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Research Article

Abstract − This study proves that the Diophantine equation
(
9d2 + 1

)x +
(
16d2 − 1

)y =
(5d)z has a unique positive integer solution (x, y, z) = (1, 1, 2), for all d > 1. The proof
employs elementary number theory techniques, including linear forms in two logarithms and
Zsigmondy’s Primitive Divisor Theorem, specifically when d is not divisible by 5. In cases
where d is divisible by 5, an alternative method utilizing linear forms in p-adic logarithms is
applied.

Keywords Terai’s conjecture, Diophantine equations, primitive divisor theorem

Mathematics Subject Classification (2020) 11D61, 11D75

1. Introduction

The exponential Diophantine equation ex + fy = gz involves coprime positive integers e, f , and
g greater than 1. Solutions (x, y, z) satisfying this equation are referred to as valid solutions to
the provided equation [1]. In 1956, Sierpinski [2] demonstrated that by substituting exponential
expressions for the sides of the Pythagorean theorem into variables, the exponential Diophantine
equation 3x + 4y = 5z has a unique solution, specifically (2, 2, 2). Furthermore, Jeśmanowicz [3]
extended this equation to various Pythagorean triples, affirming that for positive integers e, f, and g

that satisfy the exponential Diophantine equation, the unique solution remains (2, 2, 2).

In 1994, Terai [4] proposed that if the equation ek + f l = gm holds for positive constant integers k, l,
and m with m ≥ 2, multiple known solutions (k, l, m) exist for the equation, except for certain specific
sets of triples (e, f, g). This conjecture is proved for many special cases. One of them is as follows:(

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z (1.1)

This study explores the solutions of the following exponential Diophantine equation(
9d2 + 1

)x
+
(
16d2 − 1

)y
= (5d)z (1.2)

(1.2) is a specific case derived from (1.1), particularly when the condition p + u = w2 is satisfied.
Several specific instances of (1.1) have been explored, confirming the validity of Terai’s conjecture.
Some of these are as follows:
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i.
(
4d2 + 1

)a +
(
5d2 − 1

)b = (3d)c [5]

ii.
(
d2 + 1

)a +
(
yd2 − 1

)b = (zd)c, 1 + y = z2 [6]

iii.
(
12d2 + 1

)a +
(
13d2 − 1

)b = (5d)c [7]

iv.
(
xd2 + 1

)a +
(
yd2 − 1

)b = (zd)c , z|d [8]

v.
(
xd2 + 1

)a +
(
yd2 − 1

)b = (zd)c , d = ∓1 (mod 5) [9]

vi.
(
18d2 + 1

)a +
(
7d2 − 1

)b = (5d)c [10]

vii.
(
(x + 1)d2 + 1

)a +
(
xd2 − 1

)b = (zd)c, 2x + 1 = z2 [11]

viii.
(
3xd2 − 1

)a +
(
x(x − 3)d2 + 1

)b = (xd)c [12]

ix.
(
4d2 + 1

)a +
(
21d2 − 1

)b = (5d)c [13]

x.
(
5pd2 − 1

)a +
(
p(p − 5)d2 + 1

)b = (pd)c [14]

xi.
(
3d2 + 1

)a +
(
bd2 − 1

)b = (cd)c [15]

xii.
(
4d2 + 1

)a +
(
45d2 − 1

)b = (7d)c [16]

xiii.
(
6d2 + 1

)a +
(
3d2 − 1

)b = (3d)c [17]

xiv.
(
c(c − l)d2 + 1

)a +
(
cld2 − 1

)b = (cd)c [18]

xv.
(
44d2 + 1

)a +
(
5d2 − 1

)b = (7d)c [19]

This research is dedicated to exploring and analyzing Terai’s conjecture, focusing specifically on in-
vestigating the exponential Diophantine equation.

2. Preliminaries

This section presents some basic properties to be required in the following section.

Theorem 2.1. For any positive integer d, (1.2) possesses a sole and distinct positive integer solution,
namely, (x, y, z) = (1, 1, 2).

The proof of this theorem involves several important steps. Firstly, elementary methods, such as
congruences and properties of the Jacobi symbol are employed to simplify the solution. Particular
attention is given to the case where x = 1, especially when d ≡ ±2 (mod 5). Subsequently, a lower
bound for linear forms in two logarithms, as established by Laurent [20], is utilized.

