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1. Introduction 

One of the most important criteria for ensuring the good 

functioning of any system is its reliability. Failures in systems 

used for commercial purposes will lead to financial losses, and 

failures in systems that require security will cause security 

concerns. Artificial intelligence (AI) systems are gaining 

importance in many fields, including healthcare, education, 

energy, information technology, finance, transportation, and 

manufacturing. Improving the reliability of AI systems, which 

are being used in many sectors rapidly during a short period, is 

highly important. While a failure related to AI systems used in 

the production sector may lead to financial losses, failures in AI 

systems used in the transportation sector may cause more severe 

losses. For example, a failure in an AV could cause an accident. 

For this reason, improving AV reliability has become an 

inevitable need. To enhance the reliability of AVs, the Society of 

Automotive Engineers (SAE) has ranked AVs by introducing 

different autonomy levels. For this purpose, the SAE has 

classified AVs into six levels of automation. Here, the levels are 

listed from level 0, which is no automation, to level 5, which is 

full automation. In automation levels 0-2, the automation 

systems support the vehicle's control tasks, requiring human 

drivers to monitor the vehicle's status. However, in levels 3-5, 

the automatic driving systems assume full responsibility, 

providing no need for human control [1]. Studies on the 

reliability of AVs usually specify the level of automation system 

for which they are being studied. 

Many factors affect the reliability of AVs. For this reason, 

several researchers have considered AV reliability a 

multidisciplinary issue and made inferences [2, 3]. The most 

important factors affecting AV reliability are identified as 

software and hardware defects of the system, as well as weather 

conditions, traffic conditions, and road surface conditions. 

Studies have revealed that long distances need to be traveled to 

test the reliability of AVs [4]. This requires a long period and 

regular data recording to test the reliability of the vehicles. Due 

to the need to test the reliability of AVs, in 2014, the California 
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(CA) Department of Motor Vehicles (DMV) allowed AV 

manufacturers to establish an AV Testing program to test their 

AVs. The CA DMV requires all manufacturers to test AVs on 

public roads and report in detail all accidents and 

disengagements that occur. 

Disengagement events represent instances where autonomous 

systems are unable to operate safely due to current conditions or 

environmental factors. The frequency and causes of these events 

directly impact the safety performance and reliability of AVs. 

This data provides developers with the opportunity to identify 

weak points in the system and areas that need improvement. 

Consequently, through software updates and hardware 

enhancements, the overall reliability of the system can be 

increased. In situations where the AV transfers control to the 

human driver, the driver's reaction time is critical; a quick and 

appropriate response can prevent potential accidents and 

enhance safety. Reaction times assess the effectiveness of the 

interaction between human drivers and autonomous systems. 

Well-designed human-machine interfaces (HMIs) enable drivers 

to respond more quickly and effectively. HMI refers to how 

drivers and passengers interact with and control vehicle systems. 

These designs are optimized to ensure that users interact with 

vehicles more safely and efficiently. Hence, reaction times are a 

vital metric for evaluating the performance of autonomous 

systems and determining how these systems can work more 

safely and harmoniously with drivers. In this study, evaluations 

were made on the maturity of AVs by examining studies 

conducted on disengagement and reaction times, which are 

crucial aspects of AV reliability. A synthesis of studies providing 

information on the frequencies, temporal changes, reasons, and 

relationships among factors causing disengagements was 

provided and collectively assessed. The statistical methods used 

in evaluations of disengagements were examined and 

categorized to guide researchers working in this field. 

The remainder of the article is organized as following. In 

Section 2, a brief overview of disengagements is provided along 

with studies conducted in this area. Section 3 presents a brief 

overview of reaction times and examines the studies that were 

conducted. Section 4 presents the results obtained from the 

conducted studies and provides evaluations. Finally, in Section 

5, conclusions and information regarding future research are 

provided. 

2. Disengagements 

In autonomous systems, disengagement events are defined as 

failures that cause vehicle control to pass from the software 

system to the human driver. CA DMV [5] defines 

disengagement as “disengagement means a deactivation of the 

automation mode when a failure of the autonomous technology 

is detected or when the safe operation of the vehicle requires that 

the AV test driver disengages the autonomous mode and takes 

immediate manual control of the vehicle". Disengagements are 

broadly divided into two types: 

1. Automatic disengagement: Automatic drive disengagement 

due to a detected failure or the possibility of a potential 

failure. In this case, the AV notifies the driver of the fault, 

and the driver must immediately take over driving. Failures 

that cause automatic disengagement can usually be caused 

by software problems such as hardware inconsistencies, 

detection errors, communication errors, incorrect sensor 

readings, mapping problems, and errors in data acquisition 

as well as weather conditions and road surface conditions 

[6]. 

