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A B S T R A C T  
 

Especially in a world where industrial development is reinforced by globalization 

tendencies, competitive companies know that satisfying customers' needs and running a 

successful operation requires a process that is reliable, predictable and robust. Therefore, 

many of quality improvement techniques focus on reducing process variation in line with 

the “loss to society” concept. The upside-down normal loss function is a weighted loss 

function that has the ability to evaluate losses with a more reasonable risk assessment. In 

this study, we introduce a fuzzy modelling approach based on expected upside-down 

normal loss function where the mean and standard deviation responses are fitted by 

response surface models. The proposed method aims to identify a set of operating 

conditions to maximize the degree of satisfaction with respect to the expected loss. 

Additionally, the proposed approach provides a more informative and realistic approach for 

comparing competing sets of conditions depending upon how much better or worse a 

process is. We demonstrate the proposed approach in a well-known design of experiment 

by comparing it with existing methods. 

© 2017 Forecast Research Laboratory. All rights reserved. 
 

 

 

1. Introduction 

In the early 1980s, Japanese quality engineer G. Taguchi coined the term robust parameter design (RPD), and his 

approach was popularized by many statisticians and quality engineers. The RPD can be defined as an experimental 

procedure based upon the factors that affect the quality performance of a system. Although the Taguchi’s RPD 

approach and his significant contributions have been adopted by most influential scientists, his experimental 

methodologies and analysis techniques have been criticized mostly by the statistical communities. Consequently, 

new methodologies based on Taguchi’s important engineering ideas have been proposed. The response surface 

methodology (RSM), first developed by [1] has revisited around the early of the 1990s and then got popularized. 

RSM can be defined as a collection of statistical and mathematical techniques for characterizing the relationship 

between a quality performance of a system, i.e. the response variable, and a set of independent factors, and uses 

stochastic models to explore this relationship. RSM enables engineers to gain more insights about the system of 

interest and provides a simplified relationship which can be used for practical engineering purposes especially when 

a complicated analysis and high-cost designs are not desirable. 

The use of response surface optimization is a natural tool for the engineers since one of the main objectives of the 

RSM is the determination of the optimum settings of the control factors that optimize the response over a certain 

region of interest. [2] discussed the treatment procedure for the mean and variance responses via a constrained 

optimization technique called Dual Response Surface (DRS) which is based on fitting separate response surfaces for 

the system mean and the system variance. They optimize one fitted response subject to a constraint on the value of 

the other fitted response. [3] suggested the use of nonlinear programming to solve a similar optimization problem 
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replacing the equality constraints by inequalities. Their proposed approach constrains the mean at the target and 

searches over the constrained control factor space to determine the optimal setting which minimizes the system 

variance. Criticizing the use of equality constraints, [4] proposed a procedure based on the mean squared error 

criterion (MSE). This approach takes into account the distance from the target and the variability of the response and 

involves finding the control factor setting which minimizes the estimated MSE. [5] proposed a novel mathematical 

programming formulation for the DRS problem based on fuzzy optimization methodology. They introduce a fuzzy 

modelling approach which considers both the deviation of the mean from the target and the magnitude of standard 

deviation. Following these articles, several procedures have been proposed for the DRS problems; see, for example 

[6], [7], [8], [9], and [10]. 

Traditionally, the role played by loss functions is fundamental in every quality engineering and management 

approach. In statistics, a loss function represents the monetary loss associated with variation about, and deviations 

from, either desired or target value concerning a quality characteristic of interest. Poorly operated manufacturing 

facilities and poorly designed products result in major incidents involving financial and social losses. A loss may 

occur even when the product is shipped within the specification limits, and this includes both company costs such as 

rework, repair, scrap and administrative costs, and any loss to the customer through unsatisfactory product 

performance and customer service. The whole concept of ‘loss’ usually refers to the ‘loss to society’. A sound loss 

function is the upside-down normal loss function (UDNLF) of [11]. The UDNLF, which is essentially a normal 

density function flipped upside down, provides a more reasonable risk assessment to the losses of being off-target in 

a product engineering context. In fact, the UDNLF with a finite maximum loss is often effective in accurately 

modelling losses and leads to optimal decisions in real manufacturing environments. [12] used expected UDNLF as 

an objective function where the mean and standard deviation responses are fitted by quadratic response surface 

models and aim to find the best operating condition by minimizing the expected loss of UDNLF. [13] generalized 

their idea to more than one response under possible correlations and co-movement effects of responses. They adapted 

the RSM, and minimize the estimated the expected multivariate UDNLF to find the optimal control factor settings 

of a given problem. 

In this article, we introduce a fuzzy modelling approach to optimize the expected loss function for a given system. 