In cases where d ≡ 0 (mod 5), a result concerning linear forms in p-adic logarithms, as detailed in
Bugeaud’s study [21], is applied. Conversely, for the case d ≡ ±1 (mod 5), an earlier version of the
Primitive Divisor Theorem, is attributed to Zsigmondy [22].

Definition 2.2. The expression of the absolute logarithmic height for any non-zero algebraic number
α with degree m over Q is provided by the following

h(α) = 1
m

(
log

(
|a0| +

m∑
i=0

log
(
max{1, |α(i)|}

)))

Here, the symbol a0 denotes the leading coefficient of the minimal polynomial of α over Z, and α(i)

represents the conjugates of α.

The linear form defined by L = k1α1 + k2α2 is an expression involving two real algebraic numbers, α1

and α2, where the absolute values of both α1 and α2 are greater than or equal to 1. The coefficients
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k1 and k2 are positive integers. The linear form is as follows:

Λ = k2 log α2 − k1 log α1

Let D = [Q(α1, α2) : Q]. Set
k′ = k1

D log K2
+ k2

D log K1

where K1 and K2 are real numbers greater than 1, satisfying

log Ki ≥ max
{

h(αi),
| log αi|

D
,

1
D

}
, i ∈ {1, 2}

The following proposition is a specific instance derived from Corollary 2 in [20], with the values m = 10
and C2 = 25.2 chosen as indicated in Table 1 [20].

Proposition 2.3. [20] Given the previously defined variables Λ, αi, D, Ki, and k′ where αi > 1, for
i ∈ {1, 2}, and assuming that α1 and α2 are not multiplicatively related, the following inequality is
valid:

log |Λ| ≥ −25.2 D4
(

max
{

log k
′ + 0.38,

10
D

, 1
})

log K1 log K2

In this context, a specific case is considered where y1 = y2 = 1 from Theorem 2 [21], referencing
a result from [21]. Prior to investigating this result, it is pertinent to reintroduce some notations.
Take an odd prime p and define vp as the p-adic valuation normalized such that vp(p) = 1. Consider
two nonzero integers a1 and a2. The smallest positive integer g satisfying the following conditions is
identified:

vp(a1
g − 1) > 0 and vp(a2

g − 1) > 0

Suppose that there exists a real number E such that

vp(a1
g − 1) ≥ E >

1
p − 1

The following theorem provides a specific upper bound for the p-adic valuation of

Λ = a1
k1 − a2

k2

where k1 and k2 are positive integers.

Proposition 2.4. [21] Let K1, K2 > 1 be real numbers such that

log Ki ≥ max {log |ai|, E log p}, i ∈ {1, 2}

and put
t′ = k1

log K2
+ k2

log K1

If a1 and a2 are multiplicatively independent then, the upper estimates can be expressed as follows

vp(Λ) ≤ 36.1g

E3(log p)4
(
max{log t′ + log(E log p) + 0.4, 6E log p, 5}

)2 log K1 log K2

Proposition 2.5. [22] Consider relatively prime integers E and F with E > F ≥ 1. Define the
sequence {an}n≥1 as

an = En + F n

For n > 1, the sequence an has a prime factor not dividing a1a2a3 · · · an−1, except when (E, F, n) ̸=
(2, 3, 1).
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3. Main Results

This section presents the proof of Theorem 2.1, based on a series of lemmas.

Lemma 3.1. If (x, y, z) represents a positive integer solution of (1.2), then it follows that y must be
an odd integer.

Proof. If z ≤ 2, the solution (x, y, z) = (1, 1, 2) is clearly the only solution to (1.2). However, when
assuming z ≥ 3, taking (1.2) modulo d2 results in 1 + (−1)y ≡ 0 (mod d2). This implies that y must
be odd since d2 > 2.

Lemma 3.2. In (1.2), if d is even, then x is also even. Conversely, if d is odd, then x is odd as well.

Proof. Applying modulo d3 to (1.2), it follows that

1 + 9d2x + (−1) + 16d2y ≡ 0 (mod d3)

and thus
9x + 16y ≡ 0 (mod d)

It can be seen from here that if d is even, then x is also even. Similarly, if d is odd, then x is also odd.