2. Manual disengagement: These are disengagements where 

the human driver voluntarily takes control of the vehicle. 

Manual disengagement generally occurs because drivers 

need to be careful when they feel in danger in heavy traffic, 

in adverse weather conditions, in situations such as 

construction and road works in the surrounding area, or 

when they want to change lanes [6].   

Since disengagement significantly impacts AV reliability, it 

has attracted the attention of many researchers, and studies have 

been conducted on this subject. 

Dixit et al. [7] conducted a study on disengagement, accidents 

and reaction times in AVs between September 2014 and 

November 2015. Considering the relationship between drivers' 

trust in automated systems and their ability to manage their 

perceived risks effectively, researchers evaluated the correlation 

between monthly automatic disengagement per mile and manual 

disengagement per mile, and found a high correlation. Based on 

this, they concluded that if drivers increase the number of 

automatic disengagements based on their experience, the 

likelihood of manual disengagements will increase. They also 

examined the correlation between cumulative exposure to 

automatic disengagement and manual disengagement. They 

found it to be significantly larger, given that the driver's 

disengagement experience is based on cumulative numbers. 

After reviewing companies' reported reasons for disengagement, 

they determined that the most common cause of disengagement 

was system failures, followed by driver-related disengagements. 

Factors such as misperception of road infrastructure, incorrect 

lane markings, poor road conditions and other road users were 

the most common causes of disengagements.  

SRGMs are models used to enhance the reliability of software 

systems. These models develop various assumptions regarding 

the nature of software faults, the effectiveness of fault 

correction, and testing patterns. Different SRGMs offer diverse 

approaches to understanding the occurrence and resolution of 

software faults, aiming to optimize software reliability [8]. 

Merkel [9] used software reliability growth models (SRGMs) to 

model disengagement data. The study used CA DMV data from 

2015 to 2017. Waymo and Cruise Automation, which performed 

the most road tests in the given date range, were selected for 

analysis. To evaluate which model best fit each AV 

manufacturer's disengagement event data, nonlinear least 

squares fits were calculated for the Musa-Okumoto and 

Gompertz models using these data. The results showed that the 

Musa-Okumoto model fit the data better than the Gompertz 

model. In both cases, the actual data were found to be broadly 

consistent with the model predictions. 

Lv et al. [6] analyzed disengagement events in detail from 

2014 to 2015 with data from CA DMV. In their study, they 

analyzed data from SAE's Level 2 and Level 3 automation 

technologies to provide a better understanding of situations in 

which the driver should take over. The authors categorized the 

test disengaged individuals into different groups according to 
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their attributes and investigated and compared the reasons for 

the disengagement in detail. The mechanisms involved and the 

duration of the takeover transition that occurs during 

disengagement were also analyzed. As a result of the study, it 

was determined that the most critical factors causing 

disengagement were found to be software problems and 

limitations. They have used miles per disengagement (MPD) to 

evaluate the maturity of autonomous technology.  

Banerjee et al. [10] analyzed accident and disengagement 

events from the CA DMV between 2014 and 2017 to investigate 

the causes of AV failures. In the study, AVs, expressed as level 3 

by SAE, were discussed. The researchers conducted a study 

based on an end-to-end data collection, processing and analysis 

pipeline. Data from 12 autonomous vehicle manufacturers, 

obtained from the CA DMV, were collected and analyzed using 

natural language processing (NLP) techniques. The NLP method 

can quickly analyze large amounts of text data to extract 

important information. In this study, a "Faulire Dictionary" was 

created to assign fault labels to the reasons for disengagement 

from raw disengagement reports. However, the lack of a specific 

data format in manufacturers' disengagement and accident 

reports can lead to systematic errors in the NLP framework. To 

minimize this, researchers have labeled uncertain cases as 

"unknown" in the manually validated dictionaries. Based on 

available data, the number of disengagements per autonomous 

mile (DPM) and the cumulative number of disengagements were 

used to evaluate AVs. They found that despite covering millions 

of miles, all manufacturers involved in the study, including 

Waymo, were still in the early stages of development. It was 

determined that the primary reasons for disengagements in AVs 

were inconsistencies related to machine learning in perception, 

control, and decision-making. Additionally, it was noted that AV 

drivers need to be as observant as drivers operating non-

autonomous vehicles.  