The proposed approach aims to identify a set of process parameter conditions to maximize the degree of satisfaction 

with respect to the expected loss fitted by mean and standard deviation response surfaces. Additionally, the proposed 

approach provides a more informative and realistic approach for comparing competing sets of conditions depending 

upon how much better or worse a process is. The remainder of this manuscript is divided into four sections. Section 

2 reviews UDNLF, while Section 3 provides the proposed optimization technique. All findings are illustrated in an 

example in Section 4 before the manuscript finally ends with a conclusion. 

 

2. Review of the UDNLF 

[11] proposed the UDNLF as a weighted loss function that has the ability to evaluate losses with a more reasonable 

risk: 

𝐿𝑈𝐷𝑁(𝑦|𝜏) = 1 − 𝑒𝑥𝑝 (−
(𝑦−𝜏)2

2𝜆2 )                    (1) 

where 𝑦 indicates the process measurements, 𝜏 is the target, and 𝜆 is a scale parameter. The UDNLF is zero at the 

target and asymptotically approaches one. The scale parameter 𝜆 adjusts the penalty associated with any deviation 

from the target. Lacking better information, a choice is to set 𝜆 to 42.5% of the specification range. A larger value of 

𝜆 signifies that relatively large deviations from the target can be tolerated.  Figure 1 illustrates the UDNLF when 

𝜏 =  0, and the specifications are (−3, 3), (−2, 2) and (−1, 1). As shown from Figure 1, as the specification range 

increases, the value of scale parameter increases. As a result, the loss function tends to its maximum with a slow rate. 

 

 



42                      Zeybek & Koksoy | Turkish Journal of Forecasting vol. 01 no. 2 (2017) pp. 40-45 

 

Figure 1. UDNL when 𝜆 = 2.55, 1.7, 0.85 

Given the expectation of the UDNLF with respect to a normal density function with the mean 𝜇 and the variance 

𝜎2, [11] present a simple analytical formula for the expected loss: 

𝐸𝐿𝑈𝐷𝑁 = 1 −
𝜆

√𝜎2+𝜆2
𝑒𝑥𝑝 (

−(𝜇−𝜏)2

2(𝜎2+𝜆2)
)                    (2) 

This formula quantifies the economy-wise impacts of process changes by combining the company view, i.e., the 

information about the systems, and the customer feedback, i.e., the unsatisfactory product performance caused by a 

deviation from the target. 

 

3. Proposed Optimization Scheme 

The response surface model can take many forms, but we are interested in the case that 𝑘 control variables, 𝑥, 

influence the response. Following [2]’s notations, the process mean and standard deviation can be modelled by the 

second order response surfaces as follows,  

�̂�(𝑥) = �̂�0 + ∑ �̂�𝑗
𝑘
𝑗=1 𝑥𝑗 + ∑ �̂�𝑗𝑗

𝑘
𝑗=1 𝑥𝑗

2 + ∑ ∑ �̂�𝑗𝑡𝑥𝑗𝑥𝑡
𝑘
𝑗<𝑡      (3) 

�̂�(𝑥) = �̂�0 + ∑ �̂�𝑗
𝑘
𝑗=1 𝑥𝑗 + ∑ �̂�𝑗𝑗

𝑘
𝑗=1 𝑥𝑗

2 + ∑ ∑ �̂�𝑗𝑡𝑥𝑗𝑥𝑡
𝑘
𝑗<𝑡      (4) 

Using Equation (3) and (4), the estimator of Equation (2); see, [12], is as follows: 

�̂�𝐿𝑈𝐷𝑁 = 1 −
𝜆

√�̂�2(𝑥)+𝜆2
𝑒𝑥𝑝 (

−( �̂�(𝑥)−𝜏)2

2(�̂�2(𝑥)+𝜆2)
 )         (5) 

It is assumed that the degree of satisfaction of the decision maker with respect to the Equation (5) is maximized 

when �̂�(𝑥) = 𝜏 and decreases as �̂�(𝑥) moves away from the target. Thus the satisfaction level with respect to the 

expected loss can be modelled by a function which decreases monotonically from 1 to 0. As [5] noted, such a function 

can be referred as a membership function as in fuzzy set theory. The membership function reflects the decision 

maker’s belief and has been viewed analogously to a utility function in decision analysis; see, [14]. [5] also refers 

that, a nonlinear membership function offers potential benefits in terms of realism and are chosen with varying 

perception of the decision maker. In view of this, following [5]’s notations, we suggest using of an exponential 

function and the degree of satisfaction with respect to the estimated expected loss given by Equation (5) can be 

