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ABSTRACT. In this paper, we introduce the notion of S-M-cyclic submodules,
which is a generalization of the notion of M-cyclic submodules. Let M, N be
right R-modules and S be a multiplicatively closed subset of a ring R. A sub-
module A of N is said to be an S-M-cyclic submodule, if there exist s € S and
f € Homg(M, N) such that As C f(M) C A. Besides giving many properties
of S-M-cyclic submodules, we generalize some results on M-cyclic submod-
ules to S-M-cyclic submodules. Furthermore, we generalize some properties
of principally injective modules and pseudo-principally injective modules to
S-principally injective modules and S-pseudo-principally injective modules,
respectively. We study the transfer of this notion to various contexts of these

modules.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules
are unitary right R-modules. Let M be a right R-module. The annihilator of M,
denoted by Anng(M), is Anng(M) = {r € R | Mr = 0}. A nonempty subset S
of R is said to be multiplicatively closed set of R, if 0 ¢ S,1 € S and ss € S for
all s,s" € S. From now on S will always denote a multiplicatively closed set of R.
In this paper, we concern with S-M-cyclic submodules which are generalizations of
M-cyclic submodules. Let M be a right R-module. Recall from [15], a submodule
N of M is called M-cyclic, if it is isomorphic to M/L for some submodule L of
M. Hence any M-cyclic submodule X of M can be considered as the image of an
endomorphism of M. Nguyen Van Sanh et al. in their paper [15] gave the concept of
M -cyclic submodules and used them to characterize certain classes of M-principally
injective modules. A right R-module N is called M -principally injective, if every

R-homomorphism from an M-cyclic submodule of M to N can be extended to
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M. Nguyen Van Sanh et al. give some characterizations and properties of quasi-
principally injective modules which generalize results of Nicholson and Yousif ([10]).
The notion of M-principally injective module has attracted many researchers and it
has been studied in many papers. See, for examples, [8], [11], [12] and [14]. Recall
from [5] that a right R-module N is called pseudo-M -principally injective, if every
monomorphism from an M-cyclic submodule X of M to N can be extended to an
R-homomorphism from M to N. They study the structure of the endomorphism
ring of a quasi-pseudo-principally injective module M which is a quasi-projective
Kasch module (see [5, Theorem 2.5 and Theorem 2.6]). The readers can refer to
[4], [6], [13] and [17] for more details on pseudo-M-principally injective modules.
In this paper, we introduce S-M-cyclic submodules, S-M-principally injective
modules and S-pseudo- M -principally injective modules which are generalizations of
M-cyclic submodules, M-principally injective modules and pseudo-M-principally
injective modules, respectively. In Section 2, we give some examples of S-M-cyclic
submodules, see Example 2.3. We give the necessary and sufficient conditions
for the submodule of a right R-module to be an S-M-cyclic submodule, list in
Theorem 2.15 and Theorem 2.16. At the end of Section 2, we give the necessary
and sufficient conditions for a simple module to be an S-M-cyclic submodule, list
in Proposition 2.16 and Proposition 2.17. In Section 3, we give an example of S-M-
principally injective module, see Example 3.2. Several characterizations and some
properties of S-M-principally injective modules are given in this section. As the
main results, in Section 4, we give the necessary and sufficient conditions for the S-
pseudo- M -principally injective module to be an S-M-principally injective module,

see Theorem 4.12.

2. S-M-cyclic submodules

We start with the following definitions.

Definition 2.1. Let S be a multiplicatively closed subset of R, M and N be right

R-modules.

(1) A submodule A of N is called an S-M-cyclic submodule of N, if there exist
se€ Sand f € Homgr(M, N) such that As C f(M) C A.

(2) A right R-module N is called an S-M-cyclic module, if every submodule of
N is an S-M-cyclic submodule of N.

(3) A right (left) ideal I of R is called an S-R-cyclic right (left) ideal of R, if
Ir (grI) is an S-R-cyclic submodule of Rr (rR) and a ring R is called right
(left) S-R cyclic, if Rg (rR) is an S-R-cyclic module.
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Remark 2.2. (1) Let M be a right R-module and S a multiplicatively closed
subset of a ring R. If anng(M)NS # ¢, then M is trivially an S-M-cyclic
module.

