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Abstract: This study proposes a new goodness-of-fit test based on the empirical 
distribution function for complete or type II right-censored random samples, 
which are drawn from either the exponential or log-normal distributions. Some 
simulation studies were conducted to compare the newly proposed test with some 
of the well-known goodness-of-fit tests, such as Kolmogorov-Smirnov, Cramer-von 
Mises, and Anderson-Darling, in terms of power over various sample sizes and 
censoring rates. The simulation results show that the newly proposed goodness of 
fit test generally seems to perform well compared to the other goodness of fit tests 
considered. In addition, the newly proposed test and the other goodness of fit tests 
are illustrated by applying them to some real data sets obtained from the relevant 
literature. 

  
  

Tam ya da II. Tür Sağdan Durdurulmuş Örneklemler için Yeni Bir Uyum İyiliği Testi 
 
 

Anahtar Kelimeler 
Uyum iyiliği testleri, 
Deneysel dağılım fonksiyonu, 
II. tür sağdan durdurma 
Ölçek ailesi, 
Konum-ölçek ailesi 

Özet: Bu çalışmada, üstel veya log-normal dağılımlardan alınan tam veya II. tür 
sağdan durdurulmuş rastgele örneklemler için deneysel dağılım fonksiyonuna 
dayalı yeni bir uyum iyiliği testi önerilmektedir. Yeni önerilen uyum iyiliği testi 
Kolmogorov-Smirnov, Cramer-von Mises ve Anderson-Darling gibi iyi bilinen bazı 
uyum iyiliği testleri ile çeşitli örneklem büyüklükleri ve durdurma oranları 
üzerinde güç açısından karşılaştırmak için bazı simülasyon çalışmaları yapılmıştır. 
Simülasyon sonuçları, yeni önerilen uyum iyiliği testinin, dikkate alınan diğer 
uyum iyiliği testlerine kıyasla genel olarak iyi performans gösterdiğini ortaya 
koymaktadır. Ayrıca, yeni önerilen uyum iyiliği testi ve diğer uyum iyiliği testleri, 
ilgili literatürden elde edilen bazı gerçek veri setlerine uygulanarak gösterilmiştir. 

  
 
1. Introduction 
 
For several reasons, such as the physical constraints 
and cost, data in reliability and life testing studies are 
generally censored. Consequently, statistical analyses 
are usually performed on censored data. In 
particular, it is important to the fit of a family of 
probability distributions to data in parametric 
analyses when the data are censored. The problem 
can be expressed as follows. Let X denote the random 
variable with the distribution function F and 
𝑋1, 𝑋2, … , 𝑋𝑛 a random sample from the distribution 
and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑟:𝑛 the corresponding type II 
right censored random sample with censoring rate 
𝑝 = 𝑟 𝑛⁄ . Then the hypothesis of interest is as follows: 
  

𝐻0: 𝐹 ∈ {𝐹𝜃}  versus  𝐻𝐴: 𝐹 ∉ {𝐹𝜃}, (1) 
where {𝐹𝜃} is a parametric family of distributions 
indexed by 𝜃 ∈  Θ ⊆  ℝ𝑘. To deal with the problem, 
or its simpler version claiming that the data come 
from a fully specified distribution, several goodness- 

of-fit tests have been proposed. One of the most 
popular approaches is based on empirical 
distribution functions, i.e. EDF-based goodness-of-fit 
tests. Kolmogorov-Smirnov by [1] and [2], Cramer-
von Mises by [3] and [4], and Anderson and Darling 
[5] are some of the well-known examples of this type 
of goodness-fit tests. Kuiper and Watson tests by [6] 
and [7] are other examples of EDF based goodness-
of-fit tests. These tests essentially measure some kind 
of discrepancy between the empirical distribution 
function 𝐹𝑛 and the theoretical distribution function 
𝐹𝜃 [8]. While some tests such as Kolmogorov-Smirnov 
consider absolute distance between the two 
functions, some tests such as Cramer-von Mises 
consider the square distance. 
 
Goodness of fit tests based on EDF statistics have 
been discussed for complete and censored samples in 
various works in the literature. Some of the works 
include: [8], [9], [10], [11], [12], [13], [14], [15], [16], 
[17], and [18].  
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Since goodness-of-fit tests is a commonly used 
statistical tool in scientific research in many 
disciplines, the effort to improve existing goodness-
of-fit tests or develop new ones continues. Some of 
the works in this direction are as follows: [19], [20], 
[21], [22], [23], [24], [25], and [26]. 
 
In this study, a new goodness-of-fit test, which we 
will call 𝑊𝐴𝐾𝑀 , is introduced in the cases of 
uncensored and Type II right censored samples 
coming from either the exponential or log-normal 
distribution. Then, the power performance of the 
newly proposed test compared to some of the EDF 
type goodness-of-fit tests is investigated through 
simulation studies for some scale or location-scale 
families. The goodness-of-fit tests considered are the 
following: Kolmogorov-Smirnov, Kuiper, Cramer-von 
Mises, Watson and Anderson-Darling tests. 
 
The rest of the paper is organized as follows. In 
Section 2, the new goodness-of-fit test is first 
introduced. Then, in the same section, the settings of 
the simulation studies to be performed are explained 
before describing some real data sets used to 
illustrate the new goodness-of-fit test as well as the 
other tests considered. Section 3 presents the results 
of the comparisons from the simulation studies as 
well as the results obtained from applying the 
methods to the data sets. Finally, some discussion 
and concluding remarks are given in Section 4. 
 
2.  Material and Method 
 
In this section, a new goodness-of-fit test is proposed 
for the cases of both complete and Type II right 
censored samples from the exponential distribution, 
a scale family, or the log-normal distribution, a log 
location-scale family. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random 
sample from such a distribution F and  𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤
⋯ ≤ 𝑋𝑟:𝑛 the corresponding type II right censored 
sample. 
 