modelled in the form, 

𝑚(�̂�𝐿𝑈𝐷𝑁) = {
  

𝑒𝑑−𝑒𝑑|𝑧|

𝑒𝑑−1
       ,          𝑖𝑓 𝑑 ≠ 0

     1 − |𝑧|          ,         𝑖𝑓 𝑑 = 0     
         (6) 

where 𝑑 is constant (−∞ < 𝑑 < ∞), called the exponential constant. 𝑧 is a standardized parameter and can be defined 

as, 

𝑧 =
�̂�𝐿𝑈𝐷𝑁−𝐸𝐿𝑈𝐷𝑁𝑚𝑖𝑛

𝐸𝐿𝑈𝐷𝑁𝑚𝑎𝑥−𝐸𝐿𝑈𝐷𝑁𝑚𝑖𝑛

           (7) 

where 𝐸𝐿𝑈𝐷𝑁𝑚𝑖𝑛
 and 𝐸𝐿𝑈𝐷𝑁𝑚𝑎𝑥

 represent the acceptable minimum and maximum loss. In nature, in DRS problems, 

the desired value of the expected loss is zero; however, the capability of technology, economic factors, customer 

satisfactions etc., can affect the tolerable quality loss. This indicates that the results of process optimization vary 

depending on the practitioner’s choice. 

The membership function 𝑚(�̂�𝐿𝑈𝐷𝑁) can represent many different shapes depending upon 𝑑. It can be convex, 

linear and concave when 𝑑 < 0, 𝑑 = 0, 𝑎𝑛𝑑 𝑑 > 0, respectively. As a result, as [15] and [16] noted, the function 

𝑚(�̂�𝐿𝑈𝐷𝑁) given in Equation (6) has been proven to provide a reasonable and flexible representation of human 

perception. 

Finally, the optimization problem can be stated as, 

Maximize    𝛿 

                               Subject to   𝑚(�̂�𝐿𝑈𝐷𝑁) ≥ 𝛿 

                         𝑥 𝜖 Ω 
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where Ω defines the feasible region of 𝑥. This optimization problem aims to identify 𝑥∗ which would maximize the 

minimum degree of satisfaction, 𝛿, with respect to the expected loss within feasible region.  

 

4. Example: Printing Process Study 

This example borrows a case study from [17], which is revisited by [2], [4], and [5]. This experiment was 

conducted to find the optimum combination of the effects of speed (𝑥1), pressure (𝑥2) and distance (𝑥3) factors on 

the quality of a printing process (𝑦). Three design factors thought to be potentially important are listed in Table 1, 

along with the levels of each factor, denoted by −1 and +1. A 33 factorial design with three replicates was used to fit 

the responses.  

Table 1. The printing process study data 

𝑢 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 �̅� 𝑠 

1 -1 -1 -1 34 10 28 24 12.5 

2 0 -1 -1 115 116 130 120.3 8.4 

3 1 -1 -1 192 186 263 213.7 42.8 

4 -1 0 -1 82 88 88 86 3.5 

5 0 0 -1 44 178 188 136.7 80.4 

6 1 0 -1 322 350 350 340.7 16.2 

7 -1 1 -1 141 110 86 112.3 27.6 

8 0 1 -1 259 251 259 256.3 4.6 

9 1 1 -1 290 280 245 271.7 23.6 

10 -1 -1 0 81 81 81 81 0.0 

11 0 -1 0 90 122 93 101.7 17.7 

12 1 -1 0 319 376 376 357 32.9 

13 -1 0 0 180 180 154 171.3 15 

14 0 0 0 372 372 372 372 0.0 

15 1 0 0 541 568 396 501.7 92.5 

16 -1 1 0 288 192 312 264 63.5 

17 0 1 0 432 336 513 427 88.6 

18 1 1 0 713 725 754 730.7 21.1 

19 -1 -1 1 364 99 199 220.7 133.8 

20 0 -1 1 232 221 266 239.7 23.5 

21 1 -1 1 408 415 443 422 18.5 

22 -1 0 1 182 233 182 199 29.4 

23 0 0 1 507 515 434 485.3 44.6 

24 1 0 1 846 535 640 673.7 158.2 

25 -1 1 1 236 126 168 176.7 55.5 

26 0 1 1 660 440 403 501 138.9 

27 1 1 1 878 991 1161 1010 142.5 

For illustrated purposes, the estimator of expected loss function and the exponential membership function is 

obtained with specification bound is (490,510), the target is 500, and also, the acceptable minimum and maximum 

losses are 0 and 1, 𝐸𝐿𝑈𝐷𝑁𝑚𝑖𝑛
= 0 and 𝐸𝐿𝑈𝐷𝑁𝑚𝑎𝑥

= 1. 

