑗=1

Δ11 (
𝜉𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)𝑦𝑖𝑗 (

𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1              

+∑

𝑚−1

𝑖=1

Δ10 (
𝜉𝑖𝑛

𝑃𝑖−1𝑄𝑛−1
) 𝑦𝑖𝑛 (

𝑃𝑖𝑄𝑛
𝑝𝑖𝑞𝑛

)
1/𝑘

𝑃𝑖−1𝑄𝑛−1                   

+∑

𝑛−1

𝑗=1

Δ01 (
𝜉𝑚𝑗

𝑃𝑚−1𝑄𝑗−1
)𝑦𝑚𝑗 (

𝑃𝑚𝑄𝑗

𝑝𝑚𝑞𝑗
)

1/𝑘

𝑃𝑚−1𝑄𝑗−1

+ 𝜉𝑚𝑛𝑦𝑚𝑛 (
𝑃𝑚𝑄𝑛
𝑝𝑚𝑞𝑛

)
1/𝑘

 

 

=∑

𝑚

𝑖=0

∑

𝑛

𝑗=0

𝑑𝑚𝑛𝑖𝑗
(𝑘) 𝑦𝑖𝑗

= (𝐷(𝑘)(𝑦))
𝑚𝑛
.                                       

Thus, we see that 𝜉𝑥 = (𝜉𝑚𝑛𝑥𝑚𝑛) ∈ 𝒞𝒮𝑏𝑝 whenever 𝑥 =

(𝑥𝑚𝑛) ∈ |𝑁𝑝,𝑞|𝑘 if and only if 𝑧 = (𝑧𝑚𝑛) ∈ 𝒞𝑏𝑝 

whenever 𝑦 = (𝑦𝑖𝑗) ∈ ℒ𝑘. This leads to the fact that 𝜉 =

(𝜉𝑚𝑛) ∈ (|𝑁𝑝,𝑞|𝑘)
𝛽(𝑏𝑝)

 if and only if 𝐷(𝑘) ∈ (ℒ𝑘 , 𝒞𝑏𝑝), 

where the four dimensional matrix 𝐷(𝑘) = (𝑑𝑚𝑛𝑖𝑗
(𝑘) ) is 

defined in (2.14) for every 𝑚, 𝑛, 𝑖, 𝑗 ∈ ℕ. Hence, we 

deduce (|𝑁𝑝,𝑞|1)
𝛽(𝑏𝑝)

= 𝐸2 ∩ 𝐸3 and (|𝑁𝑝,𝑞|𝑘)
𝛽(𝑏𝑝)

=

𝐸2 ∩ 𝐸4 for 1 < 𝑘 < ∞ from parts (d) and (e) of Lemma 

2.2, respectively. 

 

Theorem 2.5. Let the sets 𝐸3, 𝐸4 and the four 

dimensional matrix 𝐷(𝑘) = (𝑑𝑚𝑛𝑖𝑗
(𝑘) ) be defined as in 

(2.12), (2.13) and (2.14), respectively. Then, 

(|𝑁𝑝,𝑞|1)
𝛾

= 𝐸3 and (|𝑁𝑝,𝑞|𝑘)
𝛾

= 𝐸4 for 1 < 𝑘 < ∞. 

 

Proof. The proof of this theorem is similar to the proof 

Theorem 2.4 using Parts (a) and  (b) of Lemma 2.2 in 

place of parts (d) and (e) of Lemma 2.2, respectively. To 

avoid the repetition of similar statements, we omit the 

details. 

 

3. Characterizations of Some Classes of Four 

Dimensional Matrices  

 

In the present section, we characterize some four 

dimensional matrix mappings from the double series 

spaces |𝑁𝑝,𝑞|1 and |𝑁𝑝,𝑞|𝑘 to the double sequence spaces 

M𝓊, 𝒞𝑏𝑝 and ℒ𝑘 for 1 ≤ 𝑘 < ∞.  