The parameters of the distribution F are to be 
estimated from the sample. Since the parameters are 
unknown, the sample  𝑈1, 𝑈2, … , 𝑈𝑛  from the uniform 
(0,1) distribution or the corresponding type II 
censored sample  𝑈1:𝑛 ≤ 𝑈2:𝑛 ≤ ⋯ ≤ 𝑈𝑟:𝑛 cannot be 
obtained by using the probability integral 
transformation Ui = F(Xi). However, by replacing the 
parameters with their estimates in F, i.e. 𝑈𝑖

∗ =
F�̂�(Xi), the sample 𝑈1

∗, 𝑈2
∗, … , 𝑈𝑛

∗   and the 
corresponding type II censored sample 𝑈1:𝑛

∗ ≤ 𝑈2:𝑛
∗ ≤

⋯ ≤ 𝑈𝑟:𝑛
∗   are formed. The sample 𝑈1

∗, 𝑈2
∗, … , 𝑈𝑛

∗  will 
not be a sample from the uniform distribution [8]. In 
such a case, the critical values of EDF test statistics 
will generally depend on the family of distributions, 
the parameters, the method of estimation and the 
sample size [8]. However, for scale or location-scale 
families of distributions, the critical values do not 
depend on the true values of the parameters but the 
sample size n and the specific family of distributions.  

The well-known Cramer-von Mises test is based on 
the quadratic distance between the empirical 
distribution function and the theoretical distribution, 
giving equal weight to all parts of the distribution as 
in (2). 
 

W2 = n ∫ {Fn(x) − F(x)}2dF(x)
∞

−∞
  (2) 

 
On the other hand, the Anderson-Darling test, 
another well-known test based on the square 
distance, emphasizes the tails of the distribution by 
using the weights as in (3). 
 

A2 = n ∫ {Fn(x) − F(x)}2 {
1

𝐹(𝑥)[1−𝐹(𝑥)]
} dF(x)

∞

−∞
  (3) 

 
Unlike the two tests, the Watson test uses the 
following type of difference between Fn(x)  and  F(x) 
as in (4), 
 

U2 =  n ∫ {Fn(x) − F(x) −
∞

−∞

                                ∫ [Fn(x)F(x)]dF(x)
∞

−∞
}

2
dF(x)  

(4) 

      
The idea behind the new goodness-of-fit test can be 
explained as follows. Unlike the three tests, this paper 
proposes a goodness-of-fit test that takes into 
account both the quadratic and absolute differences 
between the empirical distribution and the 
theoretical distribution functions. The explicit 
formula for the new test W𝐴𝐾𝑀  is expressed in (5): 
 

W𝐴𝐾𝑀 = |n{∫  [Fn(x) − F(x)]2 dF(x) −
∞

−∞

                                       ∫ [Fn(x) − F(x)]dF(x)
∞

−∞
}|  

(5) 

        
In addition, the proposed test is similar to the Watson 
test; thus, it can be considered as another 
modification of the Cramer von-Mises test. 
 
Table A1. and Table A2. in Appendix show the 
simulated critical values of some of the EDF tests for 
the exponential and log-normal distribution families, 
respectively, over various sample sizes and Type II 
censoring rates for 𝛼 = 0.05  over 100000 replicates. 
 
In the following subsections, when introducing the 
new goodness of fit test, the notation  𝑈1, 𝑈2, … , 𝑈𝑛  
and  𝑈1:𝑛 ≤ 𝑈2:𝑛 ≤ ⋯ ≤ 𝑈𝑟:𝑛  are used for complete 
and type II censored samples, respectively, instead of   
𝑈1

∗, 𝑈2
∗, … , 𝑈𝑛

∗ and 𝑈1:𝑛
∗ ≤ 𝑈2:𝑛

∗ ≤ ⋯ ≤ 𝑈𝑟:𝑛
∗  for 

simplicity. 
 
2.1. Type II right censored case 
 
Since the expression of the new test statistic is very 
similar to that of the Watson test statistic, the 
computational formula for the new test is easily 
derived from that of the Watson test. Recall the 
formula for the Watson test statistic for the Type II 
right-censored data,  
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Ur,n
2 = Wr,n

2 − nUr:n [
r

n
−

Ur:n

2
−

rU̅

nUr:n
]

2

  (6) 

 

where U̅ = ∑
Ui:n

r

r
i=1  and Wr,n

2  denotes Cramer-von 

Mises goodness-of-fit test statistic for the Type II 
right-censored data. By making the necessary 
changes in (6), the modified statistic WAKM is obtained 
as in (7). 
 

𝑊𝐴𝐾𝑀 = | Wr,n
2 − n√Ur:n (

r

n
−

Ur:n

2
−

rU̅

nUr:n
)|  (7) 

 
where U̅ is defined as in (6). 
 
2.2. Complete sample case 
 
The new test for the full sample case is again 
obtained by modifying the original Watson test for 
the case of Type II censored case. In other words, a 
complete sample is considered as if it were a Type II 
censored sample and then the statistic in (8) is 
proposed as a new modification of the Watson 
statistic:  
 

𝑊𝐴𝐾𝑀 = | Wn,n
2 − n√Un:n (1 −

Un:n

2
−

U̅

Un:n
)|  (8) 

 

where 𝑈 = ∑
𝑈𝑖:𝑛

𝑛

𝑛
𝑖=1  and  Wn,n

2  is the statistic of 

Cramer-von Mises test for the Type II right-censored 
data with r replaced by n: 
 

Wn,n
2 = ∑ (Ui:n −

2i−1

2n
)

2
n
i=1 +

1

12n
+

n

3
(Un:n − 1)3  (9) 

 
2.3. Settings of simulation study 
 
The power performance of some of the well-known 
goodness-of-fit tests based on EDF are compared 
with that of the goodness-of-fit test proposed in this 
study through simulations.  
 
The setting of the simulations can be explained as 
follows. First, the hypothesis testing problem to be 
considered is that the random sample is drawn from 
a specified family of location-scale distributions, as 
indicated below. 
 
𝐻0: The relevant random sample 𝑋1, 𝑋2, … , 𝑋𝑛 or the 
Type II right censored sample 𝑋1:𝑛 , 𝑋2:𝑛, … , 𝑋𝑟:𝑛 
comes from the specified family of scale or location-
scale distributions.  
 
𝐻𝐴: The relevant random sample 𝑋1, 𝑋2, … , 𝑋𝑛 or the 
Type II right censored sample 𝑋1:𝑛 , 𝑋2:𝑛, ⋯ , 𝑋𝑟:𝑛 
comes from another specified family of distributions. 
 
