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1. INTRODUCTION  
 

One of the most significant operating and planning issues in 

modern power systems is optimal power flow (OPF). Because 

of the nonlinear power flow equations, generator cost curves, 

and operational limitations, it is usually defined as a non-

convex and nonlinear optimization problem. Its aim is to 

minimize the objective function while meeting a variety of 

operational limitations to specify the optimal operating 

conditions for a power system, usually an electrical grid, by 

adjusting control variables [1-3].  

In power system operations, the absence of reactive power 

causes problems such as voltage fluctuations, reduction, 

collapse, and instability. Moreover, the generators and 

capacitor banks generate reactive power at a slow pace, 

making it challenging to adapt to sudden load changes. 

Therefore, flexible alternating current transmission system 

(FACTS) devices have an important role, such as controlling 

the power flow, increasing the power loss, and solving 

operational problems including congestion, voltage 

fluctuations, and line losses, and as to improve power system 

stability, transmission efficiency, and grid reliability [4]. In 

fact, FACTS devices can control many parameters of 

transmission lines; the most important of these are the shunt 

impedance, series impedance, and phase angles. FACTS 

devices are very helpful for a power system; however, the 

OPF problem with FACTS devices is challenging because of 

the complexity, nonlinearities, non-convexity, and modeling 

accuracy required for an accurate solution [3-5]. Therefore, 

meta-heuristic search (MHS) algorithms have been used by 

researchers in the literature to solve the OPF problem 

including FACTS devices. Some of MHS algorithms used for 

the solution of the OPF including FACTS devices were the 
lightning search algorithm [1], the krill herd algorithm [3], the 

enhanced bacterial foraging algorithm [5], the symbiotic 

organisms search algorithm [6], the new partitioned ant lion 

optimizer [7], the modified Runge Kutta optimizer [8], the 

lightning attachment procedure optimization [9], etc. 
In the above mentioned research, FACTS devices were 

placed on fixed branches in the power system. However, the 
placement and sizing of the FACTS devices directly affect the 
power flow, voltage profiles, system stability, and overall grid 
performance [2, 10]. The optimal allocation of FACTS 
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devices can optimize the power flow, minimize the power 
losses, and improve the voltage stability. To sum up, the 
placement of the FACTS devices for the OPF problem is 
crucial for the efficient, reliable and cost-effective operation 
of power systems [10, 11]. The optimal placement and ratings 
of the FACTS devices for the OPF problem can be considered 
highly constrained, multimodal, and complex optimization 
problems.  

In the literature, the optimal placement of FACTS devices 
in optimal power flow has been solved using MHS algorithms. 
Sulaiman and Mustaffa presented a comprehensive study 
using seven MHS algorithms in solving the OPF problem 
considering the optimal placement and rating of the TCSC and 
SVC devices on IEEE 14-bus test system [2]. Biswas et al. 
performed optimal power flow incorporating wind energy 
sources and multi-type FACTS devices using the success 
history-based adaptive differential evolution [10]. Inkollu and 
Kota proposed a hybrid algorithm to improve the voltage 
stability of the system and optimize the placement of the 
FACTS devices [12]. Sakr et al. proposed an adaptive 
differential evolution algorithm to optimize the location of the 
TCSC in the network [13]. Ziaee and Choobineh modeled the 
location of the TCSC problem as a mixed integer nonlinear 
program and Benders’ decomposition method was used to 
solve the problem [14]. Raj and Bhattacharyya presented a 
comparative study using five different MHS algorithms for 
solving the reactive power planning with FACTS devices. 
Moreover, the optimal location of the TCSC and static VAR 
compensator (SVC) was determined [15]. In another study, 
Agrawal et al. presented a comparative study for the optimal 
location and sizing of the TCSC using evolutionary 
optimization techniques. The performance of the algorithms 
was tested on IEEE 14-bus, 30-bus, and 75-bus systems [16]. 
Khan et al. proposed a modified lightning attachment 
procedure optimizer for solving the optimal reactive power 
dispatch including TCSC and SVC devices. In this study, the 
optimal placement of them were also considered [17]. Nusair 
et al. performed a comprehensive study about the solution of 
the OPF problems including multi-type FACTS devices and 
wind renewable energy sources using four MHS algorithms 
[18]. Mohamed et al. proposed a hybrid algorithm including a 
gradient-based optimizer and a moth flame optimization 
algorithm to solve the OPF considering optimal allocation and 
rating of multi-type FACTS devices and wind power [19]. 
Hassan et al. introduced an enhanced hunter-prey optimization 
algorithm to solve the OPF problem including wind energy 
sources and FACTS devices such as SVC, TCSC, and 
thyristor-controlled phase shifter (TCPS).  Here, the optimal 
location and sizing of the FACTS devices were also 
considered in the OPF problem [20]. Awad et al. proposed the 
der-based walrus optimization algorithm for solving the OPF 
problems on the IEEE 30-bus test system. The optimal 
location of multi-type of FACTS devices were also considered 
[21]. Mohamed et al. introduced chaotic african vultures 
optimization algorithm for solving the OPF problem 
incorporating wind power and multi-type FACTS devices. 
The objectives were the minimization of generation cost and 
minimization of active power loss. Moreover, the optimal 
location and rating of the FACTS devices were optimized 
[22]. Mahapatra et al. presented a hybrid cuckoo search 

algorithm and ant-lion optimizer for determining the optimal 

placement and sizing of the TCSC. In the study, the placement 

and sizing of the TCSC were determined by using CS and ALO 

algorithms, respectively [23].  
In this study, the OPF problem including multi-type 

