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Abstract  Keywords 

Manual control of rail defect detection is slow and costly. Deep learning methods can 

detect some of these defects to a certain extent. However, existing systems produce 

too many false positives due to environmental factors, resulting in labor and cost 

losses. One of the most important components in railway systems is the fastener, and 

their failure can lead to severe accidents. In this study, we developed a deep learning-

based method that is designed to remain robust against foreign objects and 

environmental conditions when detecting railway fasteners. By employing various 

activation functions and expanding the training dataset through data augmentation 

techniques, our method significantly reduces false alarms. The best-performing 

activation function in our tests achieved an F1-score of 0.99 and a mean average 

precision (mAP) of 100%. Testing on a dataset provided by TCDD Railway Research 

& Technology Centre (DATEM) confirms the efficacy of our approach, 

demonstrating a notable decrease in unnecessary work and associated costs. 
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1. INTRODUCTION 
 

Railway transportation has a critical role in both passenger and freight transportation since it is 

economical and safe. The importance of high-speed trains in passenger transportation is increasing day 

by day due to the comfort and speed they provide. The increasing use of rail transportation also makes 

the detection and maintenance of railroad faults more critical. In the past, manual fault detection and 

control operations were both costly and slow. With the development of technology, these manual 

processes can now be performed much faster using vision and artificial intelligence-based algorithms. 

Vision-based methods are widely adopted for railway fastener detection because of their precision and 

ease of integration with existing monitoring systems. Other techniques, such as acoustic and laser-based 

methods, have also been explored in some studies. [1, 2]. However, the defect detection models used 

have not yet reached the desired level. Single-Stage Object Detection (SSD) is the general name for 

object detection methods that perform object detection and classification simultaneously within a single 

neural network architecture and are effective in real-time applications. The main advantages of SSD are 

its simplicity, speed, and suitability for detection of objects with different sizes.  In this study, the SSD 

model You Look Only Once v4 (YOLOv4) is used to detect defects in fasteners that are critical for 

railway safety. The performance of the SSD model is analyzed using different activation functions. 

Activation functions directly affect the performance of the model due to the nonlinearity they add to the 
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model. [3]. This feature distinguishes them from simple linear models and enables them to provide 

successful results for challenging real-world problems. 

 

In 2019, Lin et al. published a paper in which they mentioned that railway fasteners are one of the most 

important components of the railway, and their damage control is done manually. They trained the 

YOLOv3 model with 20 km of GoPro images and achieved 89% and 95% precision and recall, 

respectively [4]. In 2020, Qi et al. stated in their article that real-time detection of defects in railway 

fasteners would be a significant improvement in this field. They also noted that this task is challenging 

due to the memory and processor limitations of embedded maintenance systems. With the MYOLOv3-

Tiny model they developed, the accuracy value reached 99.33% and the memory consumption was 

reduced by 43% compared to the YOLOv3-Tiny model [5]. Güçlü et al. introduced a novel method 

utilizing fuzzy logic and YOLOv4 in their study. They achieved a success rate of 99.25% in classifying 

faulty fasteners on the test dataset [6]. In 2021, Liao et al. investigated the effects of activation functions 

on the learning process with benchmarks and successfully detected surface defects with the hybrid model 

they developed, achieving an of 98.64% mAP value in their study [7]. Şener et al. propose an AI-based 

model using the Tensorflow library and deep learning approaches to identify problems in railway tracks 

with an overall accuracy of 92.2% [8]. Ozdemir and Koc used a semi-supervised deep learning strategy 

with a student-teacher model and YOLOv4 to detect various defects encountered in railways [9]. They 

used a new dataset from the Turkish State Railways (TCDD), which contains five different defects, 

including fastener faults. Their method automates the process of adding appropriately pseudo-labeled 

images to the training dataset, enhancing model performance, and lowering the labor-intensive task of 

manual labeling. Sevi et al. proposed a deep learning-based approach to classify defects in railway 

fasteners by generating defective data from images of healthy rail fasteners. They used CNN, VGG16, 

and ResNet50 models to classify fastener defects, achieving a 100% accuracy rate with the proposed 

method [10]. He et al. added a SE attention mechanism, replaced the backbone with a lightweight 

MobileNet-V2 network, and included Mixup data augmentation to improve the Yolov4 model for track 

fastening service status detection [11]. As compared to the conventional Yolov4 model, their results 

demonstrated a 67.39% increase in processing speed and an 83.2% MAP increase in detection accuracy. 

