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This study operates the Gradient Method to control the leading coefficient 

function of a heat equation and presents a Maplet Application which facilitates 

the computation of control function. The control is the heat conductivity function 

and this function is controlled by aiming the desired value approximation of final 
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application is submitted by MAPLE mathematical software program and the 

results are tested on a problem. 
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM 
 

Having a long history, control problems related to heat equations continue to be popular nowadays. In 

this context, researches are being conducted aiming to control any parameter in the problem for different 

purposes. There are many studies about the control of the initial condition, the boundary conditions or 

the external heat source function. Some of them are presented in the studies [1-3]. Besides them, the 

problem of controlling the heat conductivity function is very important in terms of the location of this 

function in the equation. In the studies [4-7], these kinds of problems have been investigated with 

different cost functionals.  

 

Now, we will examine such a problem. Let us suppose that ℎ(𝑥, 𝑡) is a function representing the heat 

value at time 𝑡 and position 𝑥 of a thin rod with length 𝑙. Then ℎ(𝑥, 𝑡) is the solution to the following 

problem: 

 

 
𝜕ℎ

𝜕𝑡
−

𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕ℎ

𝜕𝑥
) = 𝑓(𝑥, 𝑡),   (𝑥, 𝑡) ∈ (0, 𝑙) × (0, 𝑇) (1) 

 ℎ(𝑥, 0) = 𝜑(𝑥), 𝑥 ∈ (0, 𝑙) (2) 

 −𝑘(0)ℎ𝑥(0, 𝑡) = 𝑔0(𝑡), 𝑘(𝑙)ℎ𝑥(𝑙, 𝑡) = 𝑔1(𝑡),   𝑡 ∈ (0, 𝑇). (3) 
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 Here 𝑘(𝑥) is heat conductivity function,  𝑓(𝑥, 𝑡) is external heat source function, 𝜑(𝑥) is initial heat 

distribution, 𝑔0(𝑡) and  𝑔1(𝑡) are outward fluxes of the heat at the boundaries.  

 

The generalized solution rather than the classical solution of such a problem is more useful in the 

applications because it also includes discontinuous functions. The generalized solution of the problem 

(1)-(3) is the function ℎ ∈ 𝑉2
1,0(Ω) satisfying the equality of  

 

∫ ∫ (−ℎ𝜂𝑡 + 𝑘(𝑥)ℎ𝑥𝜂𝑥)𝑑𝑥𝑑𝑡 = ∫ ∫ 𝑓𝜂𝑑𝑥𝑑𝑡
𝑙

0

𝑇

0
+ ∫ 𝜑(𝑥)𝜂(𝑥, 0)𝑑𝑥

𝑙

0
+ ∫ 𝑔1(𝑡)𝜂(𝑙, 𝑡)𝑑𝑡

𝑇

0

𝑙

0

𝑇

0
 

− ∫ 𝑔0(𝑡)𝜂(0, 𝑡)𝑑𝑡
𝑇

0
   (4) 

for each 𝜂 ∈ 𝑊2
1,1(Ω) with 𝜂(𝑥, 𝑇) = 0, [4,5,6]. For equality (4) to be meaningful the data functions are 

chosen from the functional spaces 

 

𝑘(𝑥) ∈ 𝐿∞(0, 𝑙), 𝑓(𝑥, 𝑡) ∈ 𝐿2(Ω),  𝜑(𝑥) ∈ 𝐿2(0, 𝑙),  𝑔0(𝑡) ∈ 𝐿2(0, 𝑇),  𝑔1(𝑡) ∈ 𝐿2(0, 𝑇). 

 

The norms on 𝑉2
1,0(Ω) and 𝑊2

1,1(Ω) are defined respectively such as; 

 
‖ℎ‖

𝑉2
1,0(Ω) = max

0≤𝑡≤T
‖ℎ‖𝐿2(0,𝑙) + ‖ℎ𝑥‖𝐿2(Ω) 

‖𝜂‖
𝑊2

1,1(Ω) = [‖𝜂‖𝐿2(Ω)
2 + ‖𝜂𝑥‖𝐿2(Ω)

2 + ‖𝜂𝑡‖𝐿2(Ω)
2 ]

1/2
. 