 

Theorem 3.1. Suppose that 𝐴 = (𝑎𝑚𝑛𝑖𝑗) be an arbitrary 

four dimensional infinite matrix. Then, the following 

statements hold: 

(a) 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (|𝑁𝑝,𝑞|1,M𝓊) if and only if 

𝐴𝑚𝑛 ∈ (|𝑁𝑝,𝑞|1)
𝛽(𝑏𝑝)

                         (3.1) 

and 

sup
𝑚,𝑛,𝑖,𝑗∈ℕ

|Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)𝑃𝑖−1𝑄𝑗−1| < ∞. (3.2) 

 

(b) Let 1 < 𝑘 < ∞. Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈

(|𝑁𝑝,𝑞|𝑘 ,M𝓊) if and only if 

𝐴𝑚𝑛 ∈ (|𝑁𝑝,𝑞|𝑘)
𝛽(𝑏𝑝)

                          (3.3) 

and 

sup
𝑚,𝑛∈ℕ

∑

𝑖,𝑗

|Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1|

𝑘 
′

< ∞.                                                   (3.4) 
 

Proof. Part (a) can be proved using Lemma 2.2 (a) in a 

manner similar to that used in the proof of part (b) of 

Theorem 3.1. To avoid repeating similar statements, we 

prove for 1 < 𝑘 < ∞. 
 

(b) Let 1 < 𝑘 < ∞ and 𝑥 = (𝑥𝑖𝑗) ∈ |𝑁𝑝,𝑞|𝑘. Then, from 

Theorem 2.1 there exists a double sequence 𝑦 = (𝑦𝑚𝑛) ∈
ℒ𝑘 via 𝑥 by (2.2). Then, using the equalities (2.3 − 2.6), 
for (𝑠, 𝑡)th rectangular partial sum of the series 

∑ 𝑎𝑚𝑛𝑖𝑗𝑥𝑖𝑗𝑖,𝑗 , we obtain that 

(𝐴𝑥)𝑚𝑛
[𝑠,𝑡] =∑

𝑠,𝑡

𝑖,𝑗

𝑎𝑚𝑛𝑖𝑗𝑥𝑖𝑗                                                 (3.5) 

= 𝑎𝑚𝑛00𝑦00 + 𝑎𝑚𝑛𝑠0𝑦𝑠0 (
𝑃𝑠
𝑝𝑠
)
1/𝑘

+ 𝑎𝑚𝑛0𝑡𝑦0𝑡 (
𝑄𝑡
𝑞𝑡
)
1/𝑘

 

 

+∑

𝑠−1

𝑖=1

𝑦𝑖0𝑃𝑖−1 (
𝑃𝑖
𝑝𝑖
)
1/𝑘

Δ10
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖0
𝑃𝑖−1

)

+∑

𝑡−1

𝑗=1

𝑦0𝑗𝑄𝑗−1 (
𝑄𝑗

𝑞𝑗
)

1/𝑘

Δ01
(𝑖𝑗)

(
𝑎𝑚𝑛0𝑗

𝑄𝑗−1
) 

+ ∑

𝑠−1,𝑡−1

𝑖,𝑗=1

Δ11
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)𝑦𝑖𝑗 (

𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1                                            

+∑

𝑠−1

𝑖=1

Δ10
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖𝑡

𝑃𝑖−1𝑄𝑡−1
) 𝑦𝑖𝑡 (

𝑃𝑖𝑄𝑡
𝑝𝑖𝑞𝑡

)
1/𝑘

𝑃𝑖−1𝑄𝑡−1                                                   

+∑

𝑡−1

𝑗=1

Δ01
(𝑖𝑗)

(
𝑎𝑚𝑛𝑠𝑗

𝑃𝑠−1𝑄𝑗−1
)𝑦𝑠𝑗 (

𝑃𝑠𝑄𝑗

𝑝𝑠𝑞𝑗
)

1/𝑘

𝑃𝑠−1𝑄𝑗−1

+ 𝑎𝑚𝑛𝑠𝑡𝑦𝑠𝑡 (
𝑃𝑠𝑄𝑡
𝑝𝑠𝑞𝑡

)
1/𝑘

    