Yılmazer et al. aimed to detect three different fault classes, including missing fasteners, along with the 

state of healthy sleepers, with the model's accuracy determined to be 95% in the performed tests. 

[12].Zengzhen Mi et al. found that their improved version of the YOLOv4 model outperformed 

YOLOv3, YOLOv4, YOLOv5, YOLOv6, Faster RCNN, and SSD models, achieving an F1 score of 

0.925 compared to YOLOv6’s 0.914 [13]. In our work, we use the original YOLOv4 model to evaluate 

the impact of different activation functions on railway fastener detection. 

  

The dataset provided by TCDD was obtained using a track inspection system called VCUBE. There 

were many false positives in the detections made by V-CUBE, with the precision value being about 

11%; this means that only 301 out of 2730 detections were true. The false positives (FPs) may occur 

due to the ballasts on the fasteners and other environmental conditions, resulting in very low 

performance. This study, focusing on fastener defects, was conducted to address this problem. 

Additionally, the effects of activation function selection and data augmentation on the model's 

performance were analyzed. 

 

2. MATERIALS and METHODS 

 

2.1. Dataset 
 

One of the most critical factors in the success of deep learning models is the dataset [14]. The more 

accurate and consistent the labels and tags in the dataset used to train the model, and the higher the class 

diversity, the more successful the model will be. The dataset in this study, which was created using 

railroad images provided by TCDD, was obtained using a track inspection system. These images were 
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analyzed, and the marking and labeling were done carefully. After analyzing all the images, the 

following three classes were created: 

 Sleeper: Placed under the rails and used to support the rails. It stabilizes the rails by distributing 

the load under the rails and ensures the contact of the rails with the ground. 

 Fastening OK: Fasteners are used to attach rails and rail components. These parts connect the rails 

to the bearings and substructure and ensure that the track is safe and stable. Various types of 

fasteners can be used to ensure that the rails are held in place and secured. These systems increase 

the life of the track by absorbing vibrations and carrying the loads of the rails. Fastening systems 

typically consist of rail clips, screws, wedges, and other hardware.  

 Fastening NOK: If the fastener is deformed for any reason, or if it rotates and loses contact with 

the rail, the safety of the rail line is compromised. Fasteners in the images under this condition are 

labeled as "Fastening NOK". 

Labeled sample images of the Sleeper, Fastening OK, and Fastening NOK classes are shown in Figure 

1. 
 

 

Figure 1.  Examples of Sleeper, Fastening OK and Fastening NOK Classes 

 

After analyzing the railroad images received from TCDD, approximately 89% of the classifications were 

found to be incorrect. For example, Figure 2 shows images that were initially classified as incorrect in 

the dataset but were actually correct. By analyzing all images, those that were truly defective were 

identified and separated from the non-defective ones, as demonstrated in Figure 3. 

 

 

Figure 2.  Normal images that are labeled as defective 
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Figure 3. Checking for images that are labeled as defective 

Training, validation, and test datasets were then created from the acquired images, which were labeled 

in YOLO format using the labelImg program. In addition to labeling the fasteners, the sleepers in the 

images were also labeled, creating a dataset that facilitates the detection of missing fastener defects if 

needed. The numbers of images in the training, validation, and test datasets, along with the number of 

classes in these images, are provided in Table 1. 