Let us now assume that the rod is desired to close a given heat distribution 𝜇(𝑥) at final time 𝑇 and let 

𝑘(𝑥) be the control function that will perform this request.  In this case, it is necessary to find the 

function 𝑘(𝑥) which will make the following functional minimum on an admissible set of controls 𝐾 

which is a closed and convex subset of 𝐿2(0, 𝑙). 

 

𝐼(𝑘) = ∫ [ℎ(𝑥, 𝑇; 𝑘) − 𝜇(𝑥)]2𝑑𝑥
𝑙

0
.          (5) 

 

On the other hand, it is well-known that the minimization problem of the functional (5) is ill-posed. In 

the ill-posedness when a problem is solved numerically it is frequently encountered that  𝐼(𝑘∗) ≅
𝐼(𝑙∗) ≅ 0 while ‖𝑘∗ − 𝑙∗‖𝐿2(0,𝑙) ≫ 0 for different control functions 𝑘∗ and 𝑙∗ generated by different 

minimizers {𝑘𝑚} and {𝑙𝑚}.  This means that the solution may be non-unique and small changes in the 

initial data reveal huge differences in solution when obtaining a numerical solution. To deal with this 

situation, a penalty term is included in the functional and regularized solution is investigated.  

 

Hence, we consider the new functional  

 

𝐽(𝑘) = ∫ [ℎ(𝑥, 𝑇; 𝑘) − 𝜇(𝑥)]2𝑑𝑥
𝑙

0
+ 𝛼 ∫ [𝑘(𝑥) − 𝑘+(𝑥)]2𝑑𝑥

𝑙

0
          (6) 

 

and solve the problem 

 

       min
𝑘∈𝐾

𝐽(𝑘).                               (7) 

 

Here, control is searched around of a function 𝑘+. The function 𝑘+ has the role of an initial guess to the 

control function. Especially for the local results about convergence rates, the choice of  𝑘+ is very 

crucial. Of course, available apriori information about the minimum element of the functional (5) has to 

enter into the selection of  𝑘+ to get successful results. Besides, 𝛼 in the functional 𝐽(𝑘) is the 
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regularization parameter which is used to balance between the two integrals of (6). The further 

information about the parameter 𝛼 and function 𝑘+ can be found in [8].  

 

The solution of the problem (7) is called 𝑘+-minimum norm control and represented by 𝑘∗(𝑥). The 

existence and uniqueness of 𝑘+-minimum norm control 𝑘∗(𝑥)  is based on the following facts; 

 

• The space 𝐿2(0, 𝑙) is uniformly convex. 

• 𝐾 is closed and bounded in 𝐿2(0, 𝑙). 

• 𝐼(𝑘) is continuous by the 𝐿2 norm on 𝐾. 

• 𝐼(𝑘) is bounded from below on 𝐾. 

 

Then according to the Goebel Theorem [9] there is a dense subset 𝐺 in 𝐿2(0, 𝑙) such that for 𝑘+ ∈ 𝐺 and 

any 𝛼 > 0 the problem (7) has a unique solution. Similar analyzes have been carried out in the studies 

[4,5,6,7]. 

 

Also, it is known that obtaining a numerical solution and symbolic computation of control function in 

control problems is a very difficult issue. Moreover, there is no computer program or software prepared 

for such a problem. 

 

This study has been prepared to fill a gap in this area and gives a Maple Application ‘HCC (Heat 

Conductivity Control)’ that produces the solution to the problem (7). 

 

The used computer program Maple is a mathematical software that combines the world's most powerful 

mathematical engine with an interface that makes it extremely easy to analyze, explore, visualize, and 

solve mathematical problems. Besides, a Maplet Application is a graphical user interface containing 

windows, textbox regions, and other visual interfaces, which gives a user point-and-click access to the 

power of Maple.  Users can perform calculations, plot functions, or display dialogs without using the 

worksheet interface [10]. 