=∑

𝑠,𝑡

𝑖,𝑗

𝑔𝑠𝑡𝑖𝑗
𝑚𝑛𝑦𝑖𝑗 = (𝐺𝑚𝑛𝑦)[𝑠,𝑡]                                         

for every 𝑡, 𝑠,𝑚, 𝑛 ∈ ℕ, where the four dimensional 

matrix 𝐺𝑚𝑛 = (𝑔𝑠𝑡𝑖𝑗
𝑚𝑛 ) is defined by 
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𝑔𝑠𝑡𝑖𝑗
𝑚𝑛 =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
𝑎𝑚𝑛00, 𝑠 = 𝑡 = 0,

𝑎𝑚𝑛𝑠0 (
𝑃𝑠
𝑝𝑠
)
1/𝑘

, 𝑡 = 0 and 𝑖 = 𝑠,

𝑎𝑚𝑛0𝑡 (
𝑄𝑡
𝑞𝑡
)
1/𝑘

, 𝑠 = 0 and 𝑗 = 𝑡,

𝑃𝑖−1 (
𝑃𝑖
𝑝𝑖
)
1/𝑘

Δ10
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖0
𝑃𝑖−1

) , 𝑡 = 0 and 1 ≤ 𝑖 ≤ 𝑠 − 1,

𝑄𝑗−1 (
𝑄𝑗

𝑞𝑗
)

1/𝑘

Δ01
(𝑖𝑗)

(
𝑎𝑚𝑛0𝑗

𝑄𝑗−1
) , 𝑠 = 0 and 1 ≤ 𝑗 ≤ 𝑡 − 1,

Δ11
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1, 1 ≤ 𝑖 ≤ 𝑠 − 1 and 1 ≤ 𝑗 ≤ 𝑡 − 1,

Δ10
(𝑖𝑗)

(
𝑎𝑚𝑛𝑖𝑡
𝑃𝑖−1

) (
𝑃𝑖𝑄𝑡
𝑝𝑖𝑞𝑡

)
1/𝑘

𝑃𝑖−1, 1 ≤ 𝑖 ≤ 𝑠 − 1 and 𝑗 = 𝑡,

Δ01
(𝑖𝑗)

(
𝑎𝑚𝑛𝑠𝑗

𝑄𝑗−1
)(
𝑃𝑠𝑄𝑗

𝑝𝑠𝑞𝑗
)

1/𝑘

𝑄𝑗−1, 𝑖 = 𝑠 and 1 ≤ 𝑗 ≤ 𝑡 − 1,

𝑎𝑚𝑛𝑠𝑡 (
𝑃𝑠𝑄𝑡
𝑝𝑠𝑞𝑡

)
1/𝑘

, 𝑖 = 𝑠 and 𝑗 = 𝑡

0,                                      otherwise                                                                  

 

 

 

for every 𝑠, 𝑡, 𝑖, 𝑗 ∈ ℕ. Then, from (3.5), we have 

(𝐴𝑥)𝑚𝑛
[𝑠,𝑡] = (𝐺𝑚𝑛𝑦)[𝑠,𝑡].                      (3.6) 

 

Therefore, it follows from (3.6) that the 𝑏𝑝-convergence 

of (𝐴𝑥)𝑚𝑛
[𝑠,𝑡]

 and the statement 𝐺𝑚𝑛 ∈ (ℒ𝑘 , 𝒞𝑏𝑝) are 

equivalent for all 𝑥 ∈ |𝑁𝑝,𝑞|𝑘 and 𝑚, 𝑛 ∈ ℕ. Hence, the 

condition (3.3) is satisfied for each fixed 𝑚, 𝑛 ∈ ℕ, that 

is, 𝐴𝑚𝑛 ∈ (|𝑁𝑝,𝑞|𝑘)
𝛽(𝑏𝑝)

 for each fixed 𝑚, 𝑛 ∈ ℕ and 

1 < 𝑘 < ∞ . 