The samples of size 𝑛 = 10, 20, 30, 40, 50 𝑎𝑛𝑑 100  
were generated as either complete or Type II right 

censored with censoring rates  𝑝 =
𝑟

𝑛
=

0.20, 0. 40, 0.60,0.80, 𝑎𝑛𝑑 1.00 from the hypothesized 
distributions in 𝐻𝐴. Then, the pseudo-random sample 

is considered as if it came from the distribution 
specified in 𝐻0 and the parameters, in turn, the Ui =
F(Xi)  is estimated to obtain the “uniform” sample 
𝑈1, 𝑈2, … , 𝑈𝑛  or the corresponding Type II right- 
censored data 𝑈1:𝑛 , 𝑈2:𝑛 , … , 𝑈𝑟:𝑛 . 
 
Finally, the relevant statistics for the goodness-of-fit 
tests are computed and the decision is made to reject 
or not reject the null hypothesis 𝐻0. The simulated 
power of the tests are obtained for 𝛼 = 0.05 over 
25000 replicates for each case. For each test, the ratio 
of the number of rejections to the number of 
repetitions, namely 25000, gives the simulated power 
for that particular case. 
 
The simulations treat the parameters as if they were 
unknown. Therefore, they are estimated by the 
method of maximum likelihood. The corresponding 
estimates are obtained using the R computing 
environment via the package fitdistriplus, using the 
functions fitdistr and fitdistcens for complete and 
Type II right censored samples are used, respectively. 
In some cases, the estimates cannot be obtained 
because of the convergence problems associated with 
the algorithms for finding maximum likelihood 
estimates, especially when testing the log-normal 
distribution against the alternative distributions 
when the sample size n is 10 and the censoring rate is 
0.20. Such cases are omitted from the simulations. 
 
Regarding the precision of the rejection rates, with 
25000 replicates, the largest possible standard error 
for the rejection rate is 
 

𝜎 = √
0.5(1−0.5)

25000
= 0.0032  (10) 

 
Therefore, an approximate 99% confidence interval 
for the proportion of rejections is formed as the 
simulated power value±3(0.0032), i.e., the simulated 
power value ±0.00964. This means that if any two 
simulated power values associated with any two tests 
for a situation differ by more than 0.01 for a situation, 
the power of the two tests for that special case are 
statistically different at the 𝛼 = 0.01  significance 
level. Note that all computations in this study are 
performed using computer programs of R code 
developed specifically for this study. 
 
The formulae for the goodness of fit tests considered 
in the case of the complete sample are as follows. 
 
The Kolmogorov-Smirnov test statistic is defined as 
D = max(D+, D−) where, 
 

D+ = maxi (
i

n
− Ui:n) D− = maxi (Ui:n −

i−1

n
)  (11) 

 
By using (11) Kuiper test statistic is expressed as V =
D+ + D−.  As for the Cramer-von Mises test statistic, it 
is as follows: 
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W2 = ∑ {Ui:n −
2i−1

2n
}

2
n
i=1 +

1

12n
  (12) 

 
Next, the test that is closely related to the Cramer-von 
Mises test, namely the Watson test has the following 
test statistic 
 

U2 =  W2 − n (U̅ −
1

2
)

2

  (13) 

 

where U̅ = ∑
Ui:n

n

n
i=1  . Finally, the Anderson-Darling 

test has the test statistic of the form in (14).  
 

A2 = −n −
1

n
∑ (2i − 1){In(Ui:n) +n

i=1

In(1 − Un+1−i:n)}  
(14) 

 
In all of the above formulas Ui:n = F(Xi:n) denotes the 
ith order statistic for a random sample size of n from 
the uniform distribution over (0, 1). In the case of the 
type II censored samples, the statistics for these EDF 
tests are expressed as follows. 
 
First, the test statistic for the Kolmogorov-Smirnov 
test is  
 

Dr,n = max
1≤i≤r

{
i

n
− Ui:n ,  Ui:n −

i−1

n
}  (15) 

 
Then, that of the Cramer-von Mises test is as follows: 
 

Wr,n
2 = ∑ (Ui:n −

2i−1

2n
)

2
r
i=1 +

r

12n2 +

n

3
(Ur:n −

r

n
)

3

  
(16) 

 
Next, the Watson test has the statistic of the following 
form in (17): 
 

Ur,n
2 = Wr,n

2 − nUr:n [
r

n
−

Ur:n

2
−

rU̅

nUr:n
]

2

  (17) 

 

where U̅ = ∑
Ui:n

r

r
i=1 . Finally, the Anderson-Darling 

test uses the statistic in (18).  
 

Ar,n
2 = −

1

𝑛
∑ (2𝑖 − 1)𝑟

𝑖=1 [𝐼𝑛 Ui:n − In {1 −

Ui:n}] − 2 ∑ 𝐼𝑛 {1 − Ui:n}𝑟
𝑖=1 −

1

𝑛
[(𝑟 −

𝑛)2 𝐼𝑛 {1 − Ur:n} − 𝑟2 𝐼𝑛 Ur:n + n2Ur:n]  
 

(18) 

In the simulations, the exponential and log-normal 
distributions are considered as the null distributions. 
Since the log-normal distribution is not directly a 
location-scale distribution, the simulated 
observations from these distributions are 
transformed using the natural logarithm to obtain a 
location-scale distribution, namely the normal 
distribution. Therefore, all computations including 
the critical values of the goodness-of-fit tests related 
to the log-normal distribution were performed on the 
normal distribution. 
 

The alternative distributions considered are 
exponential, Weibull, gamma and log-normal. With 
this choice of the distributions, constant, increasing, 
decreasing and non-monotonic hazard functions are 
employed as alternatives. The specific distributions 
for the null and alternative hypotheses are shown in 
Table 1. The values of the parameters are chosen so 
that the mean lifetimes for the null and alternative 
distributions are approximately equal. The critical 
values do not depend on the specific chosen 
parameter values, because they are computed after 
the transformation to location-scale distribution in 
the case of the log-normal distribution. The same is 
true for the exponential distribution because it is a 
scale family of distributions. 
 