 

2. APPROXIMATE SOLUTION TO THE CONTROL FUNCTION 

 

In this section, we first state the necessary condition for a control function 𝒌∗(𝒙) to be the solution of 

the considered problem. 

 

By the theory of calculus of variations, the definition of Frechet differentiability is 

 

𝚫𝑱(𝒌) = 〈𝑱′(𝒌), ∆𝒌〉𝑳𝟐(𝟎,𝒍) + 𝒐(‖∆𝒌‖𝑳𝟐(𝟎,𝒍)) 

 

with  𝐥𝐢𝐦
‖∆𝒌‖→𝟎

𝒐(‖∆𝒌‖) ‖∆𝒌‖⁄ = 𝟎.  With this definition, the derivation of the functional (6) after some 

manipulations is found by  

 

𝑱′(𝒌) = − ∫ 𝒉𝒙𝜼𝒙𝒅𝒕 + 𝟐𝜶(𝒌 − 𝒌+)
𝑻

𝟎
.     (8) 

  

Then according to [11], the necessary condition for a control 𝒌∗(𝒙) to be the minimum element for the 

problem is given by the following inequality: 

 

〈𝑱′(𝒌∗), 𝒌 − 𝒌∗〉𝑳𝟐(𝟎,𝒍) = 〈− ∫ (𝒉∗)𝒙(𝜼∗)𝒙𝒅𝒕 + 𝟐𝜶(𝒌∗ − 𝒌+)
𝑻

𝟎
, 𝒌 − 𝒌∗〉𝑳𝟐(𝟎,𝒍) ≥ 𝟎  (9) 

 

for ∀𝒌 ∈ 𝑲, Here,  𝒉∗ is the solutions of the (1)-(3) state problem and 𝜼∗ is the solution of 

 



Güngör / Estuscience – Se , 25 [2] – 2024 

 

292 

𝜼𝒕 + (𝒌(𝒙)𝜼𝒙)𝒙 = 𝟎      (10) 

 

𝜼(𝒙, 𝑻) = 𝟐[𝒉(𝒙, 𝑻; 𝒌) − 𝝁(𝒙)]      (11) 

 

𝒌(𝟎)𝜼𝒙(𝟎, 𝒕) = 𝟎, 𝒌(𝒍)𝜼𝒙(𝒍, 𝒕) = 𝟎     (12) 

 

adjoint problem in the generalized sense, corresponding to 𝒌 = 𝒌∗. 

 

Now, we can discuss how to get an approximate solution for a control function. By Galerkin Method, 

the approximate solution 𝒉𝑵(𝒙, 𝒕) with 𝑵 sum for (1)-(3) heat equation is constituted such as 

 

𝒉𝑵 = 𝒗𝑵 + 𝒘 = ∑ 𝑪𝒌
𝑵(𝒕)𝝋𝒌(𝒙)𝑵

𝒌=𝟏 + 𝒘.    (13) 

 

Here,  𝒗𝑵 is the solution of corresponding homogeneous Neumann problem and  

 

𝒘(𝒙, 𝒕) =
𝒙𝟐

𝟐

𝟏

𝒍𝒌(𝒍)
𝒈𝟏(𝒕) + (

𝒙𝟐

𝟐
− 𝒙𝒍)

𝟏

𝒍𝒌(𝟎)
𝒈𝟎(𝒕) 

 

 is an auxiliary function.  

 

Also, {𝝋𝒌(𝒙)} is an orthonormal basis of the functional space 𝑳𝟐(𝟎, 𝒍). Then  𝑪𝒌
𝑵(𝒕) ‘s are unknown 

functions which are the solutions of the following first order differential system;  

 
𝒅

𝒅𝒕
𝐂𝐍 + 𝐊𝐂𝐍 = 𝐅

𝐂𝐍(𝟎) = 𝐀
       (14) 

 

for the vector  𝐂𝐍 = [𝑪𝟏
𝑵(𝒕) ⋯ 𝑪𝑵

𝑵(𝒕)]𝑻, where the matrix 𝐊 has the entries  

 

𝑲𝒊𝒋 = ∫ (𝒌(𝒙)
𝒅

𝒅𝒙
𝝋𝒋(𝒙))