Favarò et al. [12] analyzed triggers and contributing factors, 

such as the average distance traveled before failure and 

disengagement reporting trends, using data from the CA DMV 

covering September 2014 to January 2017. Their analysis 

identified deficiencies in current regulations and provided 

suggestions for improvement in the existing drafts. The results 

revealed that system failures played a dominant role in AV 

disengagements, with hardware-related failures being more 

prevalent than software-related ones. The researchers also 

plotted the frequency of disengagements (per total miles driven) 

as a function of cumulative miles or time, yielding significant 

insights. A linear regression analysis showed the relationship 

between cumulative reported autonomous miles and cumulative 

disengagements, emphasizing the importance of experiences 

gained during the development of AV technology. A critical step 

in designing safe and effective AVs involves training the AI and 

machine learning-based algorithms that act as the vehicle's 

"brain.". As AVs encounter various training scenarios, they 

improve their ability to handle new situations by learning from 

mistakes. Furthermore, the study noted that disengagement of 

AVs does not always result in an accident. 

Studies conducted before Zhao et al. [13] did not take into 

account any information about the reliability of the AV before 

the road test. Therefore, the researchers proposed a new 

Conservative Bayesian Inference (CBI) method that will allow 

for the prediction of future AV disengagements from past AV 

disengagement data. For this purpose, they used SRGMs. 

Researchers have shown that SRGM can be an effective test 

planning tool when combined with accuracy assessment and 

recalibration techniques. SRGMs were applied to 51 months of 

test data obtained from Waymo. In the study, recalibration, 

comparison and visualization techniques were applied with 8 

SRGMs using a state-of-the-art toolkit called PETERS. Using 

previous interfailure mileage data, and the most reliable SRGM 

was selected to estimate the median miles to the next 

disengagement (MMTD). Methods introduced by Brocklehurst 

et al. [14] and Brocklehurst and Littlewood [15] have been used 

to estimate historical disengagement trends with SRGMs. Like 

previous studies, this study notes that SRGMs may not always 

provide the "best" estimates. Therefore, it is important to 

evaluate forecast accuracy continually. It is known that even if 

there is a finding that one SRGM performs better than others on 

one set of predictions, this may change in subsequent 

observations. The study also shows that systemic shortcomings 

in past forecasts can be addressed by using recalibration 

techniques to improve the performance of these models.  

Wang and Li [16] examined disengagement data obtained 

from the CA DMV for the years 2016-2017 using multiple 

statistical modeling approaches that involve statistical modeling 

and classification tree. In the study, AVs classified as Level 3 

and Level 4 by the SAE were examined. The research aims to 

identify factors influencing human drivers' quick response to AV 

disengagement and quantitatively investigate the underlying 

reasons for AV disengagement. In the study, ordinal logistic 

regression was applied to determine the reason for 

disengagement using various factors, such as the number of 

camera, LIDAR, and radar sensors, as categorical independent 

variables. The time required to take over driving was divided 

into two categories: "within 0.5 s" and "over 0.5 s" and modeled 

using binary logistic regression. Additionally, using the 

Classification and Regression Tree (CART) model, a 

classification tree was created if the dependent variable was 

categorical, and a regression tree was created if the dependent 

variable was numerical. This model identified the relationship 

between factors related to disengagements and the time required 

to take over driving. Classification trees have two important 

components: the "root node" and the "leaf nodes" [17]. 

Compared to other machine learning techniques like Random 

Forest, the CART model has the advantage of quantitatively 

analyzing the leaf nodes affecting nominal dependent variables. 

According to the findings of the research, it was concluded that 

to reduce interference in autonomous driving systems, 5 or more 

radar sensors should be installed in AVs, the number of LiDAR 

sensors should be 3 or 4, and the number of cameras can be 

customized according to the preference of each AV 

manufacturer. To address the issue of extended takeover time, it 

was found that drivers can usually take over within 0.5 seconds 

on local roads, but the disengagement of AVs on highways due 

to detection or control issues extends the takeover time. 