2.4. Some real data sets 
 
In order to illustrate the newly proposed goodness of 
fit test 𝑊𝐴𝐾𝑀  in comparison to some well-known 
goodness of fit tests, some data sets from the 
literature have been used. 
 
The first data set we consider consists of the times of 
successive failures of the air conditioning system of 
each member of a fleet of Boeing 720 jets, given by 
[27]. The flight hours between 30 failures on aircraft 
7912 are as follows.  
 
23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 
5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 
95 
 
In [27] it is stated that the distribution from which 
the data come from is the exponential distribution.  
 
The second data set we consider is from [29] and 
contains the following 20 failure times in hours of 
electronic parts of equipment [28]. 
 
154, 419, 590, 603, 770, 845, 848, 891, 899, 953, 954, 
982, 1044, 1059, 1126, 1127, 1294, 1678, 1831, 1847 
 
Furthermore, the Weibull distribution is assumed to 
be an appropriate model to describe the data in [29]. 
 
The third data set we consider is given by [31] and it 
consists of 23 observations representing the number 
of millions of revolutions before failure for 23 ball 
bearings in a life test [30]. The data are as follows. 
17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 
51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 
93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40 
 
Furthermore, this data set is found to be a good fit to 
the log-logistic distribution [30]. In this study, the 
first 20 observations of the data are used in the 
goodness-of-fit tests. 
Finally, the fourth data set we consider is provided by 
[32] and gives the average duration of hypopnea in 
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seconds for 25 subjects with obstructive sleep apnea, 
which is also analyzed in [33]. 
 
14.7, 17.8, 16.5, 17.7, 28.5, 18.1, 32.2, 27.6, 22.3, 31.8, 
22.0, 23.1, 31.6, 18.4, 28.3, 16.5, 21.8, 23.7, 27.6, 17.2, 
20.0, 20.6, 19.0, 18.7, 19.2 
 
Furthermore, the log-normality of the data cannot be 
rejected [33]. In this study, the first 20 observations 
of the data are considered in the goodness-of-fit tests 
performed. 
 
3. Results  
 
The simulation results of performance comparisons 
of some common EDF goodness-of-fit tests are 
presented in Tables 2. through Table 5. In these 
tables, KS stands for Kolmogorov-Smirnov test; K, 
Kuiper test; CVM, Cramer-von Mises test; W, Watson 
test; AD, Anderson-Darling test; WAKM, the new test 
proposed in this paper. 
 
In addition, in the cases where the new test WAKM 
provides an improvement in performance over the 
other tests, the “increase%” column is added to the 
tables to quantify the improvement. This column 
shows the percentage increase in power between the 
test WAKM and the test that is closest in power to the 
test WAKM. 
 
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒% =
𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑊𝐴𝐾𝑀−𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓𝑊𝐴𝐾𝑀 

𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓𝑊𝐴𝐾𝑀
× 100  

 
In this section, the families of exponential 
distribution and log-normal distributions are 
hypothesized under the null hypothesis 𝐻0  versus 
Weibull, gamma, exponential and log-normal 
distributions under the alternative hypothesis 𝐻𝐴.  
 
Table 2. shows the simulation results for testing the 
exponential distribution against the Weibull 
distribution with increasing hazard function. 
According to Table 2., the following comments can be 
made:  
 

• First, when the sample size n is 10, the 
power of all goodness-of-fit tests for all 
censoring rates is low. Among these low 
power values, the power of the WAKM test is 
higher than the power of the other tests 
when the censoring rate p is 0.60 and 0.80 
and for the full sample case. Furthermore, in 
terms of power, the WAKM test is followed by 
the CVM and KS tests in these cases. 
Similarly, KS, CVM and WAKM tests are 

observed as the most powerful tests when 
the censoring ratio p is 0.20 and 0.40.  
 

• For sample sizes n=20 and n=30 and 
censoring ratio 𝑝 ≥ 0.40 and as well as for 
the full sample case, the power performance 
of the WAKM test is better than the other tests. 
Moreover, the CVM, KS and AD tests are 
remarkable in terms of power in these cases 
after the WAKM test. In addition, the 
percentage power increase provided by the 
WAKM test tends to be higher when the 
sample size n is 20 than when the sample 
size n is 30.  Finally, when the censoring rate 
p is 0.20, the WAKM, CVM and KS tests are 
more powerful than other tests.  

 
• The WAKM test outperforms the other tests 

for sample sizes n of 40 and 50, for all 
censoring rates, and for the full sample case. 
Other tests for the magnitude of power that 
stand out under the same cases are the CVM 
and AD tests. The percentage power 
improvement provided by the WAKM test in 
these cases tends to decrease with increasing 
sample size. 

 
• The WAKM test has slightly the highest power 

when the sample size n is 100 and the 
censoring ratios p’s are 0.20, 0.40 and 0.60. 
Moreover, the closest power performance to 
WAKM comes from CVM and AD tests. When 
the censoring ratio p is 0.80, the tests with 
the highest power are the WAKM, AD and CVM 
tests. For the complete sample case, all tests 
are very close to a power of almost 1 

 
In this paper, simulation results are not given for the 
following two cases due to the low power or no 
significant improvement in power provided by the 
proposed WAKM test: (i) the case of exponential 
distribution versus gamma distribution with 
decreasing hazard function and (ii) the case of 
exponential distribution versus log-normal 
distribution. 
 