𝒅

𝒅𝒙
𝝋𝒊(𝒙)𝒅𝒙

𝒍

𝟎

 

 

for 𝒊, 𝒋 = 𝟏, 𝟐, … , 𝑵  and the vectors 𝐅, 𝐀 and 𝐁 have the entries 

 

𝑭𝒊 = ∫ �̃�(𝒙, 𝒕)𝝋𝒊(𝒙)𝒅𝒙
𝒍

𝟎
, 𝑨𝒊 = ∫ �̃�(𝒙)𝝋𝒊(𝒙)𝒅𝒙

𝒍

𝟎
 for 𝒊 = 𝟏, 𝟐, … , 𝑵. 

 

with  �̃�(𝒙) = 𝝋(𝒙) − 𝒘(𝒙, 𝟎) and �̃�(𝒙, 𝒕) = 𝒇(𝒙, 𝒕) − 𝒘𝒕 + (𝒌(𝒙)𝒘𝒙)𝒙. 

 

The problem of finding the vector 𝐂𝐍 from (14) is a Cauchy problem for the system of first order 

differential equations. The right-hand side of this system is in the class of square integrable functions. 

This system has a unique solution on the interval [𝟎, 𝑻] as known from the theory of ordinary differential 

equations.  

 

In the same way, secondly, the approximate solution of (10)-(12) adjoint problem is carried out by the 

finite sum of 

 

𝜼𝑵 = ∑ (𝑪𝒆)𝒌
𝑵(𝒕)𝝋𝒌(𝒙)𝑵

𝒌=𝟏 . 
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Here (𝑪𝒆)𝒌
𝑵(𝒕) ‘s are unknown functions which are the solutions of a second-order system of differential 

equations obtained by the generalized solution of the adjoint problem. 

 

After then, using these solutions the approximate derivative of the cost functional (6) is obtained by 

 

(𝑱𝑵)
′
(𝒌(𝒙)) = − ∫ [𝒉𝑵(𝒙, 𝒕; 𝒌(𝒙))]

𝒙
[𝜼𝑵(𝒙, 𝒕; 𝒌(𝒙))]

𝒙
𝒅𝒕

𝑻

𝟎
 +𝟐𝜶[𝒌(𝒙) − 𝒌+(𝒙)].  (15) 

 

Once these functions are found, the minimization stages can be carried out. Starting with an initial 

𝒌𝟎(𝒙) ∈ 𝑲  element, a minimizer {𝒌𝒎(𝒙)} is constituted by Gradient Method with the rule 

 

𝒌𝒎+𝟏(𝒙) = 𝒌𝒎(𝒙) − 𝜷(𝑱𝑵)
′
(𝒌𝒎(𝒙)), 𝝉𝒎 > 𝟎, 𝒎 = 𝟎, 𝟏, 𝟐, …   (16) 

 

In each step of 𝒎, the parameter 𝜷 > 𝟎 is chosen sufficiently enough such that the minimizing condition 

 

𝑱𝑵(𝒌𝒎+𝟏) < 𝑱𝑵(𝒌𝒎)       (17) 

 

holds. 

The computations are executed up to the stopping criteria of  

 

|𝑱𝑵(𝒌𝒎) − 𝑱𝑵(𝒌𝒎+𝟏)| ≤ 𝜺      (18) 

 

is provided by given small 𝜺 number. The 𝒌𝒎+𝟏(𝒙) function satisfying this condition is accepted by the 

approximate control 𝒌∗(𝒙). 

 

We can summarize this process with the following algorithm. 

 

 

2.1. Algorithm for the Process 

 

Selecting an initial control 𝒌𝟎(𝒙) ∈ 𝑲 , 𝒌𝒎+𝟏(𝒙) is computed by the following scheme if 𝒌𝒎(𝒙) is 

known for 𝒎 ≥ 𝟎. 

 

1. Solve the system (14) and get approximate function 𝒉𝒎
𝑵 (𝒙, 𝒕). 

 

2. Knowing 𝒉𝒎
𝑵 (𝒙, 𝒕), solve the adjoint equation (10)-(12) and get 𝜼𝒎

𝑵 (𝒙, 𝒕). 