Boggs et al. [18] examined in detail CA DMV disengagement 

data from September 2014 through November 2018 with five W 

questions (i.e., who, what, when, where, and why). The 

researchers stated that the disengagement initiator is associated 

with factors such as whether it is an automated driving system 
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(ADS) or a human operator, its location, the reason for 

disengagement, and the maturity of the ADS test. They 

determined this relationship using a random parameter binary 

logit model. Disengagements in AVs can be caused by various 

factors, and not all of these potential factors can be captured 

from the available data. This situation is referred to as 

"unobserved heterogeneity" in transportation studies [19, 20]. 

Considering the potential for inconsistent and biased parameter 

estimates, the study employs the random parameter logit model, 

which is frequently used in the literature, to account for 

unobserved heterogeneity. According to the study's findings, 

streets and roads were identified as locations where ADS was 

less likely to disengage compared to highways and freeways. 

This is attributed to greater interactions with other vehicles on 

streets and roads, and the complexity of factors such as 

intersections and vehicle entries compared to highways and 

freeways. Consequently, it was found that the probability of 

detecting unexpected events on streets and roads was lower 

compared to situations where ADS actively monitored 

individuals. Additionally, the results showed that due to 

hardware and software discrepancies, planning diversity, 

environmental factors, and the influence of other road users, the 

probability of AVs becoming disengaged is higher than control 

non-compliance. 

Table 1. Summary of Studies on Disengagement Events for AV Reliability: References, Data Types, Companies, Periods, and Methods 

References 
Data 

Type 
Company Period Method 

(Dixit et al. 2016) CA DMV 

Bosch, Delphi Automotive, 

Google (now Waymo), 

Mercedes-Benz, Nissan, 

Volkswagen and Tesla 

September 2014-

November 2015 

Disengagement exposure per autonomous 

miles, descriptive statistics (correlation 

between the monthly automatic 

disengagements/mile and manual 

disengagements/mile, correlation between 

the cumulative exposure of automated 

disengagements and manual 

disengagements). 

(Merkel 2018) CA DMV 
Waymo (former Google), 

Cruise 
2015-2017 

Software Reliability Growth Models, 

nonlinear least squares fit. 

(Lv et al. 2018) CA DMV 

Bosch, Delphi Automotive, 

Google (now Waymo), 

Mercedes-Benz, Nissan, 

Volkswagen and Tesla 

2014-2015 
Descriptive statistics (autonomous miles 

per disengagement). 

(Banerjee et al. 2018) CA DMV 

Bosch, Delphi Automotive, 

Google (now Waymo), Nissan, 

Mercedes-Benz, Tesla, BMW, 

GM, Ford, Honda, Uber and 

Volkswagen 

September 2014-

November 2016 

(included in the 

DMV’s data releases 

for 2016 and 2017) 

Natural language processing, the end-to-

end data collection, processing, and 

analysis pipeline, Systems-Theoretic 

Process Analysis, descriptive statistics 

(autonomous miles per disengagement). 

(Favarò et al. 2018) CA DMV 

Bosch, Delphi Automotive, 

Google (now Waymo), Nissan, 

Mercedes-Benz, Tesla Motors, 

BMW, GM, Ford, Honda and 

Volkswagen group of America 

September 2014- 

January 2017 
Regression analysis. 

(Zhao et al. 2019) CA DMV Waymo (former Google) 
2014 - 2019 (over 51 

months) 

Software Reliability Growth Models, a 

new variant of Conservative Bayesian 

Inference. 

(Wang and Li, 2019) CA DMV 
The companies operating 

within the given date range 

August 2016-

November 2017 

Ordinal and binary logistic regression, 

classification and regression tree model. 

(Boggs et al. 2020) CA DMV 
The companies operating 

within the given date range 

September 2014- 

November 2018 
Random parameter binary logit model. 

(Khattak et al. 2021) CA DMV 
The companies operating 

within the given date range 
2014-2018 

Text mining, nested logit model and 

endogenous switching model. 

(Zhang et al. 2022) CA DMV 
The companies operating 

within the given date range 
2014-2020 

Natural language processing, deep transfer 

learning. 

(Min et al. 2022) CA DMV 
Waymo (former Google), 

Cruise, Pony AI, Zoox 

December 2017-

November2019 

Software Reliability Growth Models, 

Spline models. 
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These findings are an intuitive assessment of individuals' 

inability to monitor the data processing of Autonomous Driving 

Systems (ADS) and detect any inconsistencies in the system. 