The simulation results for testing the log-normal 
distribution against the Weibull distribution with 
increasing hazard function are presented in Table 3. 
From Table 3, the followings can be said: 
 

• As expected when the sample size n is 10, the 
power of all goodness-of-fit tests is very low 
for all censoring rates and for the full sample 
case. The best performance comes from the 
WAKM test when the censoring ratio p is 0.60,

Table 1. The distributions for the null and alternative hypotheses in the simulations 

  Distributions for 𝐻0 
Distributions for 𝐻𝐴 Hazard Function Exponential (1) Lognormal (0, 0.7) 

Weibull (1.5, 1.1) increasing √ √ 
Gamma (0.5, 0.7) decreasing √ √ 
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Exponential (1) constant  √ 
Log-normal (0, 0.7) non-monotonic √  

 
Table 2. Simulated power values for exponential distribution against the Weibull distribution with increasing hazard 
function (25,000 repetitions) 

n p KS K CVM W AD 𝑊𝐴𝐾𝑀  Increase% 
 0.20 0.0766 0.0474 0.0764 0.0089 0.0390 0.0755 None 

 0.40 0.1118 0.0568 0.1192 0.0144 0.0700 0.1289 None 

10 0.60 0.1364 0.0788 0.1472 0.0222 0.0911 0.1896 28.8 

 0.80 0.1684 0.1245 0.1776 0.0444 0.1216 0.2485 39.9 

 1.00 0.2128 0.2050 0.2481 0.2206 0.1854 0.3540 42.7 

 0.20 0.1126 0.0516 0.1248 0.0282 0.0757 0.1282 None 

 0.40 0.1617 0.0804 0.1870 0.0372 0.1349 0.2239 19.7 

20 0.60 0.2304 0.1430 0.2564 0.0665 0.2110 0.3387 32.1 

 0.80 0.2916 0.2340 0.3326 0.1276 0.2860 0.4612 38.7 

 1.00 0.3979 0.3703 0.4857 0.4076 0.4440 0.6154 26.7 

 0.20 0.1450 0.0608 0.1627 0.0383 0.1088 0.1753 None 

 0.40 0.2252 0.1214 0.2590 0.0636 0.2099 0.3125 20.6 

30 0.60 0.3098 0.2126 0.3593 0.1183 0.3295 0.4592 27.8 

 0.80 0.4247 0.3540 0.4888 0.2208 0.4599 0.6112 25.0 

 1.00 0.5666 0.5278 0.6722 0.5717 0.6518 0.7941 18.1 

 0.20 0.1718 0.0758 0.1974 0.0508 0.1425 0.2236 13.3 

 0.40 0.2862 0.1599 0.3258 0.0984 0.2927 0.3920 20.3 

40 0.60 0.3994 0.2911 0.4714 0.1780 0.4514 0.5710 21.1 

 0.80 0.5385 0.4756 0.6230 0.3330 0.6118 0.7384 18.5 

 1.00 0.7046 0.6712 0.8125 0.7120 0.8068 0.9011 10.9 

 0.20 0.1977 0.0852 0.2308 0.0604 0.1794 0.2637 14.2 

 0.40 0.3426 0.2076 0.4055 0.1330 0.3760 0.4679 15.4 

50 0.60 0.4933 0.3740 0.5665 0.2426 0.5596 0.6562 15.8 

 0.80 0.6488 0.5861 0.7402 0.4373 0.7387 0.8358 12.9 

 1.00 0.8107 0.7776 0.8998 0.8158 0.9016 0.9559 6.0 

 0.20 0.3343 0.1638 0.3960 0.1250 0.3584 0.4380 10.6 

 0.40 0.5862 0.4229 0.6712 0.3123 0.6844 0.7323 7.0 

100 0.60 0.7999 0.7148 0.8699 0.5704 0.8882 0.9111 2.6 

 0.80 0.9284 0.9087 0.9679 0.8287 0.9747 0.9853 None 

 1.00 0.9878 0.9828 0.9974 0.9888 0.9984 0.9994 None 

 

0.80, followed by the KS, AD and CVM tests. 
For a censoring rate of p=0.40, the power 
ranking is WAKM, CVM, KS and AD tests. Also, 
the most powerful tests after WAKM are the 
AD and CVM tests for the full sample case. 
 

• The WAKM test is superior to the other tests in 
terms of power when the sample size n is 20 
and 30, and for all censoring rates except p = 
0.20. In the same cases, the performance of 
the AD and CVM tests follows the 
performance of the WAKM test. In addition, for 
a censoring rate of p=0.20, the most 
powerful tests for sample sizes of 20 and 30 
are the WAKM, CVM, and AD tests. 
 

• The WAKM test has the best power 
performance among the other tests when the 
sample size n is 40, 50, and 100 and for all 

censoring rates. The next good performance 
comes from the AD and CVM tests. 
 

• The increase in percent power delivered by 
the WAKM test in Table 3 is typically higher 
than that in Table 2.  

 
Table 4. gives the simulation results for testing the 

log-normal distribution versus the gamma 

distribution with decreasing hazard function. The 

following points can be made from Table 4: 

• Again low powers are obtained for all tests 

and all censoring ratios when the sample size 

n is 10. The WAKM test exceeds the other tests 

with respect to power for censoring ratios of 

0.60 and 0.80. The same is true for the 

complete sample case. 

  

Table 3. Simulated power values for the log-normal distribution against the Weibull distribution (25,000 repetitions) 

n p KS K CVM W AD 𝑊𝐴𝐾𝑀  Increase% 

 0.40 0.0672 0.0554 0.0687 0.0491 0.0664 0.0774 None 
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10 0.60 0.0774 0.0505 0.0743 0.0440 0.0771 0.1116 44.2 