FACTS devices was solved by using partial reinforcement 

optimizer (PRO). The PRO algorithm was introduced to the 

literature by Taheri et al. in 2024 [24]. In the OPF problem, 

three objective functions were considered: (i) minimization of 

total cost, (ii) minimization of total cost with the valve-point 

loading effect, (iii) minimization of the real power loss. On 

the other hand, the allocation and rating of the TCSC and 

TCPS devices were determined to minimize the relevant 

objective function. Accordingly, four different case studies 

were carried out on the IEEE 30-bus test system using the 

objective functions and FACTS devices. The performance of 

the PRO algorithm was compared with the dingo optimization 

algorithm (DOA) [25], the evolutionary mating algorithm 

(EMA) [26], and the snow geese algorithm (SGA) [27]. 

Accordingly, the contributions of this study can be 

summarized as follows: 

 The PRO algorithm was applied to solve the OPF 

problem considering location and sizing of the FACTS 

devices.  

 Four different case studies were considered using the 

three objective functions and two FACTS devices. 

 The performance of the PRO algorithm was compared 

with the up-to-date three MHS algorithms. 

 A comprehensive analysis was performed using the 

convergence analysis and statistical analysis methods to 

prove the performance of the PRO algorithm in solving 

the OPF problem against its rivals.  

The remaining sections of the paper are organized as 

follows: Section 2 presents the formulation of the problem, 

where the modeling of the TCSC and TCPS devices, the 

objective functions and the constraints considered in the OPF 

problem are defined. In section 3, the partial reinforcement 

optimizer is explained. Section 4 presents the simulation 

studies and results. Moreover, the results of the case studies, 

the convergence and the statistical analysis results were given. 

Section 5 presents the conclusion of the study. 

 

2. FORMULATION OF THE PROBLEM 
 

The primary goal of the OPF problem is to minimize the 

objective function to determine the optimal control variables, 

taking into account the equality and inequality constraints. It 

is typically expressed as in Eq. (1). 
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( , ) 0

Minimize OF
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v u
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Here, OF, G, and H represent the objective function, the 

inequality and equality constraints, respectively. Also, u and 

v denote the control and state variables vector, respectively [1, 

6]. 

In this study, the placement of TCSC and TCPS devices 

presented in section 2 is considered. The placement and sizing 

of these devices are optimized to minimize the related 

objective function. Accordingly, the state and control 

variables of this problem are expressed as follows: 
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, , ,THG L L THG THG L LN N NPQ THG TL

P V V Q Q S S 
  

v     (3) 

 

where THGP , THGQ , and GV  active power, reactive power, and 

the voltages of the thermal generating units. T  is the tap 

changing transformer settings, LV  is the voltage of the load 

buses, LS  is the transmission line loading. THGN , TN , TLN , 

m, and p are the number of the transformers, the number of 

thermal generating units, the number of transmission lines, the 

number of TCSC devices, and the number of TCPS devices, 

respectively. 

 

2.1. Modeling of FACTS devices 
 

In this study, the thyristor-controlled phase shifter (TCPS)  

and thyristor-controlled series capacitor (TCSC) devices were 

considered, which are used to increase the power flow and 

loading ability of the line. This section includes two sub-

sections, where the modeling of the TCSC and TCPS devices 

is presented. 

 

2.1.1. Modeling of TCSC device 
 

TCSC is used in power systems to enhance the system 

performance and control the power flow. The circuit model of 

the TCSC between the ith and kth buses in a power grid is given 

in Fig. 1. The equivalent reactance (Xeq) of the transmission 

line is given as follows [6]: 

 

(1 )eq ik TCSC ikX X X X τ                         (4) 

 

where Xik and XTCSC are the inductive reactance of the line and 

TCSC devices, respectively. τ is called the series 

compensation degree with Xik.  

 

 
Figure 1. Circuit model of TCSC 

 

The power flow equations between ith and kth buses 

including TCSC can be written as follows [6]: 

 
2 cos( ) sin( )ik i ik i k ik ik i k ik ikP V G VV G VV B            (5) 

 
2 sin( ) cos( )ik i ik i k ik ik i k ik ikQ V B VV G VV B           (6) 

 
2 cos( ) sin( )ki k ik i k ik ik i k ik ikP V G VV G VV B          (7) 

 
2 sin( ) cos( )ki k ik i k ik ik i k ik ikQ V B VV G VV B         (8) 

 

where Pik and Qik are the active and reactive power flows from 

ith to kth bus, θk and θi are the angles of the kth and ith buses, Vk 

and Vi are the voltages of the kth and ith buses, respectively. 