Finally, it was concluded that with the maturity of the ADS 

system, there would be a marginal increase in disengagements 

initiated by ADS as operators begin to trust and rely on the AV 

system when facing risky situations. 

Using CA DMV disengagement data published between 2014 

and 2020, Zhang et al. [21] developed a scalable pipeline 

incorporating NLP and deep transfer learning methods. In the 

study, the NLP pipeline utilized deep transfer learning to 

improve the extraction of cause-and-effect relationships in AV 

disengagements (AVD). This method enhances the learning 

process by transferring knowledge from previously learned 

natural language understanding tasks to new tasks. Within the 

scope of this study, the classification, visualization, and analysis 

of disengagement data were conducted using statistical tests, 

revealing significant relationships between trends in AV testing, 

the frequency and origins of disengagements, and their impacts. 

From this study, it was found that manufacturers tend to 

intensively test AVs in Spring and/or Winter months, with test 

drivers initiating over 80% of disengagements. More than 75% 

of disablings are caused by errors in perception, localization, 

mapping, planning and control of the AV system. This highlights 

that there is a significant relationship between the person 

initiating the AVD and the error category. 

Khattak et al. [22] aimed to explain the relationship between 

disengagements and accidents in complex traffic environments, 

using CA DMV data between 2014 and 2018. To this end, they 

analyzed accidents and disengagements, investigating three 

different situations: (1) disengagement with an accident, (2) 

disengagement without an accident, and (3) no disengagement 

when there was an accident, using a nested logit model. 

Additionally, endogenous regime-switching models were 

employed to account for endogeneity effects in determining the 

differences between disengagements and accidents. Nested 

Logit and Endogenous Switching Regime models were used to 

obtain more accurate predictions by accounting for the 

correlation between choices and the effects of endogenous 

selection. The Nested Logit model considers correlations 

between alternatives through a nested structure, while the 

Endogenous Switching Regime model accounts for differences 

between collisions and non-collision disengagements, as well as 

endogenous effects. They conducted this process using text 

mining on the data. The results showed that disengagements in 

AVs do not always cause accidents, that factors related to AV 

systems (such as software errors) increase the probability of 

disengagement, and that factors related to the driver's decision-

making process increase the likelihood of disengaged vehicles 

resulting in an accident. The findings also show that 

disconnection does not always have negative consequences, but 

it is critical for safe functioning. Moreover, it has been observed 

that as technology matures, AVs disengage less frequently.   

Min et al. [23] evaluated the reliability of AI systems using 

data on recurrent disengagement events reported by Waymo, 

Cruise, Pony AI, and Zoox, which conducted peak road tests 

between December 1, 2017 and November 30, 2019. For this 

purpose, they used SRGMs, which are parametric models, and 

the I-spline model, which is a nonparametric model. In addition 

to traditional parametric models, they proposed a new 

nonparametric model based on monotonic splines for software 

reliability. 

By selecting the best models, they made inferences to 

quantify uncertainty and test heterogeneity in the event process. 

The results show that the proposed spline model is flexible in 

explaining recurring event data from four AV manufacturers and 

that parametric models are adequate for most manufacturers' 

data. Additionally, from data analysis, it was determined that 

overall AV reliability increased over the 2-year study period. A 

summary of studies on disengagement events for the reliability 

of AVs is given in Table 1. 

3. Reaction times 

As a result of a failure of an AV, the driver must take control 

of the vehicle as soon as the autonomous system is disabled. The 

automation system can request a takeover action or initiate it 

manually by the driver/operator. The time it takes when the 

driver is alerted to a technology failure and assumes manual 

control of the vehicle is called reaction time or response time. 