 0.80 0.0955 0.0709 0.0860 0.0486 0.0927 0.1591 66.6 

 1.00 0.1169 0.1086 0.1317 0.1209 0.1392 0.2351 68.9 

 0.20 0.0671 0.0582 0.0688 0.0558 0.0650 0.0704 None 

 0.40 0.0844 0.0587 0.0854 0.0529 0.0908 0.1224 34.8 

20 0.60 0.1052 0.0713 0.1052 0.0555 0.1180 0.1886 59.8 

 0.80 0.1391 0.1056 0.1398 0.0730 0.1547 0.2892 86.9 

 1.00 0.1975 0.1811 0.2414 0.2127 0.2660 0.4440 66.9 

 0.20 0.0705 0.0569 0.0767 0.0526 0.0762 0.0898 None 

 0.40 0.0978 0.0656 0.1046 0.0571 0.1154 0.1593 38.0 

30 0.60 0.1406 0.0952 0.1435 0.0736 0.1669 0.2550 52.8 

 0.80 0.1930 0.1566 0.2069 0.1166 0.2278 0.3870 69.9 

 1.00 0.2847 0.2613 0.3505 0.3035 0.3902 0.6015 54.1 

 0.20 0.0819 0.0600 0.0872 0.0574 0.0871 0.1073 23.1 

 0.40 0.1189 0.0772 0.1249 0.0668 0.1347 0.1924 42.8 

40 0.60 0.1664 0.1150 0.1810 0.0932 0.2040 0.3064 50.2 

 0.80 0.2387 0.1975 0.2633 0.1520 0.2882 0.4766 65.4 

 1.00 0.3656 0.3348 0.4538 0.3886 0.5027 0.7087 41.0 

 0.20 0.0877 0.0638 0.0954 0.0617 0.0958 0.1221 27.5 

 0.40 0.1270 0.0799 0.1419 0.0738 0.1568 0.2202 40.4 

50 0.60 0.1975 0.1407 0.2196 0.1184 0.2443 0.3641 49.0 

 0.80 0.2882 0.2475 0.3290 0.1942 0.3547 0.5558 56.7 

 1.00 0.4350 0.4038 0.5392 0.4623 0.5930 0.7911 25.0 

 0.20 0.1135 0.0750 0.1261 0.0723 0.1306 0.1687 29.2 

 0.40 0.1957 0.1249 0.2325 0.1216 0.2520 0.3374 33.9 

100 0.60 0.3308 0.2561 0.3886 0.2217 0.4221 0.5635 33.5 

 0.80 0.5090 0.4894 0.5982 0.4198 0.6263 0.8020 28.1 

 1.00 0.7258 0.7087 0.8414 0.7680 0.8845 0.9660 9.2 

 

Table 4. Simulated power values for the log-normal distribution against the gamma distribution (25,000 repetitions) 
n p KS K CVM W AD 𝑊𝐴𝐾𝑀  Increase% 
 0.40 0.0746 0.0576 0.0747 0.0520 0.0730 0.0877 None 

10 0.60 0.0969 0.0600 0.0899 0.0477 0.0969 0.1440 48.6 
 0.80 0.1198 0.0872 0.1076 0.0522 0.1186 0.2144 76.5 
 1.00 0.1670 0.1582 0.1967 0.1784 0.2089 0.3458 65.5 
 0.20 0.0686 0.0593 0.0721 0.0554 0.0682 0.0751 None 
 0.40 0.0999 0.0622 0.1016 0.0548 0.1081 0.1504 39.1 

20 0.60 0.1458 0.0914 0.1508 0.0676 0.1662 0.2595 56.1 
 0.80 0.2077 0.1639 0.2199 0.1095 0.2375 0.4073 71.1 
 1.00 0.3186 0.3086 0.4001 0.3546 0.4379 0.6342 44.8 
 0.20 0.0748 0.0602 0.0805 0.0550 0.0804 0.0937 None 
 0.40 0.1213 0.0772 0.1350 0.0674 0.1433 0.2024 41.2 

30 0.60 0.1945 0.1345 0.2088 0.1019 0.2345 0.3524 50.3 
 0.80 0.2996 0.2577 0.3312 0.1850 0.3524 0.5543 57.3 
 1.00 0.4598 0.4576 0.5716 0.5106 0.6239 0.8078 29.5 
 0.20 0.0858 0.0650 0.0940 0.0626 0.0955 0.1174 22.9 
 0.40 0.1472 0.0895 0.1612 0.0790 0.1720 0.2481 44.2 

40 0.60 0.2470 0.1726 0.2759 0.1357 0.3025 0.4358 44.1 
 0.80 0.3891 0.3470 0.4377 0.2642 0.4616 0.6776 31.9 
 1.00 0.5823 0.5837 0.6990 0.6338 0.7531 0.8964 19.0 
 0.20 0.0973 0.0664 0.1054 0.0652 0.1060 0.1386 30.8 
 0.40 0.1690 0.1023 0.1890 0.0918 0.2030 0.2853 40.5 

50 0.60 0.2940 0.2168 0.3360 0.1761 0.3631 0.5132 41.3 
 0.80 0.4624 0.4285 0.5279 0.3327 0.5505 0.7606 38.2 
 1.00 0.6772 0.6897 0.8019 0.7367 0.8498 0.9464 11.4 
 0.20 0.1294 0.0838 0.1467 0.0820 0.1518 0.2016 32.8 
 0.40 0.2802 0.1830 0.3308 0.1735 0.3512 0.4564 30.0 

100 0.60 0.5054 0.4208 0.5853 0.3645 0.6110 0.7557 23.7 
 0.80 0.7504 0.7574 0.8319 0.6569 0.8454 0.9513 12.5 
 1.00 0.9383 0.9498 0.9821 0.9627 0.9911 0.9985 None 

 

• The WAKM test outperforms the other tests in 
terms of power for all censoring ratios, but 
p=0.20 for sample sizes n of 20 and 30. The 

same applies to the full sample case. The AD 
and CVM tests come after the WAKM test in 
power performance in all cases. In addition, 
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WAKM, CVM, KS, and AD at n=20 and WAKM, 
CVM, and AD at n=30 are the most powerful 
tests for p=0.20. Again, as the sample size 
increases, the percentage increase in power 
due to WAKM tends to decrease. 
 

• For sample sizes of 40 and 50 and for all 
censoring ratios, including the full sample 
case, WAKM has the greatest power among the 
tests. The AD and CVM tests follow the WAKM 
test in terms of power. 
 

• When the sample size n is 100 and for all 
censoring ratios except the full sample case, 
the tests with the highest power are, in 
order, WAKM, AD, and CVM. In the full sample 
case, all tests have high powers, but the 
powers of WAKM, AD, and CVM are much 
closer to 1 compared to the others. 
 

The simulation results for testing the log-normal 
distribution versus the exponential distribution are 
given in Table 5. The following comments can be 
made from Table 5:  
 

• WAKM dominates the other tests in terms of 
power when n=10 with censoring ratios 
p=0.60 and 0.80. The same is true for the full 
sample case. In the case of p=0.40, the WAKM, 
KS, CVM and AD tests perform best. 
 

• For sample sizes n of 20, 30, and 40, and for 
all censoring ratios except p=0.20, WAKM has 
better power than other tests. The AD and 
CVM tests have highest power performance 
after the WAKM test. Additionally, in the case 
of p=0.20, the WAKM, CVM, AD and KS tests 
perform best. 
 