 

If we take 𝑏𝑝-limit in the terms of the matrix 𝐺𝑚𝑛 =

(𝑔𝑠𝑡𝑖𝑗
𝑚𝑛 ) while 𝑠, 𝑡 → ∞, we obtain that 

𝑏𝑝 − lim
𝑠,𝑡→∞

𝑔𝑠𝑡𝑖𝑗
𝑚𝑛

= (
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1
𝑘

𝑃𝑖−1𝑄𝑗−1Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
).                    (3.7) 

 

With the relation (3.7), we can define the four 

dimensional matrix 𝐺 = (𝑔𝑚𝑛𝑖𝑗) as 

𝑔𝑚𝑛𝑖𝑗 = (
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
). 

 

In this situation, we deduce from the equations (3.6) and 

(3.7) that 

𝑏𝑝 − lim
𝑠,𝑡→∞

(𝐴𝑥)𝑚𝑛
[𝑠,𝑡] = 𝑏𝑝 − lim(𝐺𝑦)𝑚𝑛 .     (3.8) 

Thus, one can write that 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (|𝑁𝑝,𝑞|𝑘 ,M𝓊) 

if and only if 𝐺 ∈ (ℒ𝑘,M𝓊), by considering the relation 

(3.8). 
 

Therefore, using Lemma 2.2 (b), we calculate that 

sup
𝑚,𝑛∈ℕ

∑

𝑖,𝑗

|(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)|

𝑘 
′

< ∞, 
which gives the condition (3.4). 
 

So, we conclude that 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (|𝑁𝑝,𝑞|𝑘,M𝓊) if 

and only if the conditions (3.3) and (3.4) are satisfied. 

 

This step completes the proof. 

 

Theorem 3.2. Suppose that 𝐴 = (𝑎𝑚𝑛𝑖𝑗) be an arbitrary 

four dimensional infinite matrix. In that case, the 

following statements hold: 

 

(a) 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (|𝑁𝑝,𝑞|1, 𝒞𝑏𝑝) if and only if (3.1), 

(3.2) are satisfied, and there exists (𝛼𝑖𝑗
(1)) ∈ Ω such that 

𝑏𝑝 − lim
𝑚,𝑛→∞

(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)𝑃𝑖−1𝑄𝑗−1Δ11

(𝑖,𝑗)
(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
) = 𝛼𝑖𝑗

(1). 

 

(b) Let 1 < 𝑘 < ∞. Then, 𝐴 = (𝑎𝑚𝑛𝑖𝑗) ∈ (|𝑁𝑝,𝑞|𝑘, 𝒞𝑏𝑝) 

if and only if (3.3), (3.4) are satisfied, and there exists 

(𝛼𝑖𝑗
(𝑘)) ∈ Ω such that 

𝑏𝑝 − lim
𝑚,𝑛→∞

(
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
)

1/𝑘

𝑃𝑖−1𝑄𝑗−1Δ11
(𝑖,𝑗)

(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)

= 𝛼𝑖𝑗
(𝑘). 

 

Proof. This theorem is easily proved by proceeding as in 

the proof of Theorem 3.1 by using  parts (d) and (e) of 

Lemma 2.2. 
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Theorem 3.3. Suppose that 𝐴 = (𝑎𝑚𝑛𝑖𝑗) be an arbitrary 

four dimensional infinite matrix. Then, 𝐴 ∈ (|𝑁𝑝,𝑞|1, ℒ𝑘) 

if and only if (3.1) and 

sup
𝑖,𝑗∈ℕ

∑

𝑚,𝑛

|
𝑃𝑖𝑄𝑗

𝑝𝑖𝑞𝑗
𝑃𝑖−1𝑄𝑗−1𝛥11

(𝑖,𝑗)
(
𝑎𝑚𝑛𝑖𝑗

𝑃𝑖−1𝑄𝑗−1
)|

𝑘

< ∞ 

holds for 1 ≤ 𝑘 < ∞. 

 

Proof. This theorem is easily proved by proceeding as in 

the proof of Theorem 3.1 by using  part (c) of Lemma 

2.2. 
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