 
Table 1. Number of Images in Training, Validation, and Test Datasets 

 

 

 

 

 

 

 

The use of data augmentation techniques, specifically adjustments in contrast and orientation, expanded 

the training dataset to four times its original size by increasing the number of images. The augmented 

training dataset has 3248 images which contains 3248 sleepers, 2284 fastening_OK, and 964 

fastening_NOK samples. 

 

2.2. YOLOv4 

 

YOLOv4 is an object detection algorithm that provides advantages such as high accuracy, speed, and 

scalability [15]. In this study, the YOLOv4 detection algorithm is used to detect the defects of railway 

fasteners with high accuracy and reduce the number of false positives. 

 

The architecture of YOLOv4 generally consists of Backbone, Neck, Head sections. The tasks of these 

sections are briefly described below: 

 Backbone: In YOLOv4, it is based on CSPDarknet53, a pre-trained deep learning model. 

CSPDarknet53 [16] is a Convolutional Neural Network (CNN) based architecture and includes 

a series of convolution and pooling layers to transform the image into smaller feature maps. 

 Neck: This section processes the output from the backbone network and contains several 

convolution and scaling layers that combine and compress feature maps at different scales. 

Typically, a neck consists of several paths from the bottom up and several paths from the top 

down. In the neck part of the architecture of YOLOv4, SPP (Spatial Pyramid Pooling) add-on 

module and PANet path aggregation were chosen. PAN (Path Aggregation Network) in this 

section [17] is a network that performs the operations of merging and expanding feature maps. 

SPP [18] layer contains max-pooling outputs with 1×1, 5×5, 9×9, 13×13 kernel sizes and adds 

imaginary connections, so the model can be trained shorter time also had a higher performance.  

 Head: The head section is the dense prediction layer. It contains bounding boxes and the class 

of each box is estimated. The models implemented in YOLOv3 are used here. Thanks to the 

Dataset image sleeper fastening_OK fastening_NOK 

Training 812 812 571 241 

Validation 100 100 68 32 

Test 100 100 72 28 
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mechanism that YOLOv4 has, the model is able to recognize both small and large objects with 

the same level of accuracy.  

 

A figure summarizing the structure of the YOLOv4 algorithm is shown in Figure 4. Yolov4 uses a 

composite loss function which is made up of three components: (i) Bounding box regression loss (ℒloc) 

improves the overlap, center distance, and aspect ratio consistency to ensure that predicted bounding 

boxes in the object detection tasks are accurately aligned with the ground truth. (ii) Confidence loss 

(ℒconf)  penalizes incorrect object evaluations by using binary cross-entropy to determine the model's 

confidence about whether the bounding box contains an object. (iii) Classification loss (ℒclc)  quantifies 

how well a model can classify an object inside a bounding box. The total loss is the weighted sum of 

these three loses: 

 

where 𝜆𝑙𝑜𝑐, 𝜆𝑐𝑜𝑛𝑓, and 𝜆𝑐𝑙𝑠 are the corresponding weight coefficients. 

 

 

Figure 4.  YOLOv4 Architecture [19] 

 

2.3. Activation Functions 

 

Some activation functions commonly used in the literature are selected to investigate the learning 

performance of the model and their performances are compared on the test dataset. The activation 

functions are designed to optimize the training of the model, deal with gradient vanishing/exploding 

problems, and improve the learning process. The ideal activation function may differ based on the model 

and application. Figure 5 depicts some of the most frequent activation functions used to train deep 

learning models. 

 

ℒ = 𝜆locℒloc + 𝜆confℒconf + 𝜆clsℒcls (1) 
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Figure 5. Comparison of Activation Functions 

 

In this study, the activation functions Leaky ReLU (Rectified Linear Unit), Swish, x-Swish (Exponential 

Swish) and Mish were employed during the model training process. Each of these activation functions 

is described in detail below: 

 

Leaky ReLU: It multiplies the input by a small slope value when the input is negative. This means that 

𝑥 <  0 when the Leaky ReLU is multiplied by 𝛼. Adding a small slope to negative inputs that are zero 

is intended to increase the model's ability to learn. 