The fitted response surfaces from [2] are as follows, 

�̂�(𝑥) = 327.6 + 177.0𝑥1 + 109.4𝑥2 + 131.5𝑥3 + 32.0𝑥1
2 − 22.4𝑥2

2 − 29.1𝑥3
2 + 66.0𝑥1𝑥2 + 75.5𝑥1𝑥3 +

43.6𝑥2𝑥3      (8) 

�̂�(𝑥) = 34.9 + 11.5𝑥1 + 15.3𝑥2 + 29.2𝑥3 + 4.2𝑥1
2 − 1.3𝑥2

2 + 16.8𝑥3
2 + 7.7𝑥1𝑥2 + 5.1𝑥1𝑥3 + 14.1𝑥2𝑥3 (9) 

and the estimator of expected loss is, 

�̂�𝐿𝑈𝐷𝑁 = 1 −
8.5

√�̂�2(𝑥)+8.52
𝑒𝑥𝑝 (

−( �̂�(𝑥)−500)2

2(�̂�2(𝑥)+8.52)
 )                 (10) 

where �̂�(𝑥) and �̂�(𝑥) are defined by Equations (8) and (9), respectively. The scale parameter of loss function is 

obtained as 8.5 by setting 0.425 times of the defined specification range. 
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A convex-shaped exponential membership function with 𝑑 = −4.39 (corresponding the study of [5]) is chosen 

with respect to the Equation (10), where  𝑧 = �̂�𝐿𝑈𝐷𝑁 from Equation (7), that is, 

𝑚(�̂�𝐿𝑈𝐷𝑁) =
𝑒−4.39−𝑒−4.39�̂�𝐿𝑈𝐷𝑁

𝑒−4.39−1
                     (11) 

The complete formulation for the printing process study problem is as follows, 

Maximize    𝛿 

                                            Subject to   
𝑒−4.39−𝑒−4.39�̂�𝐿𝑈𝐷𝑁

𝑒−4.39−1
≥ 𝛿 

                                      −1 ≤ 𝑥 ≤ 1 

The optimal design point for the proposed approach turns out to be 𝑥∗ = (1.00,0.076, −0.252) where �̂�(𝑥) =
494.84 and �̂�(𝑥) = 44.48 and the resulting 𝛿 = 0.015. When 𝑑 = −4.39, the membership function is highly 

convex, which indicates that the high stringency. As a result, the proposed approach results are better both estimated 

mean and standard deviation. Figure 2 shows an illustration of the relationship between membership function given 

by Equation (11) and estimated expected process loss. 

 

Figure 2. The relationship between 𝑚(�̂�𝐿𝑈𝐷𝑁) and �̂�𝐿𝑈𝐷𝑁 

The results of the proposed approach are summarized in Table 2 and compared with those of [2], [4] and [5]. 

Table 2. Comparison of optimal settings for the printing process study. 

Method Optimal setting �̂�(𝑥) �̂�(𝑥) 𝑀𝑆𝐸 �̂�𝐿𝑈𝐷𝑁 
Vining and Myers (1990) (0.62,0.23,0.10) 500.00 51.77 2679.70 Unknown 

Lin and Tu (1995) (1.00,0.07,-0.25) 494.44 44.43 2005.14 Unknown 

Kim and Lin (1998) (1.00,0.086,-0.254) 496.08 44.63 2007.07 Unknown 

Proposed approach (1.00,0.076,-0.252) 494.84 44.48 2005.10 0.81 

The solution of the proposed approach is much closer to [4] and [5] (𝛿 = 0.17) in terms of the estimated mean 

and standard deviation. On the other hand, [2]’s optimal setting allows for the target to be hit with a larger standard 

deviation. However, when the obtained values of MSE’s are compared, it is obvious that the proposed approach has 

the smallest MSE. Furthermore, the proposed method provides an additional information compared the existing 

methods as �̂�𝐿𝑈𝐷𝑁 = 0.81. However, it should be pointed out that, [12] noted as the results from different approaches 

cannot be compared in a straightforward manner since the methods differ in terms of their optimization criteria.  

 

5. Conclusion 

 A fuzzy modelling approach is presented to optimize the expected loss function for a given system. The proposed 

approach aims to identify a set of operating conditions to maximize the degree of satisfaction with respect to the 

expected loss fitted by mean and standard deviation response surfaces. In using a well-known design of the 

experiment, printing data, it was shown that the proposed method can model the decision maker’s preference on the 

estimated expected loss very flexible and achieves a better balance between bias and variability. Additionally, the 
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proposed approach provides a more informative and realistic approach for comparing competing sets of conditions 

depending upon how much better or worse a process is. 
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