Lemma 3.3. [23] Consider positive integers p, u, and w and d > 1 such that p + u = w2. Suppose a
positive integer solution (x, y, z) to the exponential Diophantine equation(

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z

where x ≥ y. The following inequalities hold true:2 −
log

(
w2

p

)
log(wd)

x < z ≤ 2x

Moreover, if y is the larger value, then2 −
log

(
w2d2

ud2−1

)
log(wd)

 y < z ≤ 2y

In particular, when M = max{x, y} > 1, it follows that2 −
log

(
w2

min
{

p,u− 1
d2
})

log(wd)

M < z < 2M

This refined characterization delineates the possible range of values for z based on the parameter M

and the given variables.

3.1. The Case 5|d

This section proves that Theorem 2.1 holds true under the condition 5|d.

Lemma 3.4. If a positive integer solution (x, y, z) to (1.2) is considered under the assumption that
d is congruent to 0 in modulo 5, then the only positive integer solution to (1.2) is (x, y, z) = (1, 1, 2).

Proof. Certainly, (1, 1, 2) is the unique solution of (1.2) when M = max{x, y} = 1. Assume that
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M > 1. Applying Lemma 3.3 for d ≥ 5, it follows that

1.68M <

2 −
log

(
25
9

)
log(25)

 < z ≤ 2M

Thus, it follows that z ≥ 5. Given that y is odd, as stated in Lemma 3.1,

Λ = α1
s1 − αs2

is set up where a1 = 9d2 + 1, a2 = 1 − 16d2, s1 = x, and s2 = y.

Considering p = 5 and setting g = 1 satisfies the condition outlined before Proposition 2.4. Therefore,
set E = 2 and apply Proposition 2.4 to obtain

2z ≤ 36.1
8(log 5)4

(
max

{
log s

′ + log(2 log 5) + 0.4, 12 log 5, 5
})2

log
(
9d2 + 1

)
log

(
16d2 − 1

)
(3.1)

where
s

′ = x

log (16d2 − 1) + y

log (9d2 + 1)

Since z ≥ 5, applying modulo d4 to (1.2) yields 9x + 16y ≡ 0 (mod d2). Then, M ≥ d2

25 . As

z ≥

2 −
log

(
25
9

)
log(5d)

M

by Lemma 3.3, (3.1), and r
′ ≤ M

log 3d ,

2

2 −
log

(
25
9

)
log(5d)

M ≤ 36.1
8(log 5)4

(
max

{
log

(
M

log 3d

)
+ log(2 log 5) + 0.4, 12 log 5

})2

log
(
9d2 + 1

)
log

(
16d2 − 1

) (3.2)

is obtained. Let
k = max

{
log

(
M

log 3d

)
+ log(2 log 5) + 0.4, 12 log 5

}
Suppose

k = log
(

M

log 3d

)
+ log(2 log 5) + 0.4 ≥ 12 log 5

The inequality
log M ≥ 12 log 5 − log(2 log 5) − 0.4

leads to the conclusion that M > 50841462. However, from (3.2)

2M ≤ (0.68)(log M + 1.57)2 log(225M + 1) log(400M − 1)

and this implies M < 8128. This discrepancy results in a contradiction. If k = 12 log 5, then (3.2)
takes the form

2d2

25

2 −
log

(
25
9

)
log(5d)

 ≤ 251 log(9d2 + 1) log(16d2 − 1)

This implies that d ≤ 629. Hence,

M <
251 log

(
9d2 + 1

)
log

(
16d2 − 1

)
2
(

2 − log( 25
9 )

log(5d)

)
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1.68x <

2 −
log

(
25
9

)
log(25)

x <

2 −
log

(
25
9

)
log(5d)

x < z ≤ 2x (3.3)

and

1.84y <

2 −
log

(
26
16

)
log(25)

 y <

2 −
log

(
26d2−26
16d2−16

)
log(5d)

 y (3.4)

<

2 −
log

(
25d2

16d2−1

)
log(5d)

 y < z ≤ 2y

(3.3) and (3.4) lead to the conclusion that there are no positive integer solutions for (1.2) when z ≤ 6.
Assuming z > 6, an analysis of (1.2) is performed by considering congruences modulo d4, d6, and d8.

i. Applying modulo d4 to (1.2) results in 9d2x + 16d2y ≡ 0 (mod d4) which is further expressed as