Reaction time determines how quickly a person reacts when 

faced with risk and is a critical factor in avoiding accidents. The 

disengagement process, together with the takeover process, is 

key and greatly affects the safety and comfort of automated 

vehicles. For this reason, reaction times have been studied in the 

literature. Research on reaction times during the handover 

process in AVs is categorized into two main areas. The first 

category encompasses studies conducted using simulators. In 

these studies, drivers' reaction times to various scenarios (e.g., 

traffic density, emotional state, non-driving related tasks) are 

evaluated. Simulation studies provide the opportunity to collect 

detailed data under controlled and repeatable conditions, 

allowing for the analysis of different scenarios' effects. Several 

studies in the literature conducted using simulators are 

highlighted here. Du et al. [24] examined the impact of traffic 

density on reaction time under different cognitive load 

conditions. Their study found that reaction time performance 

decreased under high cognitive load and high traffic density, 

whereas under low cognitive load, high traffic density improved 

reaction time performance. Gold et al. [25] investigated reaction 

times at three different traffic density levels (zero, 10, and 20 

vehicles per kilometer). They found that traffic density had a 

significantly negative impact on reaction time performance. Du 

et al. [26] also studied the effects of emotional state and arousal 

level on reaction time, discovering that positive emotions 

enhanced takeover performance, while loud alerts provided no 

advantage. One of the most anticipated features of AVs is the 

ability for drivers to engage in non-driving related activities 

(e.g., messaging, emailing, watching videos) while driving. 

Consequently, takeover times during non-driving related tasks 

have become a subject of interest for researchers, leading to 

numerous studies in this area [27, 28, 29, 30]. Studies in the first 

category utilize statistical methods such as Analysis of Variance 

(ANOVA) to compare means between different groups and 

determine whether there are significant differences. MANOVA 

(Multivariate Analysis of Variance) allows for the simultaneous 

analysis of multiple dependent variables, providing a more 

comprehensive assessment of the effects of age and activity 
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level on the frequency and duration of non-driving activities. 

These approaches are crucial for understanding the potential 

impact of non-driving activities on driving safety. The second 

category focuses on reaction times obtained from real driving 

conditions. These studies examine drivers' reactions in real-

world driving scenarios and in real-time. These studies from the 

literature are presented below. 

Dixit et al. [7] found that when the vehicle is disengaged, 

reaction times across different companies averaged 0.83 seconds 

and had a stable distribution. However, differences in reaction 

times may be observed depending on factors such as 

disengagement type, route type, and trip length. It has been 

found that the lack of confidence caused by automatic 

disengagement increases the likelihood that the driver will take 

manual control of the vehicle. When the relationship between 

reaction times and total monthly AV kilometers was examined, 

it was found that as vehicle kilometers increased, reaction times 

also increased. This shows that as vehicle mileage increases, the 

confidence level also increases. 

Lv et al. [6] examined manufacturers' takeover transition 

mechanisms and the duration of the takeover transition in a 

takeover process, with data obtained from CA DMV between 

2014 and 2015. According to their findings, this usually occurs 

within 1 second. However, researchers have emphasized that the 

takeover transition is not always a simple task that can be 

completed quickly and smoothly. During testing of automated 

vehicles, it is assumed that test drivers are optimized for all 

scenarios and ready to take over control of the vehicle. However, 

in real life, all drivers have different training levels and 

concentration levels. Therefore, researchers emphasize that 

accurately detecting driver behavior and attention levels is a 

significant challenge for effectively designing human-machine 

interfaces.  

Banerjee et al. [9] emphasized that how quickly drivers react 

in case of failure is important to reduce the risk of accidents. In 

their study, they examined the distribution of reaction times of 

test drivers from different manufacturers and determined that 

this distribution was long-tailed and compatible with the 

exponential Weibull distribution. They also found the average 

reaction time for all manufacturers to be 0.85 seconds. This 

result is consistent with previous findings by Dixit et al. [7]. 

Hecker et al. [31] developed the concept of “scene 

driveability”, a camera-based driving model, and trained it with 

real driving datasets. In this study, a new learning method based 

on recurrent neural networks was used to determine the 

suitability of a particular driving scene for a particular 

autonomous driving method. The study complements existing 

ADAS and driver monitoring techniques by adding to fully 

automated cars the ability to predict automation failures and 

provide timely alerts to the human driver. In this way, human 

drivers can be warned in real time, increasing the overall safety 

of the autonomous driving model and allowing better human-

vehicle cooperation. 

4. Discussion and concluding remarks 

Important results and findings from studies on the reliability 

of AVs are discussed in this section. Researchers have used real 

data from the CA DMV in their studies to explain the occurrence 

of disengagement, as values from real datasets provide us with 

more realistic evidence for the possible causes of 

disengagement. Although the studies include Level 4 and below 

among the levels determined by SAE, they are mainly focused 

on Level 3. To examine possible causes of disengagements, 

researchers examined the frequent disengagemets per 

autonomous mile driven. This approach helps estimate the 

frequency of disengagemet and the average distance traveled 

before disengagemet. It is also important to better understand 

the relationship between distance traveled and disengagemets 

[6, 7, 10, 12]. According to these studies, there is a strong 

correlation between autonomous miles traveled and 

disengagemets, and with the development of AV technology, 

AVs learn from their mistakes with trained data and become 

more successful at dealing with new situations. 