(2) To avoid this trivial case, from now on we assume that all multiplicatively
closed subset of a ring R satisfies anng(M) NS = ¢.

(3) Let M be a right R-module. The M-cyclic submodule of M is a special
case of S-M-cyclic submodule of M when S = {1}.

Example 2.3. (1) From [3], for right R-modules M and N, N is called a fully-
M -cyclic module, if every submodule A of N, there exists f € Hompg(M, N)
such that A = f(M). It is clear that every fully-M-cyclic module is an S-
M-cyclic module.
(2) Let M be a right R-module. We can see that every simple module is an
S-M-cyclic module for any multiplicatively closed subset S of R.

(3) Let Z, be the set of all integers modulo p where p is a prime number,

o ez fu={f Y iaves)

and

Then

(3.1) R is a ring.

(3.2) M and N are right R-modules.
(3.3) N is an S-M-cyclic module.

Proof. The proof of (3.1) and (3.2) are routine by using definitions of a ring and
a right R-module.

(3.3) Note that all nonzero submodules of N are

a 0 ak 0O
{[ ]|a€ZP},Ek—{[ ]QGZP}WherekGZpandN.
0 0 a 0

Let A be a nonzero submodule of N.

0
Case 1. A:{lg 0] |a€Zp}.Deﬁnef:M—>be

EDEY g
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It is clear that f € Hompg(M,N). Choose s € S. We can show that
As C f(M) C A.
ak

a
Define fr : M — N by

(o 3)-[d el o

It is clear that fi, € Hompr(M,N). We can choose s € S and show that
As C fu(M) C A.
Case 3. A= N. It is obvious.

Case 2. A:Ek:{

0
01 |ae Zp} for some k € Z,.

From Case 1, Case 2 and Case 3, we have N is an S-M-cyclic module. (]

Proposition 2.4. Let M and N be right R-modules. FEvery M -cyclic submodule
of N is an S-M-cyclic submodule of N for any multiplicatively closed subset S of
R.

Proof. Let S be a multiplicatively closed subset of R and A be an M-cyclic sub-
module of N. There exists f € Hompg(M, N) such that A = f(M). Choose s € S.
Let as € As. Since a € A = f(M), there exists m € M such that a = f(m).
Then as = f(m)s = f(ms) € f(M) and thus As C f(M). So As C f(M) C A.
Therefore A is an S-M-cyclic submodule of N. O

Proposition 2.5. Let U(R) be the set of all units in a ring R and M, N be right
R-modules. If S C U(R), then every S-M-cyclic submodule of N is an M-cyclic
submodule of N.

Proof. Suppose that S C U(R). Let A be an S-M-cyclic submodule of N. There
exist s € S and f € Homp(M, N) such that As C f(M) C A. Then

T f(M)sThC AT,
AC f(M)s~! C A

I ﬂ

So A = f(M)s~!. Since A = f(M)s™! = f(Ms™') C f(M) C A, f(M) = A.
Therefore A is an M-cyclic submodule of N. O

Proposition 2.6. Let M, N be right R-modules and A, B be submodules of N such
that A C B. If A is an S-M-cyclic submodule of B, then A is an S-M-cyclic
submodule of N.
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Proof. Suppose that A is an S-M-cyclic submodule of B. There exist s € S
and f € Homgr(M, B) such that As C f(M) C A. But B C N, we have f €
Hompg(M, N) and thus A is an S-M-cyclic submodule of N. O

Proposition 2.7. Let M be a right R-module, A and B be submodules of M. If
A is an S-M-cyclic submodule of M and B is an S-A-cyclic submodule of A, then
B is an S-M-cyclic submodule of M.

Proof. Suppose that A is an S-M-cyclic submodule of M and B is an S-A-cyclic
submodule of A. There exist 1,82 € S, f1 € Endr(M) and fo € Endg(A) such
that As; C f1(M) C A and Bss C fo(A) C B. Since S is a multiplicatively closed
subset of R, s2s1 € S and thus Bsasy C fa(A)sy C fofi(M) C fo(A) C B where
faf1 € Endgr(M). Therefore B is an S-M-cyclic submodule of M. O

Proposition 2.8. Let M and N be right R-modules. Then N is an S-M-cyclic

module if and only if every submodule of N is an S-M -cyclic module.