The conductance (Gik) and the susceptance (Bik) of the 

transmission line are computed as follows [6]: 
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2.1.2. Modeling of TCPS device 
 

TCPS can be modelled using a phase-shifting transformer 

with control parameter (Φ) in the power system [6]. The 

circuit model of the TCPS between ith and kth bus in a power 

grid is shown in Fig. 2. 

 

 
Figure 2. Circuit model of TCPS 

 

The power flow equations between ith and kth bus including 

TCPS can be expressed as follows [6]: 
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The injected reactive and active power of TCPS at ith and 

kth bus is written as [6]: 

 

 2 2tan tan cos ) sin( )is i ik i k ik ik ik ikP V G VV B G          (14) 

 

 2 2tan tan sin( ) cos( )is i ik i k ik ik ik ikQ V B VV B G        (15) 

 

 tan cos( ) sin( )ks i k ik ik ik ikP VV B G               (16) 

 

 tan sin( ) cos( )ks i k ik ik ik ikQ VV B G               (17) 

 
2.2. Objective functions 
 

In this study, three objective functions are considered.  

(i) Minimization of the total cost: The cost of the thermal 

generating units is expressed as in Eq. (18), where , ,j j j    

are the cost coefficients of the jth thermal generating unit. PTHG 

is the active power of the jth thermal generating unit and NTHG 

is the number of thermal generating units [1]. 

 

2
1

1

NTHG

j j THG j THGj j
j

OF P P



                      (18) 

 

(ii) Minimization of the total cost including valve-point 

loading effect: The total cost including VPLE of the thermal 

generating units can be expressed as in Eq. (19). Here, jx  and 
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jy are the coefficients of valve-point loading of the jth thermal 

generating unit [1]. 
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            (19) 

 

(iii) Minimization of active power loss: It can be 

mathematically expressed as in Eq. (20), where i and k are the 

bus in a power grid [1].  

 

    2 2
3

1

2 cos

NTL

i k i k ikm ik
l

OF G V V VV


              (20) 

 

2.3. Constraints 
 
Equality constraints: The equality constraints defined as 

follows [6]: 
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where Di
P and Di

Q represent the active and reactive power 

load demand, respectively. Gi
Q and Gi

P  are the reactive and 

active power of the ith generating unit, respectively. BN  

denotes the number of buses. isP and isQ  are the injected 

active and reactive power by the TCPS of the mth bus, 

respectively. ik  is the angle value of the ikth element of the 

bus admittance matrix and Yik is the magnitude of it. 

 

Inequality constraints [6]:  

 Generator constraints: 
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            (23) 

 

 Security constraints: 

 

, ,  L L max TLi i
S S i N                             (24) 

 

, , ,  L min L L max PQi i i
V V V i N                      (25) 

 

 Transformer constraints: 

 

, , ,  j min j j max TT T T j N                       (26) 

 

 TCSC and TCPS constraints: 

 
min max ,  TCSC TCSC TCSCr r r
τ τ τ r m                      (27) 

 
min m ,  az
TCPS TCPS TCPSz z z

z p                        (28) 

2.4. Constraint handling method  
 

The widely used constraint avoidance technique for 

solving OPF problems with MHS algorithms is the penalty 

function method. In this method, the constraint violation 

values are added to the objective function value in an attempt 

to modify each infeasible individual’s fitness status [28]. 

Accordingly, the fitness function obtained by adding the 

constraint violation values to the objective functions discussed 

in this study using the penalty function method can be 

expressed with Equation (29). Here, Fitnessi and Fpenalty,i 

represent the fitness function and the penalty function of the 

ith objective function. γ1, γ2, γ3, γ4, γ5, and γ6 are the penalty 

coefficients. 
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3. PARTIAL REINFORCEMENT OPTIMIZER 
 

Partial Reinforcement Optimizer (PRO) was presented to 

the literature in 2024 by Taheri et al. [24]. Its inspiration is the 

Partial Reinforcement Extinction (PRE) theory presented by 

Ferster and Skinner in 1957 [29]. In the PRO algorithm, there 

are some basic concepts that need to be defined before 

examining the structure of it: learner, behavior, population, 

and response. A learner refers to an individual or animal 

whose behaviors require training through the PRE theory, and 

a solution represents the learner. The behavior of the learners 

is viewed as a solution involving decision variables. The 

group of learners forms the population. A response refers to 

the prospective improvement in the objective function.  

The PRO algorithm includes three important stages: 

schedule, stimulation, and reinforcement, which are explained 

as follows [24]: 

Schedule: The idea behind a schedule is to model 

behaviors for a data structure at different intervals and 

determine when and how they should be reinforced. Each 

learner has their own schedule. The scale used in this schedule 

indicates the priority or score of the behavior of the learner; 

higher scores mean a better chance of selection in the next 

round. Furthermore, a stochastic analysis is represented 

dynamically using the variable-interval scheduling method 

using Eqns. (30)-(32). 