Swish: It applies the sigmoid function to the input and then multiplies the input by the result. The Swish 

function produces a smooth version of the sigmoid as the value of 𝑥 increases. Swish has smoother 

derivatives, which can make training more stable. 

x-Swish (eXponential Swish): x-Swish has been proposed to improve the Swish function. x-Swish aims 

to improve the performance of Swish by adding an additional scaling factor. 

𝑓(𝑥) = 𝛽𝑥𝜎(𝑥) =
𝛽𝑥

1 + e−𝑥
 (4) 

Mish: Mish is a nonlinear function that multiplies the input by the hyperbolic tangent (tanh) function of 

x. Mish has a smoother curve than other activation functions, especially Swish and ReLU. 

𝑓(𝑥) = 𝑥tanh(ln(1 + e𝑥)) (5) 

 

Mish*: Mish* activation function is combined with both the Mish activation function and the SAM 

(Spatial Attention Module) module. This can help the model to focus on important regions in the feature 

map. The mathematical formulation of this special function may vary depending on the application 

context, but in general it includes mish activation function and spatial attention features. Mish* aims to 

achieve better performance in tasks such as object detection by combining the spatial attention feature 

with the Mish function. Unlike the Mish activation function, the plug-in modules have not only SPP, 

but also SAM, and the head part uses the linear activation function instead of the logistic one. 

 

𝑓(𝑥) = {
𝑥 𝑥 ≥ 0

𝛼𝑥 𝑥 < 0
 (2) 

𝑓(𝑥) =  𝑥  𝜎(𝑥) =
𝑥

1 + e−𝑥
 (3) 
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3. EXPERIMENTS 

 

To compare the performance of the fault detection model developed with the YOLOv4 object detection 

algorithm trained on our custom railway fastener dataset, we conducted 10 different experiments using 

various activation functions. In these experiments, the YOLOv4 model is trained using hyperparameters 

with an input size of 352 × 352 pixels, a batch size of 64, and a mini-batch size of 32. The learning rate 

is set at 0.001 and the momentum at 0.949. The training is conducted over 12,000 iterations with the 

Adam optimizer. The experiments are conducted on a desktop PC operating Windows 11, equipped with 

an Intel i7-11700 CPU at 2.50GHz, an RTX3060 Ti GPU, and 16GB of RAM. 

 

Evaluation Metrics: 

 

The evaluation of detection accuracy involves the utilization of metrics such as Precision, Recall, F1-

score, Intersection over Union (IoU), and mean average precision (mAP), which are delineated as 

follows: 

 

 
Precision =  

TP

TP + FP
 (6) 

 
Recall =  

TP

TP + FN
 (7) 

 
F1 − score = 2 ×

Precision × Recall

Precision + Recall
 (8) 

 
IoU =  

TP

TP + FP + FN
 (9) 

 
mAP =  

1

C
∑ APi

C

i=0
 (10) 

 

Here 𝐶 represents the total number of categories within the image dataset. TP, FN, and FP denote true 

positive, false negative, and false positive, respectively. In this study, the prediction anchor box is 

classified as true positive (TP) if its Intersection over Union (IoU) value equals or exceeds a predefined 

threshold, denoted as 𝑇, which is set at 0.5. 

Table 2. Comparison of Activation Function Performances 

Activation F1-score recall precision IoU mAP 

leaky 0.99 0.99 0.98 93.07 98.62 

swish 0.86 0.93 0.80 75.80 99.20 

x-swish 0.92 0.95 0.90 87.13 97.97 

mish 0.93 1.00 0.87 81.83 99.24 

mish* 0.98 0.99 0.98 92.57 98.70 

 

To investigate the effects of activation functions on the performance of the model, Swish, x-Swish, 