Proof. First, we suppose that N is an S-M-cyclic module. Let A be a submodule
of N and B be a submodule of A. Then B is a submodule of N and by the
assumption, there exist s € S and f € Hompg(M, N) such that Bs C f(M) C B.
Since f(M) C Band BC A, f € Homg(M, A). Hence A is an S-M-cyclic module.

The converse of this proposition is obvious. ([

We can change from submodules to be essential submodules which is shown in

the following result.

Proposition 2.9. Let M and N be right R-modules. Then N is an S-M-cyclic

module if and only if every essential submodule of N is an S-M -cyclic module.

Proof. (=) It follows by Proposition 2.8.
(<) Since N is an essential submodule of N and by assumption, N is an S-M-cyclic

module. O

Proposition 2.10. Let M, P and Q be right R-modules with P =2 Q. If P is an
S-M -cyclic module, then Q is an S-M -cyclic module.

Proof. Suppose that P is an S-M-cyclic module. Let L be a submodule of Q.
Since P 2 @, there exists an isomorphism f : @ — P. By assumption, there exist
s€ S and h € Hompg(M, P) such that f(L)s C h(M) C f(L). Then

f(Ls) S h(M) C f(L), f~1f(Ls) C f7 h(M) € f~1f(L), Ls C f~*h(M) € L.

But f~'h € Homgr(M,Q), we have Q is an S-M-cyclic module. O
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Proposition 2.11. Let M, M’ and N be right R-modules which N is an S-M -
cyclic module. If M is an R-epimorphic image of Ml, then N is an S—M'—cyclic

module.

Proof. Suppose that M is an R-epimorphic image of M ", There exists an R-
homomorphism a : M~ — M such that a(M') = M. Let A be a submodule of N.
Since N is an S-M-cyclic module, there exist s € S and § : M — N such that
As C B(M) C A. Then As C fa(M') C A. But Ba € Homp(M',N), we have N
is an S-M -cyclic module. O

Proposition 2.12. Let M, N be right R-modules and A, B be submodules of N such
that B C A. If A is an S-M-cyclic submodule of N, then A/B is an S-M-cyclic
submodule of N/B.

Proof. Suppose that A is an S-M-cyclic submodule of N. There exist s € S
and f € Hompgr(M,N) such that As C f(M) C A. Define f : M — N/B by
f(m) = f(m) + B for all m € M. Tt is clear that f is well defined and an R-
homomorphism. Then (A/B)s C f(M) C A/B. Therefore A/B is an S-M-cyclic
submodule of N/B. O

Lemma 2.13. Let M, N be right R-modules and S1,S2 be multiplicatively closed
subsets of R such that Sy C Sy. If N is an S1-M-cyclic submodule of N, then N
is an So-M -cyclic submodule of N .

Proof. This is clear. O

Recall from [1], let S be a multiplicatively closed subset of R. The saturation
S* of S is defined as S* = {z € R | z|y for some y € S}. A multiplicatively closed
subset S of R is called a saturated multiplicatively closed set if S = S*.

Theorem 2.14. Let M and N be right R-modules and A be a submodule of N.
Then A is an S-M-cyclic submodule of N if and only if A is an S*-M-cyclic
submodule of N.

Proof. (=) Since S C S* and by Lemma 2.13, we have A is an S*-M-cyclic
submodule of N.

(<) Suppose that A is an S*-M-cyclic submodule of N. There exist € S* and
f € Homg(M, N) such that Ax C f(M) C A. Choose y € R with xy € S. Then
Azy C f(M)y = f(My) C f(M) C A. Hence A is an S*-M-cyclic submodule of
N. O
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Theorem 2.15. Let R be a commutative ring, M, N right R-modules and A a
submodule of N. Then A is an S-M -cyclic submodule of N if and only if As is an
S-M-cyclic submodule of N for all s € S.

Proof. (=) Let s € S. Since A is an S-M-cyclic submodule of NV, there exist s; € S
and f € Homg(M, N) such that As; C f(M) C A and thus As;s C f(M)s C As.
But R is a commutative ring, Ass; C f(Ms) C As. Define h: M — N by h(m) =
f(ms) for all m € M. It is clear that h is well-defined and an R-homomorphism
from M to N. So Ass; C h(M) C As and hence As is an S-M-cyclic submodule
of N.