 

3. Using (15), set 𝒌𝒎+𝟏(𝒙) = 𝒌𝒎(𝒙) − 𝜷(𝑱𝒎
𝑵 )

′
(𝒌𝒎(𝒙)) by (16) and select the parameter 𝜷 small 

enough to assure the condition (17) holds.  

 

4. If condition (18) holds, take the control function as 𝒌∗(𝒙) = 𝒌𝒎+𝟏(𝒙) otherwise go to Step 3. 

 

3. A MAPLET APPLICATION CALCULATING THE CONTROL FUNCTION AND 

TESTING THIS APPLICATION  

 

In this section, using the software Maple 17 we submit a Maplet Application named HCC (Heat 

Conductivity Control). This application produces the heat conductivity function which is control 

function of the problem if data is entered. This application can be downloaded using the link given by 

[12]. 

 

Running this Maplet executes the following application; 
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All tables and figures must have a caption and/or legend and be numbered (e.g., Table 1, Figure 2), 

unless there is only one table or figure, in which case it should be labelled “Table” or “Figure” with no 

numbering. Captions must be written in sentence case (e.g., Macroscopic appearance of the samples.). 

The font used in the figures should be Times New Roman. If symbols such as ×, μ, η, or ν are used, they 

should be added using the Symbols menu of Word. Tables and figures, including caption, title, column 

heads, and footnotes, must not exceed 16 × 20 cm and should be no smaller than 8 cm in width. 

 

2.1.1. Figure formatting 

 

All illustrations (photographs, drawings, graphs, etc.), not including tables, must be labelled “Figure”  

 

 

 

 

 

 

 
 

Figure 1. Maplet Application Screen 

 

Here the data of the application are such as; 

Table 1. The data of the application. 

In the Maplet In the Problem 

 𝒍  𝑙 the length of the interval (0, 𝑙) 

 𝑻  𝑇 the length of the interval (0, 𝑇) 

 𝒇(𝒙, 𝒕)  𝑓(𝑥, 𝑡) external heat source function 

 𝐩𝐡𝐢(𝒙)  𝜑(𝑥) initial heat distribution 

 𝒌(𝟎)  𝑘(0) coefficient of left heat flux 

 𝒌(𝒍)  𝑘(𝑙) coefficient of left heat flux 

 𝐠𝟎(𝒕)  𝑔0(𝑡) left heat flux function 

 𝐠𝟏(𝒕)  𝑔1(𝑡) right heat flux function 

 𝐦𝐮(𝒙)  𝜇(𝑥) desired target (final time heat distribution) 

 𝒂𝒍𝒑𝒉𝒂  𝛼 regularization parameter of the functional 𝐽(𝑘) 

 𝐤𝐚𝐩𝐥𝐮𝐬(𝒙)  𝑘+(𝑥) initial guess to the control function 

 𝐤𝐬𝐭𝐚𝐫𝐭(𝒙)  𝑘0(𝑥) initial element for the minimizer 

 𝑵  𝑁 the number of finite element used in ℎ𝑁 and 𝜂𝑁 

 𝒃𝒆𝒕𝒂  𝛽 the value of parameter used in 𝑘𝑚+1(𝑥) 

 𝒆𝒑𝒔  𝜀 the value of stopping criteria used in |𝐽𝑁(𝑘𝑚) − 𝐽𝑁(𝑘𝑚+1)| ≤ 𝜀 

 

Besides, the outcomes of the application are such as; 
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Table 2. The application results. 

In the Maplet In the Problem 

Draw the Control The function 𝑘∗(𝑥) = 𝑘𝑚+1(𝑥) obeying the stopping criteria 

Graph of the control function 

The value of   𝐼(𝑘∗) 

The value of ‖𝑘∗ − 𝑘+‖𝐿2(0,𝑙) 

Distance to Target 

Approximation to kaplus 

Draw the Control 

 

Note that the ability of calculation of the control function depends on the appropriate choice of  

𝑁, 𝑘𝑠𝑡𝑎𝑟𝑡(𝑥), 𝑏𝑒𝑡𝑎 and 𝑒𝑝𝑠. If the application does not give the control function these values should be 

re-arranged. 