Mish, and Mish* activation functions were selected one at a time instead of Leaky ReLU and the model 

was trained on the training dataset. As a result of this training, performance comparisons were made on 

the test dataset with the models obtained using different activation functions. The results of these tests 

were compared with the overall performance indices in  Table 2, and the class-based performance results 

are shown in Table 3 on the dataset.  With the Mish activation function detecting 27 out of 28 defective 

fasteners, it achieved the best result, marking an improvement of 3.57% and attaining an F1-score of 

0.93. Although the best result was obtained in the detection of faulty fasteners, the overall performance 

was degraded due to the high number of false positives in the "sleeper" and "fastening_OK" classes. 
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Table 3. Class Based Performance of Activation Functions 

 Sleeper Fastening_OK Fastening_NOK 

activation AP TP FP AP TP FP AP TP FP 

leaky 100.00 100 0 99.67 72 4 96.18 26 0 

swish 100.00 89 36 99.12 70 7 98.49 26 2 

x-swish 100.00 94 11 99.01 71 6 94.89 26 5 

mish 100.00 100 24 100.00 72 6 97.73 27 1 

mish* 100.00 100 0 99.67 72 5 96.43 26 0 

 

To improve the performance of the error detection model, the number of images in the training dataset 

was increased using data augmentation methods including flipping, contrast reduction, and contrast 

enhancement. In this way, a training data set was obtained that is more adaptable to changing light 

conditions at different times of the day, when the weather is cloudy or sunny. As a result of these 

operations, the number of images was increased, and the training dataset was expanded to four times its 

original size. With the extended training dataset, the models with leaky ReLU, Swish, X-Swish, Mish, 

and Mish* activation functions were retrained. The performance of the new models was compared on 

the test dataset. The results were compared with the overall performance indices listed in Table 4 and 

on a class-by-class basis in Table 5. Analysis of the tables shows that the models trained with both the 

Swish and Mish* activation functions successfully detected all defective images. However, the model 

trained with the Mish* activation function outperformed the Swish-activated model on the F1-score 

index, achieving 0.99 compared to 0.93. This superiority is attributed to the Swish model producing 

more false positives and its failure to detect some true positives in the "sleeper" and "fastening_OK" 

classes. As a result, Mish* was found to be the most successful function. 

Table 4. Comparison of Activation Function Performances on an Extended Training Dataset 

Activation F1-score recall precision IoU mAP 

leaky 0.99 0.99 0.98 92.93 100.00 

swish 0.93 0.95 0.90 84.48 100.00 

x-swish 0.93 0.93 0.93 87.16 99.96 

mish 0.97 0.98 0.96 90.51 99.94 

mish* 0.99 1.00 0.99 93.51 100.00 

 

Table 5. Class Based Performance of Activation Functions 

 Sleeper Fastening_OK Fastening_NOK 

Activation ap TP FP ap TP FP ap TP FP 

leaky 100.00 100 0 100.00 72 4 100.00 26 0 

swish 100.00 94 14 100.00 68 5 100.00 28 1 

x-swish 100.00 87 13 100.00 72 2 99.88 27 0 

mish 100.00 96 5 99.94 72 4 99.88 27 0 

mish* 100.00 100 0 100.00 72 3 100.00 28 0 

 

4. CONCLUSION 

 

The ballasts on the fasteners and other environmental factors cause a lot of false positives (FPs) in the 

current system that generates the dataset for TCDD, which leads to poor defect detection performance. 

YOLOv4 models incorporating Leaky ReLU, Swish, x-Swish, Mish, and Mish* activation functions 

were trained on this new dataset, which was organized considering the environmental conditions. When 

evaluating the performance of the 'Railway Fastener Fault Detection Module' on the test dataset, it was 
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initially observed that one faulty fastener was missed. However, following the implementation of data 

augmentation improvements, all faulty fasteners were successfully detected. This module achieved an 

improvement of 1% in recall and precision values and 1.38% in mAP by using different activation 

functions compared to the initial setup. Consequently, many false positives were avoided, unnecessary 

work loss was prevented, and productivity was increased. 
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