(<) Since 1 € S, A is an S-M-cyclic submodule of N. O

Theorem 2.16. Let M and N be right R-modules which N is an S-M-cyclic
module and A is a submodule of N. Then
(1) A is an essential submodule of N if and only if for eacht € Homp(M, N)-
{0}, (M) N A #{0}.
(2) A is a uniform module if and only if for each t € Homp(M, A)-{0}, t(M)

is an essential submodule of A.

Proof.
(1) (=) It is obvious.

(<) Let B be a nonzero submodule of N. Since N is an S-M-cyclic module, there
exist s € S and f € Homp(M,N) such that Bs C f(M) C B. By assumption,
F(M)nA={0}. But {0} # f(M)NAC BNA, BNnA=#{0}. Therefore A is an
essential submodule of N.
(2) (=) It is obvious.

(<) Let B and C be nonzero submodules of A. Since N is an S-M-cyclic module,
there exist s1,s2 € S and f1, fo € Homgr(M,N) such that Bs; C f1(M) C B
and Cs; C fo(M) C C. But B and C are submodules of A, we have f1, fo €
Hompg(M,A). By assumption, f;(M) and fo(M) are essential submodules of A
and thus fi(M) N fo(M) # {0}. Since f1(M) C B and fo(M) C C, {0} #
fi(M)Nf2(M) € BNC and thus BNC # {0}. Therefore A is a uniform module. 0O

Proposition 2.17. Let M and N be right R-modules with Hompr(M,N) # {0}.
Then N is a simple module if and only if N is an S-M-cyclic module with every

nonzero R-homomorphism from M to N an epimorphism.

Proof. (=) It is obvious.
(<) Let A be a nonzero submodule of N. Since N is an S-M-cyclic module, there



8 SAMRUAM BAUPRADIST

exist s € S and f € Homg(M, N) such that As C f(M) C A. By assumption,
f(M)= N and thus A = N. Hence N is a simple module. O

A right R-module M is said to satisfy (xx)-property if every non-zero endomor-

phism of M is an epimorphism (see [16]).

Proposition 2.18. Let M be a right R-module. Then M s a simple module if and
only if M is an S-cyclic module with (xx)-property.

Proof. (=) It is clear.

(<) Suppose that M is an S-cyclic module with (xx)-property. Let N be a non-zero
submodule of M. By assumption, there exist s € S and f € Endr(M) such that
Ns C f(M) C N. Since M satisfies (xx)-property, f is an R-epimorphism and thus
f(M)= M. So we have M = N. Hence M is a simple module. O

Corollary 2.19. If a right R-module M is an S-cyclic module with (xx)-property,
then Endg(M) is a division ring.

3. S-M-principally injective modules
In this section, we introduce a general form of M-principally injectivity.

Definition 3.1. Let S be a multiplicatively closed subset of a ring R and M
be a right R-module. A right R-module N is called an S-M -principally injective
module (for short S-M-p-injective module) if every R-homomorphism from S-M-
cyclic submodule of M to N can be extended to an R-homomorphism from M to
N. M is called a quasi S-principally injective module (for short quasi S-p-injective
module), if M is an S-M-principally injective module. In the case of a ring R, R is
called a quasi S-principally injective module if Rp is a quasi S-principally-injective
module. In the case S = {1}, N is called an M -principally-injective module that

one refer to [15].

Example 3.2. Let Z, be the set of all integers modulo p where p is a prime number,

a 0 0 a
R= |a,beZ,,, N= |a€Z,p,and
0 b 0 0
0 0
M = |a,beZ,p.
a b

It is clear that R is a ring under matrix addition and matrix multiplication and M,

N are right R-modules. Let S be a multiplicatively closed subset of R. Then
(1) N is an S-Rp-principally injective module.
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(2) M is an S-M-principally injective module.
Proof. It is easy to prove. O

Proposition 3.3. Let M be a right R-module and N be an S-M -cyclic submodule
of M. If N is an S-M-principally injective module, then N is a direct summand
of M.