 

Now we give a test problem revealing the use and success of given Maplet application. 

 

3.1. Problem 

 

Let us consider the  following problem on the domain Ω = (0,1) × (0,1); 

 

min
𝑘∈𝐾

∫[ℎ(𝑥, 1; 𝑘) − 𝑒−𝜋2
sin 𝜋𝑥]

2
𝑑𝑥

1

0

+ 𝛼 ∫[𝑘(𝑥) − (1 + 𝑥)]2𝑑𝑥

1

0

 

 

subject to the problem of 

 
𝜕ℎ

𝜕𝑡
−

𝜕

𝜕𝑥
(𝑘(𝑥)

𝜕ℎ

𝜕𝑥
) = 𝜋𝑒−𝜋2𝑡(𝜋𝑥sin 𝜋𝑥 − cos 𝜋𝑥),   (𝑥, 𝑡) ∈ (0,1) × (0,1) 

 

ℎ(𝑥, 0) = sin 𝜋𝑥 , 𝑥 ∈ (0,1) 

 

−ℎ𝑥(0, 𝑡) = −𝜋𝑒−𝜋2
, ℎ𝑥(𝑙, 𝑡) = −2𝜋𝑒−𝜋2

,   𝑡 ∈ (0,1). 

 

 

Now we will use the given Maplet Application and get the control function. The data given by problem 

are such as 

 

𝑙 = 1, 𝑇 = 1, 𝜇(𝑥) = 𝑒−𝜋2
sin 𝜋𝑥 , 𝑘+(𝑥) = 1 + 𝑥 

 

𝑓(𝑥, 𝑡) = 𝜋𝑒−𝜋2𝑡(𝜋𝑥sin 𝜋𝑥 − cos 𝜋𝑥), 𝜑(𝑥) = sin 𝜋𝑥 

 

𝑘(0) = 1, 𝑔0(𝑡) = −𝜋𝑒−𝜋2𝑡, 𝑘(𝑙) = 2, 𝑔1(𝑡) = −2𝜋𝑒−𝜋2𝑡 . 
 

Upon this, if we select as 

 

𝛼 = 0.4, 𝑁 = 2, 𝑘0(𝑥) = 4, 𝛽 = 0.9, 𝜀 = 0.0001 

 

and enter these into the application then we get the following result; 
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Figure 2. Maplet Application Screen for Test Problem 

 

According to this application the control function is  

 

𝑘∗(𝑥) = 1.00516311 − 0.458283934(E − 8). cos2(3.141592654𝑥) − 0.151800378 
(E −  7). sin(3.141592654𝑥) + 0.759001892(E − 8). sin(3.141592654𝑥) + 0.9982789632𝑥 

 

Also, the distance to target is 𝐼(𝑘∗) = 0.1955297675(E − 2) and approximation to kaplus is 
‖𝑘∗ − 𝑘+‖𝐿2(0,𝑙) = 0.1875915000(E − 4).  

 

On the other hand, the reason for the choice of  𝑘+(𝑥) = 1 + 𝑥 is the fact that 

 

𝐼(𝑘+) = ∫[ℎ(𝑥, 1; 𝑘+) − 𝑒−𝜋2
sin 𝜋𝑥]

2
𝑑𝑥

1

0

= 0 

 

for related heat problem.  

 

Besides, in the following table there are some ‘distance to target’ and ‘approximation to kaplus’ values 

corresponding some 𝛼 numbers for this example: 
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Table 3. 𝐼(𝑘∗) and ‖𝑘∗ − 𝑘+‖𝐿2(0,𝑙)
2  values for some regularization parameters. 