During the search process, the schedule’s priorities are 

sorted from highest to lowest, and a subset of behaviors with 

the highest priorities for each learner is chosen in each 

iteration. This subset, which serves as the candidate behaviors 

utilizing Eq. (31) is made up of the first 𝜆 items depending on 

priority [24]. 

 
FEs

maxFEs
                                    (30) 

 1
SR e

 



                                    (31) 
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Here, FEs and maxFEs are the number of fitness function 

evaluations and the maximum number of FEs, respectively. τ, 

μ, λ, SR, and N are the time factor, a subset of behaviors chosen 

in accordance with scheduling, the selected subset’s size, the 

selection rate, and the number of behaviors, respectively. 

schedule* and schedule*,λ represent the prioritized schedule 

and the λth item in the schedule*. 

Stimulation: Applying operations that change the decision 

variables of a proposed solution represents an attempt to elicit 

a response from the behaviors of the learners. In the PRO 

algorithm, these operations are used to produce the new 

solutions performed by Eqns. (33)-(35). Here, the decision 

factors chosen for the student based on the scheduler are 

represented by the symbols iSF  and  , which stand for the 

stimulation factor and the mean value of the normalized score, 

respectively [24]. 

 

 
 

,
0, ,  where 

max

i j
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schedule
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,  0.5

,

ibest

i

i j

x x if rand
S

otherwisex x

  
 




 



 
                 (34) 

,i new i i ix x SF S                                (35) 

 

Reinforcement: The PRO algorithm uses both positive and 

negative reinforcement. A certain behavior’s score is raised 

by the application of positive reinforcement. Following 

improvement during the stimulation phase, the learner’s 

objective function, as stated in Eq. (36) is employed as a 

response. Here, jschedule  denotes the priority of the chosen 

behaviors for the jth learner and RR is the reinforcement rate 

[24]. 

 

 j j jschedule schedule schedule RR               (36) 

 

Conversely, negative reinforcement is applied in the 

absence of a response, which lowers the behavior’s score and 

objective function. In the following iteration, only the 

behaviors with higher scores are chosen to receive 

reinforcement and stimulation. 

 

 j j jschedule schedule schedule RR              (37) 

 

Rescheduling: This process entails introducing a new 

timetable for a learner, with the learner consistently receiving 

negative reinforcement for all behaviors during training. The 

PRO uses the schedule’s standard deviation to assess when 

rescheduling the learner is necessary. This procedure is 

implemented using Eqns. (38) and (39) [24]. 

 

   0,1 ,  0
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j
j

u if std schedule
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       (38) 

   , ,  0

Do nothing,

b b j
j

u l u if std schedule
x

else

 
 


            (39) 

 

Here, std is the abbreviation of the standard deviation, lb 

and ub represent the lower and upper bound, respectively. u(lb, 

ub) and u(0,1) denote the randomly uniform distributed values 

between the (lb, ub) and (0,1), respectively. 

The flowchart of the PRO algorithm is given in Algorithm-

1. 

 
Algorithm-1: The pseudocode of the PRO algorithm [24] 

Inputs: Population size, maxFEs, RR 

1. Initialize the population and schedules 

2. Compute the responses of the learners in the population 

3. while FEs<maxFEs  

4.      for j = 1 : N      // for all learners 

5.          Calculate the time parameter using Eq. (30) 

6.          Calculate the SR using Eq. (31) 

7.          Choose 𝜆 number of behaviors that have the highest priority           
         in schedule j using Eq. (32) 

9.          Update the β and SF based on Eqns. (33) and (34) 

10.          Compute the ,
μ
j newx  using Eq. (35) 

11.          Compute the response of jth learner 

 //Apply negative or positive reinforcement 

based on the response// 
12.          if ,( ) ( )μ

j new jF x F x  

13.                ,
μ

j j newx x  

14.                Employ positive reinforcement using Eq. (36) 

15.          else  

16.                Employ negative reinforcement using Eq. (37) 

17.          end if  

18.          Update the best solution 

19.          Perform the rescheduling process based on Eqns. (38) and 

(39) 

20.          FEs = FEs+1 

21.      end for 

22. end while 

 
4. SIMULATION STUDIES AND RESULTS 
 

In this section, the performance of the PRO algorithm was 

investigated on the IEEE 30-bus test system with TCSC and 

TCPS devices. The IEEE 30-bus test system consists of six 

generators at buses 1, 2, 5, 8, 11, and 13 connected to each 

other with 41 transmission lines and four tap changing 

transformers. The detailed data of the IEEE 30-bus power 

network are obtained from [30]. The cost coefficients of the 

IEEE 30-bus test system are taken from [31]. 

The main purpose is to optimize the relevant objective 

function by placing FACTS devices in the optimal locations 

on the IEEE 30-bus test system. According to this, four 

different case studies were considered in this study and the 

summary of them is presented in Table 1. Table 1 provides 

information on which objective functions and which FACTS 

devices were used in the case studies. 