Established in 2014 within the CA DMV, initially 

disengagement reports were provided in bulk on a monthly basis 

until November 1, 2017. However, later on, the content of the 

reports was expanded, enriching them with detailed data such as 

the date of disengagement, Vehicle Identification Number 

(VIN), the vehicle's autonomous driving capability, the location 

where the disengagement occurred, road conditions, and a 

detailed description. Additionally, a significant increase in test 

drives has been observed since 2019. The increase in data 

volume and information has led researchers to resort to methods 

such as NLP, data mining, and text mining to derive deeper 

insights from this information [10, 21, 22]. Furthermore, 

researchers have frequently used regression and classification 

methods to classify disengagement data and identify factors 

influencing and triggering disengagements and their 

relationships [12, 16, 18, 22].  

Considering that categorizing disengagemets is important for 

determining the causes of disengagement, researchers have also 

examined the relationships between types of disengagement. 

Dixit et al. [7] examined both the relationship between 

automatic disengagement and manual disengagement per mile 

per month and the cumulative exposure to automatic 

disengagement and manual disengagement, as a driver's 

experience with disengagement is based on cumulative 

numbers, and found high associations in both cases. They also 

found that system failure was the most common type of 

disengagement, involving hardware and software problems, 

followed by driver-initiated disengagement. Lv et al. [6] found 

that software problems and limitations are the most important 

factors that lead to disengagement. Banerjee et al. [10] reported 

that, in terms of the reasons for the occurrence of disengagemets, 

machine learning-related errors, especially those related to the 

sensing system, were the dominant cause of disengagemets for 

most manufacturers, while the second largest contributor to 

disengagemets was machine learning related to the control and 

decision framework. The computing system, i.e., hardware 

issues and software issues, accounted for approximately 33.6% 

of the total reported disconnections. According to the results 

obtained, Favarò et al. [12] found that system failures have a 

dominant role in the failure of AVs. According to their findings, 

they also stated that software-related failures play a greater role 

in disengagemets than hardware-related failures. Boggs et al. 

[18] found that ADS less frequently disengages streets and roads 

compared to highways and freeways. Additionally, they 
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identified that the probability of disengagement initiation is 

higher due to hardware and software discrepancies, planning 

discrepancies, environmental factors, and interactions with other 

road users compared to control discrepancies. In a study 

conducted by Zhang et al. [21], it was concluded that 

manufacturers tend to extensively test AVs during the spring 

and/or winter months, with over 80% of disengagements 

initiated by test drivers. However, according to the findings, it 

was revealed that more than 75% of the disengagements were 

caused by errors in perception, mapping, localization, planning, 

and control of the AV system. Additionally, a significant 

relationship was found between the person who initiated the 

disengagement of AVs and the category of the cause. Khattak et 

al. [22] found that factors related to AV systems increase the 

probability of non-collision failure in cases such as software 

errors; observed that factors related to the driver's decision-

making process increase the likelihood of a disengagement 

resulting in a crash.  

Several researchers have used SRGMs to determine the most 

appropriate models for disengagement data [9, 13, 23]. Merkel 

[9] found that the Musa-Okumoto model, an SRGM model, is 

more suitable for the data than the Gompertz model is. Again, 

according to the results obtained, the disengagement events 

reported in two large AV test programs can be accurately adapted 

to standard SRGMs. The actual data were broadly consistent 

with the model predictions in both cases. Zhao et al. [13] used 

SRGMs to demonstrate how past AV disengagement data can be 

used to predict future disengagement with a novel conservative 

Bayesian inference (CBI) method. As with previous work on 

SRGMs, this study emphasized the importance of continually 

assessing prediction accuracy, as various applications have 

shown that a given SRGM should not always be expected to 

yield the "best" predictions. Min et al. [23] used SRGMs, which 

are parametric models, and the I-spline model, which is a 

nonparametric model, to explain the disengagement event 

processes. Based on the I-spline model, they found that the most 

appropriate model can be selected by measuring its uncertainty 

and testing the heterogeneity in the event process. Parametric 

models and spline models are recommended as complementary 

tools in modeling and inference processes.  