 

𝜶 
Distance to Target  

(𝑰(𝒌∗)) 

Approximation to kaplus (‖𝒌∗ −

𝒌+‖𝑳𝟐(𝟎,𝒍)
𝟐 ) 

0.01 0.2027140817(E − 4) 0.2882505505 

0.015 0.3348096495(E − 3) 0.1548949288 

0.02 0.6706345202(E − 3) 0.8905348472(E − 1) 

0.03 0.1069109391(E − 2) 0.4043347441(E − 1) 

0.04 0.1289383661(E − 2) 0.2262586246(E − 1) 

0.05 0.1556482205(E − 2) 0.1254192760(E − 1) 

0.1 0.1779405106(E − 2) 0.2260406516(E − 2) 

 

The following figure visualizes the approximations in the Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Visualization of  𝐼(𝑘∗) and ‖𝑘∗ − 𝑘+‖𝐿2(0,𝑙)
2  by some 𝛼 values. 

 

Now, using this application, we will examine the ill-posedness for 𝛼 = 0 as we mentioned in section 1. 
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Table 4. Ill-Posedness when α = 0. 

𝒌𝒔𝒕𝒂𝒓𝒕(𝒙) 𝒌∗(𝒙) Distance to Target 
Approximation to 

kaplus 

𝟒 

4 + 0.1924776275(E − 10). sin2(3.1415926𝑥) 

−0.3515450763(E − 9). sin(3.1415926𝑥) 𝑥 

+0.1757725382(E − 9). sin(3.1415926𝑥) 

0.28959697(E − 10) 6.333333333 

𝟖 

8 − 0.151513001(E − 11). cos2(3.1415926𝑥) 

−0.6456950391(E − 10). sin(3.1415926𝑥) 𝑥 

+0.3228475196(E − 10). sin(3.1415926𝑥) 

0.11341385(E − 10) 42.33333333 

𝟏𝟎 

10 − 0.71288010(E − 12). cos2(3.1415926𝑥) 

−0.3906056418(E − 10). sin(3.1415926𝑥) 𝑥 

+0.1953028209(E − 10). sin(3.1415926𝑥) 

0. 13574858(E − 10) 72.33333333 

When 𝛼 = 0, the differences at the starting element of the minimizer produce quite different controls 

which bring the heat closer to the target. In this case, the distances from the obtained controls to the 𝑘+ 

function have been increasing gradually. This situation imposes the numerical ill-posedness. 

Let us take the value of 𝛼 = 0.4 and use the application. Then we get the following outcomes; 

Table 5. The case α ≠ 0. 

𝒌𝒔𝒕𝒂𝒓𝒕(𝒙) 𝒌∗(𝒙) Distance to Target 
Approximation to 

kaplus 

𝟒 

1.005163 − 0.45836(E − 8). cos2(3.141592𝑥) 

−0.1518003786(E − 7). sin(3.1415926𝑥) 𝑥 

+0.75900189(E − 8). sin(3.1415926𝑥) 

+0.9982789632𝑥 

0.1956610(E − 2) 0.1875915(E − 4) 

𝟖 

1.003373 − 0.47691(E − 8). cos2(3.141592𝑥) 

−0.1563177542(E − 7). sin(3.1415926𝑥)𝑥 

+0.7815887713(E − 8). sin(3.1415926𝑥) 

+0.9995181097𝑥 

0.1955720(E − 2) 0.9830589(E − 5) 

𝟏𝟎 

1.004337 − 0.46141(E − 8). cos2(3.141592𝑥) 

−0.1525642581(E − 7). sin(3.1415926𝑥)𝑥 

+0.7628212905(E − 8). sin(3.1415926𝑥) 

+0.9995181097𝑥 

0.1954430(E − 2) 0.1679713(E − 4) 

 

As seen, the differences in the starting element of the minimizer have no important effect when 𝛼 ≠ 0. 

All the obtained controls are close enough to 𝑘+ function and achieve the same degree of convergence 

to the target. This situation removes the fact of being numerically ill-posedness. 

 

4. RESULT AND DISCUSSION 

 

The results of the test problem show that the given Maplet Application HCC works quite efficiently. 

The outcomes are quite consistent with the control theory. After this point, applications can be prepared 

for similar types of problems. Thus software that is easy to use for solutions based on a long computation 

of control problems is developed. 
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