 
TABLE I  

CASE STUDIES USED IN THE STUDY 

Case(s) Objective Function FACTS Devices 

OF1 OF2 OF3 TCSC TCPS 

Case-1      

Case-2      

Case-3      

Case-4      

 
When Table 1 was examined, two TCSC devices were 

added to the test system for Case-1 and Case-2, while two 

TCSC and two TCPS devices were added for Case-3 and 

Case-4. In these case studies, for each FACTS device, two 

control variables are assigned that represent the device’s 

location and rating. The variables representing the location are 

discrete integers indicating the numbers of the branches and 
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buses, and are obtained by rounding to the nearest integer 

during the optimization process. Two criteria were taken as 

the basis for including the FACTS devices to the test system; 

(i) it is not possible to add two FACTS devices in the same 

location, (ii) TCSC and TCPS cannot be added to branches 

with tap changing transformers. In the case studies, the TCSC 

agreed to accept a 50% maximum compensation of the 

installed line reactance, and the lower and upper limits for the 

phase shifting angle for TCPS were -5° to +5°. 

To compare the performance of the PRO algorithm for 

solving the OPF problem with TCSC and TCPS devices, three 

up-to-date MHS algorithms, which were the dingo 

optimization algorithm (DOA), the evolutionary mating 

algorithm (EMA), and the snow geese algorithm (SGA), were 

applied to solve all case studies. The parameters of the 

algorithms are presented in Table 2. The maximum number of 

fitness function evaluations (maxFEs) was set as 30000 for all 

case studies. Besides, all algorithms performed 30 runs for 

each case study.  

 
TABLE II 

PARAMETERS OF THE ALGORITHMS 

Algorithm Year Parameter(s) 

PRO [24] 2024 Number of population = 30, RR = 0.7 

SGA [27] 2024 Number of population = 30, 
EMA [26] 2022 Number of population = 30, Cr = 0.8 

DOA [25] 2021 Number of population = 100, P=0.5, Q=0.7 

 
4.1. Results of case studies 

 
The PRO, DOA, EMA, and SGA algorithms were applied 

to solve the four case studies. All algorithms were performed 

30 runs for all cases. Accordingly, the results obtained from 

them were assessed using the minimum (min), mean, 

maximum (max), and standard deviation (std). In Table 3, the 

min, max, mean, and std values of all algorithms for all case 

studies were tabulated. 

 
TABLE III 

THE RESULTS OF ALL ALGORITHMS FOR CASE STUDIES 
 Case(s) Parameter PRO DOA EMA SGA 

Case-1 

Min 800.7291 801.1595 800.7766 801.0689 

Mean 800.8452 802.7512 802.8931 801.3670 

Max 800.9696 811.8790 818.2737 801.6416 

Std 0.0630 2.6984 5.1248 0.1595 

Case-2 

 

Min 3.2112 3.2629 3.2202 3.2486 

Mean 3.2371 3.5567 3.3629 3.3146 

Max 3.2886 4.6973 4.3397 3.5159 

Std 0.0226 0.3365 0.2809 0.0562 

Case-3 

Min 800.6926 801.3040 800.7419 801.0178 

Mean 800.8189 804.4709 801.7940 801.5760 

Max 800.9153 832.9893 803.9818 802.9945 

Std 0.0550 6.2821 1.1489 0.4639 

Case-4 

Min 831.6959 832.9082 831.6988 831.9242 

Mean 831.9700 840.2567 833.7043 833.7467 

Max 832.5879 873.2547 845.6788 837.5147 

Std 0.1972 10.5736 3.1634 1.4470 

 

Case-1: Minimization of the total cost with TCSC 

In this case, the objective was to minimize the total cost 

given in Eq. (18). The optimal variables obtained from the 

PRO algorithm for Case-1 are presented in Table 4. It can be 

seen from Table 4 that all control variables were within the 

specified lower and upper limit bounds. From Table 3, the 

total cost values of the PRO, DOA, EMA, and SGA were 

800.7291 $/h, 801.1595 $/h, 800.7766 $/h, and 801.0689 $/h, 

respectively. That is, the total cost of the PRO was 0.0537%, 

0.0059%, and 0.0424% lower than the DOA, EMA, and SGA 

algorithms, respectively. On the other hand, according to the 

minimum cost values obtained by the PRO, DOA, EMA, and 

SGA algorithms, two TCSC devices were placed on branches 

(5, 4), (5, 27), (5, 4), and (2, 5), respectively.  