• For sample sizes of 50 and 100 and for all 
censoring ratios, including the full sample 
case, WAKM has the highest power of the tests 
considered. The second best performance 
comes from the AD and CVM tests.  

 
There appears to be a general trend of a decrease in 
the percentage increase in power in Tables 2 through 
5 as the sample size increases. This is due to the fact 
that power tends to increase in magnitude as the 
sample size increases. 

 
Table 5. Simulated power values for the log-normal distribution against the exponential distribution (25,000 repetitions) 

n p KS K CVM W AD 𝑊𝐴𝐾𝑀  Increase% 

 0.40 0.0675 0.0551 0.0669 0.0508 0.0650 0.0743 None 

10 0.60 0.0790 0.0521 0.0713 0.0427 0.0768 0.1137 43.9 

 0.80 0.0912 0.0671 0.0828 0.0449 0.0899 0.1578 73.0 

 1.00 0.1145 0.1067 0.1292 0.1180 0.1366 0.2365 73.1 

 0.20 0.0677 0.0595 0.0692 0.0581 0.0669 0.0709 None 

 0.40 0.0828 0.0577 0.0846 0.0523 0.0904 0.1219 34.8 

20 0.60 0.1070 0.0708 0.1068 0.0565 0.1213 0.1902 56.8 

 0.80 0.1422 0.1105 0.1435 0.0758 0.1591 0.2932 84.3 

 1.00 0.1982 0.1771 0.2391 0.2077 0.2635 0.4356 65.3 

 0.20 0.0721 0.0592 0.0732 0.0532 0.0752 0.0866 None 

 0.40 0.0985 0.0679 0.1034 0.0574 0.1149 0.1596 38.9 

30 0.60 0.1385 0.0932 0.1424 0.0734 0.1654 0.2562 54.9 

 0.80 0.1889 0.1560 0.2042 0.1160 0.2266 0.3867 70.7 

 1.00 0.2818 0.2579 0.3494 0.2990 0.3908 0.5976 52.9 

 0.20 0.0825 0.0604 0.0861 0.0598 0.0856 0.1060 None 

 0.40 0.1124 0.0724 0.1220 0.0648 0.1355 0.1942 43.3 

40 0.60 0.1654 0.1138 0.1817 0.0920 0.2050 0.3070 49.8 

 0.80 0.2398 0.2004 0.2667 0.1594 0.2907 0.4776 64.3 

 1.00 0.3626 0.3362 0.4516 0.3910 0.5005 0.7042 40.7 

 0.20 0.0881 0.0611 0.0937 0.0597 0.0949 0.1214 27.9 

 0.40 0.1311 0.0832 0.1449 0.0754 0.1574 0.2202 39.9 

50 0.60 0.1964 0.1388 0.2181 0.1163 0.2432 0.3596 47.9 

 0.80 0.2880 0.2490 0.3244 0.1963 0.3486 0.5520 58.3 

 1.00 0.4288 0.4046 0.5360 0.4620 0.5940 0.7864 32.4 

 0.20 0.1110 0.0754 0.1258 0.0721 0.1329 0.1700 27.9 

 0.40 0.1992 0.1314 0.2328 0.1235 0.2550 0.3396 33.2 

100 0.60 0.3276 0.2550 0.3848 0.2219 0.4200 0.5613 33.6 

 0.80 0.5058 0.4856 0.5886 0.4156 0.6183 0.8021 29.7 

 1.00 0.7294 0.7112 0.8434 0.7701 0.8878 0.9685 9.1 

Table 6. The goodness of fit of the data sets to the exponential distribution for some tests at the significance level of α=0.05. 
(0: non-reject; 1: reject) 

Data Sets p KS K CVM W AD 𝑊𝐴𝐾𝑀  
 0.20 0 0 0 0 0 0 
 0.40 1 0 0 0 0 0 



A. KOYUNCU ET AL. / A New Goodness of Fit Test  for Complete or Type II Right Censored Samples 

248 
 

Data set 1 0.60 0 0 0 1 0 0 
by [27] 0.80 0 0 0 1 0 0 

 1.00 1 0 0 0 0 0 
 0.20 0 0 0 0 0 0 
 0.40 0 0 1 0 0 1 

Data set 2 0.60 1 1 1 0 1 1 
by [29] 0.80 1 1 1 1 1 1 

 1.00 1 1 1 1 1 1 
 0.20 0 0 0 0 0 0 
 0.40 1 0 1 0 1 1 

Data set 3 0.60 1 1 1 1 1 1 
by [31] 0.80 1 1 1 1 1 1 

 1.00 1 1 1 1 1 1 
 0.20 1 1 1 1 1 1 
 0.40 1 1 1 1 1 1 

Data set 4 0.60 1 1 1 1 1 1 
by [32] 0.80 1 1 1 1 1 1 

 1.00 1 1 1 1 1 1 

 
Finally, in order to illustrate the goodness of fit tests, 
each of data sets presented in Section 2.4 are Type II 
right censored by using the following censoring rates: 
p=r/n=0.20,0.40,0.60,0.80, and 1.00. Then their 
goodness of fit to an exponential distribution is tested 
at the critical level of α=0.05. The results of these 
tests are presented in Table 6. From the results of the 
tests in Table 6., it can be seen that the newly 
proposed WAKM test produces compatible results with 
those of the competing goodness-of-fit tests, such as 
the Anderson-Darling and Cramer-von Mises tests 
 
4. Discussion and Conclusion 
 
Although the newly proposed WAKM test in this 
paper can be regarded as a modification of the 
Watson test, its power performance is higher than the 
well-known goodness-of-fit tests including the 
Watson test under the conditions of the simulation 
studies. In particular, WAKM seems to be useful for 
researchers in life testing and reliability in 
distinguishing between the log-normal distribution 
and the exponential, Weibull, or gamma distribution 
under complete sample or Type II right censoring 
schemes, especially for small sample sizes.  
 