Finally, reaction times were discussed based on both real data 

and results obtained through simulators. The findings from real 

data are summarized as follows. Dixit et al. [7] found that in the 

event of vehicle disengagement, the reaction times to take 

control of the vehicle have a stable distribution with an average 

of 0.83 s across different companies. However, it was observed 

that there might be differences in reaction times depending on 

the type of disengagement, type of roadway, and km traveled. 

According to the study by Lv et al. [6], most of the average 

values of the reported takeover times were within 1 second. In 

their study, Banerjee et al. [10] showed the distribution of test 

drivers' reaction times among all manufacturers and determined 

an average reaction time of 0.85 seconds for all test vehicle 

drivers. In addition, researchers emphasized that human drivers 

in AVs should be alert and sensitive to the environment. 

After disengagements in AVs, the performance of human 

drivers in taking over control depends on factors such as traffic 

density, road conditions, and weather conditions, as well as 

personal characteristics and psychological factors like cognitive 

load and emotional state. Additionally, one of the primary 

reasons for using an AV in autonomous mode is to perform non-

driving related tasks, such as messaging, emailing, or watching 

videos. Consequently, researchers have conducted numerous 

studies evaluating all these situations, with examples provided 

in the reaction times section. Real driving data has higher 

ecological validity because it reflects drivers' natural behaviors 

and can reveal the effects of factors that cannot be observed in 

simulator studies. These two approaches are complementary, 
helping to develop a comprehensive understanding of the 
safety and effectiveness of transitioning from autonomous to 
manual driving. 

 

 

Fig. 1. Total number of autonomous miles driven by manufacturers in California between 2014 and November 2023. 

A review of recent studies shows that since 2014, when the 

CA DMV allowed AV manufacturers to test automated systems, 

studies in this field have increased rapidly. While the reliability 

of autonomous vehicles was generally investigated using 

descriptive statistics until 2018, since then, there has been an 

increasing emphasis on machine learning-based methods. In 
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their studies, researchers often evaluated the development, 

maturity, and stability of autonomous vehicle technology, 

particularly about its reliability. It has been stated that 

comprehensive road tests are required to detect these [4]. 

Additionally, miles per disengagement is frequently calculated 

to determine the stability and maturity of AV technology [7, 6, 

10, 12]. To address these questions, data on the total autonomous 

miles driven since the first registrations of manufacturers with 

the CA DMV have been provided. Figure 1 presents the total 

autonomous miles driven by the six manufacturers conducting 

the most road tests from 2014 to the end of 2023 [32]. These 

manufacturers are Waymo, Cruise, Zoox, Pony AI, Nuro, and 

Apple. Among these manufacturers, only Waymo has reported 

road reports to the CA DMV since 2014. Cruise began reporting 

in 2016, Zoox in 2017, and Nuro and Apple from 2018 onwards. 

Waymo has comprehensive data since the inception of 

registration with the CA DMV and has the most extensive road 

tests. 

5. Conclusion 

This review study provides an evaluation of disengagements 

and reaction times, which are crucial topics in AV reliability 

research, through the analysis of statistical methods employed. 

Studies on the reliability of AV technology were predominantly 

conducted before 2019. However, as illustrated in Figure 1, there 

has been a significant increase in road tests, especially since 

2020. The substantial rise in road tests and the increased detail 

in reports provided by the CA DMV offer much more 

comprehensive information regarding disengagements, 

accidents, and reaction times. Utilizing this data with 

appropriate statistical methods can yield numerous valuable 

insights. Classical statistical tests, such as regression and 

variance analysis, can be employed to determine the impact of 

factors like road conditions, driver behaviors, and vehicle 

characteristics on the risk of disengagement or accidents. These 

analyses allow for a better understanding of the causes and risk 

factors of accidents and disengagements. Machine learning 

techniques, particularly decision trees, support vector machines, 

and deep learning algorithms, can be used to develop 

disengagement and accident prediction models and to foresee 

high-risk situations. While large datasets can be used with 

machine learning algorithms to create disengagement and 

accident prediction models, data mining techniques can uncover 

underlying patterns and hidden relationships in the data. This 

information can be used to develop new traffic regulations, 

evaluate the effectiveness of current policies, and identify high-

risk areas. Collecting detailed data and conducting appropriate 

statistical analyses will facilitate the identification and 

improvement of the shortcomings of AVs, leading to safer 

driving experiences. 
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