 
TABLE IV 

THE OPTIMAL VARIABLES OF CASE-1 AND CASE-2 OBTAINED FROM PRO 

ALGORITHM 
Control variables Max Min Case-1 Case-2 

PTHG2 (MW) 80 20 48.7234 79.9958 

PTHG5 (MW) 50 15 21.3335 50.0000 

PTHG8 (MW) 35 10 21.2588 35.0000 
PTHG11 (MW) 30 10 11.9726 29.9720 

PTHG13 (MW) 40 12 12.0000 39.1631 

V1(p.u) 1.1 0.95 1.0835 1.0632 
V2(p.u) 1.1 0.95 1.0642 1.0567 

V5(p.u) 1.1 0.95 1.0332 1.0385 

V8(p.u) 1.1 0.95 1.0378 1.0439 
V11(p.u) 1.1 0.95 1.0999 1.0984 

V13(p.u) 1.1 0.95 1.0689 1.0700 

T11(p.u) 1.1 0.9 1.0200 0.9800 

T12(p.u) 1.1 0.9 0.9000 1.0400 

T15(p.u) 1.1 0.9 0.9800 1.0000 

T36(p.u) 1.1 0.9 0.9600 0.9600 
τTCSC1(%) 50% 0 27.3608 50.0000 

τTCSC1(%) 50% 0 49.9999 23.8130 

TCSC1 branch, (con. buses): 5, (2-5) 14, (9-10) 

TCSC2 branch, (con. buses): 4, (3-4) 5, (2-5) 

Total Cost ($/h) 800.7291 965.8169 

Power loss (MW) 9.0971 3.2629 

State variables   

PTHG1 (MW) 200 50 177.2088 52.5321 

QTHG1 (MVAr) 200 50 3.3587 -0.1942 
QTHG2 (MVAr) 60 -20 20.5794 3.0035 

QTHG5 (MVAr) 62.5 -15 25.9925 23.3088 

QTHG8 (MVAr) 48.7 -15 36.5747 33.7850 
QTHG11 (MVAr) 40 -10 26.5171 26.9927 

QTHG13 (MVAr) 44.7 -15 14.5216 20.3510 

 

The voltage values of the load buses are presented in 

Figure 3. Accordingly, these values were within the upper and 

lower bounds of the voltage limit. On the other hand, the lower 

and upper limit value ranges of control variables and reactive 

powers were given in Table 4. It is seen that the optimal 

solution values obtained from the PRO algorithm remained 

within this lower and upper limit ranges. 
 

 
 
Figure 3. Voltage profiles of the load buses for all algorithms for Case-1 

 

Case-2: Minimization of the active power loss with TCSC 

The objective here was to place two TCSC devices in the 

most appropriate place while minimizing active power loss 

given in Eq. (20). The optimal variables obtained by the PRO 

algorithm for Case-2 are listed in Table 4. From Table 3, the 
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PRO algorithm yielded the minimum objective value of 

3.2112 p.u., which was lower by 1.5863%, 0.2814%, and 

1.1514%, than the results of the DOA, EMA, and SGA 

algorithms, respectively. In this case, two TCSC devices were 

placed on the branches. Accordingly, TCSC devices were 

located on branches (14, 5), (25, 5), (7, 5), and (8, 5) according 

to the optimal results obtained from PRO, DOA, EMA and 

SGA algorithms, respectively. The voltage profiles of the load 

buses for all algorithms are shown in Figure 4, where these 

values remained within the specified voltage limits. 

Moreover, Table 4 provides the control variable and reactive 

power’s lower and higher limit value ranges. According to 

these values, when the best solution values of the PRO 

algorithm were examined, it was seen that they remained 

within the valid limits. 

 

 
 
Figure 4. Voltage profiles of the load buses for all algorithms for Case-2 

 

Case-3: Minimization of the total cost with TCSC and TCPS 

The objective was to minimize the total cost given in Eq. 

(18), where two TCSC and two TCPS devices were included. 

The optimal variables identified by the PRO algorithm for 

Case-3 are tabulated in Table 5. It can be observed that all 

control variables were within the specified limits. When the 

results given in Table 3 were evaluated, the results obtained 

by PRO, DOA, EMA, and SGA were 800.6926 $/h, 801.3040 

$/h, 800.7419 $/h, and 801.0178 $/h, respectively. These 

results clearly show that the result of PRO was 0.0763%, 

0.0062%, and 0.0406% lower than the DOA, EMA, and SGA 

algorithms, respectively. In this case, two TCSC and two 

TCPS devices were located on the branches. According to the 

optimal results obtained from PRO, DOA, EMA, and SGA 

algorithms, the TCSC devices were placed on branches (5, 

13), (14, 13), (2, 1), and (39, 2), respectively. On the other 

hand, TCPS devices were located on branches (2, 6), (6, 8), 

(9, 1), and (5, 19) for the optimal results obtained from PRO, 

DOA, EMA, and SGA algorithms, respectively. The voltage 

profiles of the load buses for Case-3 are presented in Figure 5. 

It is demonstrated that the voltage values of the load buses 

remained within the specified upper and lower bounds. When 

examining whether the control variables given for Case-3 in 

Table 5 met the lower and upper limits, it was seen that all 

variables were within the specified limits. 
 