Furthermore, the notable superior performance of 
WAKM in testing the exponential and log-normal 
distributions against the alternative distributions 
considered suggests that the proposed test may 
distinguish well between the distribution with a 
heavy upper tail and the distribution with a light 
upper tail when the bodies of the distributions are 
mostly similar. In conclusion, the newly proposed 
WAKM test seems to be worth considering along with 
the commonly used goodness-of-fit tests under the 
conditions of this study. In addition, the Cramer-von 
Mises and Anderson-Darling tests also appear to be 
powerful tests that can be recommended. 
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Appendix Simulated critical values for exponential and log-

normal distributions (100,000 replicates) 
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Table A1. Simulated critical values of some goodness-of-fit tests for the exponential distribution for =0.05 
n p KS K CVM W AD 𝑊𝐴𝐾𝑀  
 0.20 0.1729 0.1947 0.0178 0.0056 0.1809 0.3852 
 0.40 0.2319 0.3066 0.0555 0.0248 0.4410 0.6970 

10 0.60 0.2730 0.3886 0.1045 0.0577 0.6811 0.9056 
 0.80 0.3022 0.4506 0.1574 0.0996 0.9220 1.0405 
 1.00 0.3246 0.4887 0.2171 0.1573 1.2707 1.0864 
 0.20 0.1245 0.1538 0.0174 0.0066 0.2290 0.5382 
 0.40 0.1684 0.2283 0.0561 0.0274 0.4707 0.9136 

20 0.60 0.1981 0.2862 0.1074 0.0623 0.7111 1.1769 
 0.80 0.2195 0.3300 0.1645 0.1076 0.9676 1.3287 
 1.00 0.2345 0.3533 0.2182 0.1573 1.2872 1.4088 
 0.20 0.1024 0.1296 0.0172 0.0069 0.2377 0.6351 
 0.40 0.1390 0.1904 0.0561 0.0284 0.4843 1.0798 

30 0.60 0.1636 0.2374 0.1085 0.0641 0.7237 1.3909 
 0.80 0.1806 0.2736 0.1667 0.1111 0.9821 1.5822 
 1.00 0.1934 0.2919 0.2205 0.1585 1.3091 1.6604 
 0.20 0.0891 0.1140 0.0170 0.0070 0.2441 0.7097 
 0.40 0.1209 0.1667 0.0565 0.0287 0.4874 1.2187 

40 0.60 0.1424 0.2076 0.1091 0.0650 0.7319 1.5728 
 0.80 0.1577 0.2382 0.1675 0.1118 0.9856 1.7810 
 1.00 0.1686 0.2537 0.2210 0.1583 1.3112 1.8789 
 0.20 0.0798 0.1032 0.0168 0.0072 0.2457 0.7821 
 0.40 0.1083 0.1496 0.0555 0.0287 0.4848 1.3432 

50 0.60 0.1274 0.1864 0.1087 0.0655 0.7335 1.7340 
 0.80 0.1413 0.2147 0.1667 0.1132 0.9873 1.9533 
 1.00 0.1509 0.2279 0.2209 0.1580 1.3141 2.0768 
 0.20 0.0569 0.0746 0.0164 0.0073 0.2513 1.0673 
 0.40 0.0776 0.1080 0.0563 0.0294 0.4946 1.8403 

100 0.60 0.0912 0.1337 0.1097 0.0665 0.7431 2.3823 
 0.80 0.1008 0.1536 0.1690 0.1146 0.9936 2.6870 
 1.00 0.1072 0.1626 0.2191 0.1581 1.3014 2.8745 

 
Table A2. Simulated critical values of some goodness of fit tests for the log-normal distribution via normal distribution for 

=0.05 
n p KS K CVM W AD 𝑊𝐴𝐾𝑀  
 0.40 0.1813 0.2917 0.0281 0.0235 0.2116 0.3253 

10 0.60 0.2229 0.3557 0.0586 0.0499 0.3433 0.4396 
 0.80 0.2498 0.4046 0.0921 0.0810 0.4946 0.5025 
 1.00 0.2654 0.4353 0.1226 0.1140 0.7207 0.4892 
 0.20 0.0949 0.1493 0.0078 0.0062 0.1040 0.2485 
 0.40 0.1373 0.2130 0.0300 0.0240 0.2260 0.4519 

20 0.60 0.1644 0.2613 0.0611 0.0514 0.3584 0.5883 
 0.80 0.1822 0.2962 0.0955 0.0842 0.5127 0.6435 
 1.00 0.1930 0.3172 0.1249 0.1156 0.7384 0.6082 
 0.20 0.0813 0.1234 0.0082 0.0063 0.1080 0.3072 
 0.40 0.1139 0.1764 0.0303 0.0239 0.2288 0.5459 

30 0.60 0.1364 0.2163 0.0621 0.0521 0.3644 0.6960 
 0.80 0.1508 0.2456 0.0963 0.0852 0.5157 0.7624 
 1.00 0.1598 0.2623 0.1257 0.1163 0.7457 0.7054 
 0.20 0.0710 0.1080 0.0083 0.0062 0.1093 0.3503 
 0.40 0.0998 0.1540 0.0304 0.0240 0.2317 0.6225 

40 0.60 0.1188 0.1882 0.0616 0.0516 0.3629 0.7956 
 0.80 0.1309 0.2139 0.0964 0.0854 0.5160 0.8530 
 1.00 0.1390 0.2286 0.1257 0.1162 0.7474 0.8004 
 0.20 0.0644 0.0973 0.0084 0.0062 0.1111 0.3867 
 0.40 0.0896 0.1386 0.0305 0.0240 0.2322 0.6915 

50 0.60 0.1067 0.1695 0.0619 0.0520 0.3641 0.8757 
 0.80 0.1180 0.1922 0.0972 0.0859 0.5209 0.9428 
 1.00 0.1248 0.2059 0.1257 0.1164 0.7479 0.8838 
 0.20 0.0465 0.0702 0.0084 0.0062 0.1135 0.5479 
 0.40 0.0643 0.0996 0.0307 0.0241 0.2358 0.9627 

100 0.60 0.0764 0.1211 0.0624 0.0521 0.3684 1.2245 
 0.80 0.0845 0.1379 0.0975 0.0866 0.5237 1.3020 
 1.00 0.0890 0.1470 0.1258 0.1164 0.7509 1.2254 

 