9x + 16y ≡ 0 (mod d2) (3.5)

ii. Analysis of (1.2) yields a simplified expression

9x + 92d2 x(x − 1)
2 + 16y − 162d2 y(y − 1)

2 ≡ 0 (mod d4) (3.6)

iii. The analysis extends to modulo d8 with a more complex expression

9x + 92d2 x(x − 1)
2 + 93d4 x(x − 1)(x − 2)

6

+ 16y − 162d4 y(y − 1)
2 + 163d4 y(y − 1)(y − 2)

6 ≡ 0 (mod d6)
(3.7)

(3.5)-(3.7) summarize the congruence conditions derived from (1.2) modulo d2, d4, and d6, respectively.
These conditions lead to bounds on all the variables x, y, and z. Through an exhaustive search using
a Maple program running for several hours, no additional positive integer solutions (d, x, y, z) were
discovered for (1.2) beyond the solution (x, y, z) = (1, 1, 2) when 5|d. Hence, it is confirmed that there
are no other positive integer solutions to (1.2).

3.2. The Case d ≡ ±2 (mod 5)

This section proves that Theorem 2.1 holds true under the condition d ≡ ±2 (mod 5).

Lemma 3.5. For a positive integer solution (x, y, z) to (1.2) where d ≡ ±2 (mod 5), it is established
that the sole positive integer solution is (x, y, z) = (1, 1, 2).

Let d be even. Thus, x is also even from Lemma 3.2. Applying modulo 5 to (1.2) results in the
equation

2x + 3y ≡ 0 (mod 5)

However, this is impossible when x is even and y is odd.

Proceed by first establishing Lemma 3.6 and Lemma 3.7, starting with the assumption that d is odd,
which implies that x is also odd as indicated in Lemma 3.2.

Lemma 3.6. If d is odd and d ≡ ±2 (mod 5), then x = 1 and y is odd.

Proof. With reference to Lemma 3.2, our focus is directed specifically towards the scenario where
d > 2 is an odd number. Additionally, as implied by Lemma 3.1, it is established that y is an odd
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integer. Consequently, (
9d2 + 1
16d2 − 1

)
=
(

25d2

16d2 − 1

)
= 1

and ( 5d

16d2 − 1

)
=
( 5

16d2 − 1

)(
d

16d2 − 1

)

=
(

16d2 − 1
5

)(
16d2 − 1

d

)

=
(3

5

)(16d2 − 1
d

)
(−1)

16d2−2
2

d−1
2

= (−1)(−1)
d−1

2 (−1)(8d2−1) d−1
2

= (−1)(−1)
d−1

2 (8d2−1+1)

= −1

Using the Jacobi symbol notation
(∗

∗
)

deduce that z is an even integer. Suppose that x ≥ 3. Applying
modulo 8 to (1.2)

2x + (−1)y ≡ 1 (mod 8)

and thus
2x ≡ 2 (mod 8)

This implies that x must be equal to 1.

Consequently, (1.2) transforms into the following

9d2 + 1 +
(
16d2 − 1

)y
= (5d)z (3.8)

Lemma 3.7. y ≥ 1
16
(
d2 − 9

)
Proof. As y ≥ 3 and x = 1, (1.2) leads to

(5d)z ≥ 9d2 + 1 +
(
16d2 − 1

)3
> (5d)3

Applying modulo d4 to equation (3.8) yields

9d2 + 1 + 16d2y − 1 ≡ 0 (mod d4)

and thus
9 + 16y ≡ 0 (mod d2)

Having established this claim, the subsequent step involves deriving an upper bound for y.

Lemma 3.8. y < 2521 log 5d

Proof. Consider (
9d2 + 1

)x
+
(
16d2 − 1

)y
= (5d)z (3.9)

If y = 1, then clearly z = 2. Assume that y ≥ 3. Then, z > 2 from (3.9). For simplicity set the
following notation p = 9d2 +1, q = 16d2 −1, and r = 5d and consider the linear form of two logarithms

Λ = z log r − y log q
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Since
0 < Λ < eΛ − 1 = rz

qy
− 1 = p

qy
(3.10)

then
log Λ < log p − y log q (3.11)