 
 
Figure 5. Voltage profiles of the load buses for all algorithms for Case-3 

 
TABLE V 

THE OPTIMAL VARIABLES OF CASE-3 AND CASE-4 OBTAINED FROM PRO 

ALGORITHM 
Control variables Max. Min. Case-3 Case-4 

PTHG2 (MW) 80 20 48.7512 42.6294 

PTHG5 (MW) 50 15 21.3364 19.3086 
PTHG8 (MW) 35 10 21.1918 10.1692 

PTHG11 (MW) 30 10 11.8607 10.0016 

PTHG13 (MW) 40 12 12.0001 12.0000 
V1 (p.u) 1.1 0.95 1.0827 1.0867 

V2 (p.u) 1.1 0.95 1.0635 1.0649 

V5 (p.u) 1.1 0.95 1.0323 1.0330 
V8 (p.u) 1.1 0.95 1.0363 1.0353 

V11 (p.u) 1.1 0.95 1.0898 1.1000 

V13 (p.u) 1.1 0.95 1.0686 1.0687 
T11 (p.u) 1.1 0.9 1.0400 1.0200 

T12 (p.u) 1.1 0.9 0.9000 0.9000 

T15 (p.u) 1.1 0.9 0.9800 0.9800 

T36 (p.u) 1.1 0.9 0.9600 0.9600 

τTCSC1(%) 50% 0 27.2731 49.5061 

τTCSC1(%) 50% 0 42.2571 29.3302 
ΦTCPS1 5 -5 -0.8802 -1.9422 

ΦTCPS2 5 -5 0.1184 -0.0201 

TCSC1 branch, (con. buses): 5, (2-5) 4, (3-4) 

TCSC2 branch, (con. buses): 13, (9-11) 25, (10-20) 

TCPS1 branch, (con. buses): 2, (1-3) 8, (5-7) 

TCPS2 branch, (con. buses): 6, (26) 27, (10-21) 

Total Cost ($/h) 800.6926 831.6959 

Power loss (MW) 9.0992 10.7089 

State variables   

PTHG1 (MW) 200 50 177.3591 199.9999 

QTHG1 (MVAr) 200 50 2.9051 4.6583 

QTHG2 (MVAr) 60 -20 19.6260 23.9679 
QTHG5 (MVAr) 62.5 -15 25.1286 28.0478 

QTHG8 (MVAr) 48.7 -15 30.8433 36.8284 

QTHG11 (MVAr) 40 -10 36.2065 27.0314 
QTHG13 (MVAr) 44.7 -15 14.3994 14.6355 

 

Case-4: Minimization of the total fuel cost with valve-point 

loading effect with TCSC and TCPS 

In this case, the objective was to minimize the total cost 

with VPLE given in Eq. (19), where two TCSC and two TCPS 

devices were located on the test system. The optimal variables 

obtained by the PRO algorithm for Case-4 are presented in 

Table 5. It is seen that all control variables were within the 

upper and lower bounds. The results of the PRO, DOA, EMA, 

and SGA algorithms presented in Table 3 were 831.6959 $/h, 

832.9082 $/h, 831.6988 $/h, and 831.9242 $/h, respectively. 

Accordingly, the best objective function value was obtained 

from the PRO algorithm which was lower 0.1455%, 

0.0003%, and 0.0274% than the DOA, EMA, and SGA 

algorithms. In this case, according to the optimal results 

obtained from PRO, DOA, EMA, and SGA algorithms, the 
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TCSC devices were located on branches (4, 25), (22, 7), (5, 

13), and (24, 29), and TCPS devices were located on branches 

(8, 27), (22, 34), (2, 1), and (8, 1), respectively. Figure 6 

presents the voltage profiles of the load buses for all 

algorithms, illustrating that the load bus voltage levels stayed 

within the designated higher and lower boundaries. When the 

control variables obtained from the PRO algorithm for Case-

4 given in Table 5 were evaluated in terms of whether they 

met the lower and upper limits, it was seen that they were 

within the limits. 

 

 
 
Figure 6. Voltage profiles of the load buses for all algorithms for Case-4 

 

4.2. Convergence analysis 
 

In order to evaluate the search performance of the PRO 

and its rival algorithms, the convergence graphs of them for 

all case studies were drawn. Since convergence graphs belong 

to the run in which the algorithms obtain the best solution, 

they do not fully reflect the search performance of the 

algorithms in solving the problem. Therefore, the box-plot 

graphs were drawn using the fitness values obtained by the 

algorithms as a result of 30 runs.  

The convergence graphs and box-plots of all algorithms 

for Case-1 are shown in Figure 7. According to Figure 7 (a), 

the PRO algorithm demonstrated the best convergence 

performance compared to its competitors. Figure 7 (b) 

presents the box-plots for all algorithms. It is seen that the 

PRO algorithm had the smallest minimum, maximum, and 

median value, and therefore the mean value obtained as a 

result of 30 runs was the smallest among all algorithms. That 

is, the PRO algorithm obtained a stable search performance 

against its competitors. 

The convergence graphs and box-plots of all algorithms 

for Case-2 are presented in Figure 8. From 8 (a), it is evident 

that the PRO algorithm converged to the lowest objective 

value among them. According to Figure 8 (b), it is clearly seen 

that the PRO algorithm had the smallest spread and therefore 

the smallest median and mean values among all algorithms. 

On the other hand, the DOA algorithm with the widest spread 

had the worst search performance. 

 
 

 
(a) 

 
(b) 

Figure 7. (a) Convergence graphs, (b) box-plots of all algorithms for Case-1 

 
(a) 

 
(b) 

Figure 8. (a) Convergence graphs, (b) box-plots of all algorithms for Case-2 
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The convergence graphs of all algorithms for Case-3 are 

shown in Figure 9 (a). Accordingly, the PRO algorithm 

exhibited the best convergence performance in comparison to 

its competitors. The box-plots of all algorithms for Case-3 are 

shown in Figure 9 (b). While the PRO algorithm exhibited the 

best search performance, the DOA algorithm had the worst 

search performance among all algorithms.  

 

 
(a) 

 
(b) 

Figure 9. (a) Convergence graphs, (b) box-plots of all algorithms for Case-3 

 

 
(a) 

 
(b) 

 

Figure 10. (a) Convergence graphs, (b) box-plots of all algorithms for Case-4 

 
The convergence graphs of all algorithms for Case-4 are 

shown in Figure 10 (a). It can be seen that the PRO algorithm 
converged faster than its rivals. Figure 10 (b) presents the box-
plots of all algorithms for Case-4. The PRO algorithm had the 
smallest minimum, maximum, median, and mean values for 
30 independent runs. However, it is clear that DOA was the 
algorithm with the worst search performance due to its widest 
spread. 

 
4.3. Statistical analysis 
 

To analyze the performance of the algorithms, Friedman 

and Wilcoxon tests were applied on four case studies. The 

Friedman test provides broad information regarding the search 

performances of the algorithms, while the Wilcoxon test is 

used to determine the significance of the differences between 

the MHS algorithms, where the algorithms are compared 

pairwise. The Friedman score values of all algorithms are 

given in Figure 11. In the calculation of the score values given 

in Figure 11, the fitness function values obtained from the four 

case studies of the algorithms were used. From Figure 11, the 

score values of the PRO, DOA, EMA, and SGA algorithms 

were 1.2333, 3.6250, 2.3250, and 2.8167, respectively. That 

is, according to these results, the PRO algorithm ranked first, 

while the DOA algorithm ranked last.  

 

 
Figure 11. Friedman score values for all algorithms 

 

Besides the Friedman test, the Wilcoxon test was 

performed to evaluate to performance of the algorithms in 

pairs. The Wilcoxon test was performed between the PRO 

algorithm and rival algorithms, and the results are presented 
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in Table 6. Here, the Y-value indicates the score based on the 

runs lost by the PRO algorithm, while the Y+ value represents 

the score based on the runs won by the PRO algorithm through 

pairwise comparisons of the results from 30 runs. 

Accordingly, the PRO algorithm outperformed its rivals in all 

case studies. To sum up, both Friedman and Wilcoxon test 

results proved the superior performance of the PRO algorithm 

over its competitors in four case studies. 

 
TABLE VI 

WILCOXON TEST RESULTS FOR ALL CASE STUDIES BETWEEN PRO AND 

OTHERS 
Case(s) PRO vs. DOA PRO vs. EMA PRO vs. SGA 

Y- Y+ p-value Y- Y+ p-value Y- Y+ p-value 

Case-1 0 465 1.73e-06 25 440 1.97e-05 0 465 1.73e-06 
Case-2 0 465 1.73e-06 32 433 3.72e-05 0 465 1.73e-06 

Case-3 0 465 1.73e-06 51 414 1.89e-05 7 458 3.52e-06 

Case-4 0 465 1.73e-06 61 404 1.29e-04 0 465 1.73e-06 

 

5. CONCLUSION 
 
This study presents the application of the partial 

reinforcement optimizer (PRO) algorithm for the solution of 
the OPF problem incorporating the optimal placement and 
sizing of the TCSC and TCPS devices. To solve the OPF 
problem, including the optimal placement of TCSC and TCPS 
devices, three objective functions were discussed. These were 
the minimization of total cost, the minimization of total cost 
with VPLED, and the minimization of active power loss. 
Using these objective functions and the TCSC and TCPS 
devices, four case studies were created. For the solution of 
these case studies, the performance of the PRO algorithm was 
compared with the up-to-date MHS algorithms, including 
DOA, EMA, and SGA. According to results of all algorithms, 
the PRO algorithm achieved a 0.0059%, 0.2814%, 0.0062 %, 
0.0003% improvement over its closest competitor, the  EMA 
algorithm, for Case-1, Case-2, Case-3, and Case-4, 
respectively. On the other hand, for the evaluation of the 
performance of all algorithms over the solution of these case 
studies, the statistical analysis methods were used. According 
to the results of the Friedman score, the PRO algorithm ranked 
first with 1.2333 score value against its competitors. 
Moreover, the Wilcoxon test results showed that the PRO 
algorithm outperformed its competitors in all case studies.  

To sum up, the superiority of the PRO algorithm in solving 

the OPF problem incorporating the optimal placement and 

sizing of the TCSC and TCPS devices has been confirmed.  In 

future studies, the PRO algorithm can be used to solve 

complex real-world problems. 
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