From Proposition 2.3,

log Λ ≥ −25.2D4
(
max

{
log t

′ + 0.38, 10
})2

log q log r (3.12)

where
t

′ = y

log r
+ z

log q

and

qy+1 − rz = qqx − rz = q (rz − p) − rz = (q − 1)rz − pq >
(
16d2 − 2

)
25d2 −

(
9d2 + 1

) (
16d2 − 1

)
> 0

Since z > 2, then qy+1 > rz. Therefore, t
′

< 2y+1
log r . Write M = y

log r , and thus

t
′

< 2M + 1
log r

Combining (3.11) and (3.12),

y log q < log p + 25.2
(

max
{

log
(

2M + 1
log r

)
+ 0.38, 10

})2
log q log r

Since log p
log q log r < 1 and log r = log 5d > 2, for d ≥ 3, the inequality can be expressed as follows:

M < 1 + 25.2 (max{log(2M + 0.5) + 0.38, 10})2

If log(2M + 0.5) + 0.38 > 10, then M ≥ 7532. However, the inequality

M < 1 + 25.2 (log(2M + 0.5) + 0.38)2

implies that M ≤ 1867. Thus, max {log(2M + 0.5) + 0.38, 10} = 10 implies M < 2521. Hence,
x < 2521 log 5d. By combining Lemma 3.7 and Lemma 3.8,

1
16
(
d2 − 9

)
< 2521 log 5d

This implies d ≤ 566. From (3.10),
z

y
− log q

log r
<

p

yqy log r

Thus, ∣∣∣∣ log q

log r
− z

y

∣∣∣∣ <
p

yqy log r

which further implies ∣∣∣∣ log q

log r
− z

y

∣∣∣∣ <
1

2y2

Thereby, z
y is a convergent in the simple continued fraction expansion to log q

log r . Consider z
y = an

bn

where an
bn

represents the n-th convergent of the simple continued fraction expansion of log q
log r . Since

gcd(an, bn) = 1, it follows that bn ≤ y. Hence, an upper bound for bn is given by bn < 2521 log 5d

according to Lemma 3.8. Any such convergent an
bn

satisfies

1
bn (bn + bn+1) <

∣∣∣∣ log q

log r
− an

bn

∣∣∣∣
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By setting bn+1 = un+1bn + bn−1,
1

(bn)2(bn + bn+1) <

∣∣∣∣ log q

log r
− an

bn

∣∣∣∣ <
p

yqy log r
<

p

bnqbn log r

where un is the n-th partial quotient of the simple continued fraction expansion of log q
log r refer to [24].

Therefore, bn and un+1 satisfy

un+1 + 2 >
qbn log r

pbn
(3.13)

As a final step, a short computer program in Maple was utilized to verify that no convergents an
bn

of
log q
log r satisfy equation (3.13) when bn < 2521 log(5d), for 1 < d ≤ 566. This process took only a few
seconds to complete, concluding the proof. Therefore, Lemma 3.5 is also proven.

3.3. The Case d ≡ ±1 (mod 5)

This section proves that Theorem 2.1 holds true under the condition d ≡ ±1 (mod 5).

Lemma 3.9. (1.2), with d being a positive integer such that d ≡ ±1 (mod 5), possesses a unique
positive integer solution (x, y, z) = (1, 1, 2).

Proof. Consider the positive integers k1 and k2 and a positive integer d satisfying d ≡ ±1 (mod 5).
(1.2) is expressed as follows:

9d2 + 1 = 5k1A,
(
9d2 + 1

)x
= 5k1xAx (3.14)

16d2 − 1 = 5k2B,
(
16d2 − 1

)y
= 5k2yBy (3.15)

where A and B are nonzero integers not congruent to 0 modulo 5. Then, (1.2) can be rewritten as

5k1xAx + 5k2yBy = (5m)z (3.16)

Firstly, consider the case k1x > k2y. This implies

5k2y
(
5k1x−k2yAx + By

)
= 5zmz

which leads to
k2y = z (3.17)

Substituting (3.17) back into (3.16),(
9d2 + 1

)x
=
(
(5d)k2

)y
−
(
16d2 − 1

)y
(3.18)

Applying Proposition 2.5 [22], y = 1 is found. Therefore, (3.15) simplifies to(
16d2 − 1

)y
= 5k2yBy = 5k2B (3.19)

Substituting (3.17) into (3.19) with y = 1,

16d2 = 5zB + 1 (3.20)

Delve into the case z = 3, for (1.2). This transforms into(
9d2 + 1

)x
+ 16d2 − 1 = (5d)3

However, when x ≥ 2, it leads to

(5d)3 >
(
9d2 + 1

)x
≥
(
9d2 + 1

)2
> 92d4

which results in the contradiction 53 > 92d since d > 1.



Journal of New Theory 47 (2024) 72-84 / On the Diophantine Equation (9d2 + 1)x + (16d2 − 1)y = (5d)z Regarding · · · 81

Indeed, when y = 1 is set and x = 1 in (1.2), it simplifies to

9d2 + 1 + 16d2 − 1 = (5d)3

However, this results in a contradiction under the condition d ≡ ±1 (mod 5).

When z ≥ 4, investigating (1.2) in modulo d4 results in the inference that y = 1. This deduction is
made by employing Proposition 2.5 in [22]. This simplifies the equation to

9d2x + 16d2 ≡ 0 (mod d4)

and thus
9x + 16 ≡ 0 (mod d2)

It can be observed that
d2 ≤ 9x + 16 (3.21)

Substituting (3.20) into (3.21),
5zB ≤ 144x + 255 (3.22)

Since x < z, (3.22) turns into (3.23):
5zB ≤ 144z + 255 (3.23)

As a result, there are no positive integer solutions, for z > 4, and z = 4, the equation does not have
any positive integer solutions for appropriate values of x and y. Similarly, by employing analogous
procedures when k2y > k1x, it can be deduced that there exist no positive integer solutions for z ≥ 3.

Finally, investigate the scenario k1x = k2y. Summing up (3.14) and (3.15),

25d2 = 5k1A + 5k2B

Analyze this equation based on the positive integers k1 and k2:

i. k1 = 2 and k2 ≥ 3

If k1 = 2, then it is observed that k2 must be even while y is odd. Thus,

2x = k2y (3.24)

and there is a positive integer such that k3 satisfies 2k3 = k2. Putting it into the (3.24), x = k3y is
acquired. Then, (1.2) becomes ((

9d2 + 1
)k3
)y

+
(
16d2 − 1

)y
= (5d)z

Apply Proposition 2.5 [22], y = 1 is seen. Consequently, there are no solutions for x > 2.

ii. k1 ≥ 3 and k2 = 2

k1
k2

= y

x

since k1x = k2y. Note that gcd(x, y) = 1. Indeed, if there exists an odd prime p ≥ 1 such that p|x and
p|y, then by Zsigmondy Theorem [22] there is no solution, for x and y. Hence, it is clear that x = 2
and k2 = 2 where y is odd. Therefore,

y = k1 ≥ 3 and x = k2 = 2

(3.16) becomes
5k1xAx + 5k2yBy = (5d)z



Journal of New Theory 47 (2024) 72-84 / On the Diophantine Equation (9d2 + 1)x + (16d2 − 1)y = (5d)z Regarding · · · 82

and thus
52y

(
A2 + By

)
= (5d)z

If 5 ∤
(
A2 + By

)
, then 2y = z. Then, (1.2) becomes(

9d2 + 1
)x

=
(
(5d)2

)y
−
(
16d2 − 1

)y

Applying Proposition 2.5 from Zsigmondy’s theorem, it follows that y = 1. However, this leads to a
contradiction. Therefore, there exist no positive integer solutions, for x and y. Thus, z ≤ 2.

If 5|
(
A2 + By

)
, by (3.17) and (3.19),

16d2 − 1 = 5k2B = 25B

and thus
9d2 + 1 = 5k1A

If add the above equations side by side, then

252 = 5k1 + 25B (3.25)

When taking (3.25) modulo 5,
1 ≡ B (mod 5)

In conclusion, no positive integer A can be found that satisfies the condition 5 |
(
A2 + By

)
.

4. Conclusion

This research investigates the equation (1.2) with specific parameters (p, u, w) = (9, 16, 5) and deter-
mines the unique solution (x, y, z) = (1, 1, 2) when d > 1. Particularly, it addresses an unexplored
area in the literature by considering the case where u is a positive even integer and p is an odd integer
in the equation (

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z

In doing so, it guides future research in solving equations where the coefficient u is a positive even
integer and contributes to the existing knowledge in this field. The aim is to take a step towards
finding and generalizing many equations, leading to a generalized equation.
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