Proof. Suppose that N is an S-M-principally injective module. Consider the short
exact sequence 0 — N N M OIN M /N — 0 where iy is the inclusion map from
N to M and 7y is the canonical projection from M to M/N. Since N is an S-
M -principally injective module, there exists an R-homomorphism « from M to N
such that aoiy = iny. So the short exact sequence splits. Hence N is a direct

summand of M. O

Proposition 3.4. Let M, N and K be right R-modules with N = K. If N is an
S-M -principally injective module, then K is an S-M -principally injective module.

Proof. Suppose that N is an S-M-principally injective module. Let A be an S-M-
cyclic submodule of M and « be an R-homomorphism from A to K. Since N & K,
there exists an isomorphism f from K to N. But IV is an S-M-principally injective
module, there exists an R-homomorphism g from M to N such that goig = foa
where i 4 is the inclusion on A. So f~1ogois = f~' o f o a = a. Therefore K is

an S-M-principally injective module. (]

Proposition 3.5. Let M and N be right R-modules and A be a direct summand
of N. If N is an S-M-principally injective module, then

(1) A is an S-M-principally injective module.

(2) N/A is an S-M-principally injective module.

Proof. Suppose that N is an S-M-principally injective module. Since A is a direct
summand of IV, there exists a submodule A" of N such that N=Ad A'.

(1) Let B be an S-M-cyclic submodule of M and « be an R-homomorphism
from B to A. Since N is an S-M-principally injective module, there exists an
R-homomorphism S from M to N such that S oig = i4q o a where i4 and ip
are inclusion maps on A and B, respectively. Let m4 be a canonical projection
of N=A® A to A. Then mpopPoig =mp0i4 0o = a. Therefore A is an
S-M-principally injective module.

(2) By (1), A" is an S-M-principally injective module. Since A’ = N/A and by
Proposition 3.4, N/A is an S-M-principally injective module. (]
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Theorem 3.6. Let A and M be right R-modules. Then A is an S-M -principally
injective module if and only if A is an S-X-principally injective module for every
S-M-cyclic submodule X of M.

Proof. (=) Suppose that A is an S-M-principally injective module. Let X be
an S-M-cyclic submodule of M, B an S-X-cyclic submodule of X and ¢ an R-
homomorphism from B to A. By Proposition 2.8, B is an S-M-cyclic submodule
of M. But A is an S-M-principally injective module, there exists ¥ : M — N such
that @oip = ¢ where ip is an inclusion map on B. Hence A is an S-X-principally
injective module.

(<) Clear. O

By A. Haghany and M. R. Vedadi [7], a right R-module M is called co-Hopfian
(Hopfian) if every injective (surjective) endomorphism f : M — M is an automor-
phism. According to [9], a right R-module M is called directly finite, if it is not

isomorphic to a proper direct summand of M.

Lemma 3.7. ([9, Proposition 1.25]) An R-module M is directly finite if and only
if fog=1 implies go f =1 for any f,g € Endr(M).

Proposition 3.8. Let M be a quasi S-principally injective directly finite module.
Then M is a co-Hopfian module.

Proof. Let f: M — M be an R-monomorphism. Since M is a quasi S-principally
injective module and an S-M-cyclic submodule of M, there exists g : M — M such
that g o f = Ip; where Iy is an identity map on M. By Lemma 3.7, fog = Iy
and thus f is an epimorphism. Therefore M is co-Hopfian. O

Corollary 3.9. Let M be a quasi S-principally injective and Hopfian module. Then
M is a co-Hopfian module.

4. S-pseudo-M-principally injective modules

In this section, we introduce a general form of pseudo-M-principally injectivity.

Definition 4.1. Let S be a multiplicatively closed subset of a ring R and M be a
right R-module. A right R-module N is called S-pseudo-M -principally injective (for
short S-pseudo-M-p-injective) if every monomorphism from S-M-cyclic submodule
of M to N can be extended to an R-homomorphism from M to N. The module M
is called quasi S-pseudo-principally injective (for short quasi S-pseudo-p-injective)

if M is an S-pseudo-M-principally injective module. In the case of a ring R, R
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is called quasi S-pseudo-principally injective if Rg is a quasi S-pseudo-principally
injective module.
In the case S = {1}, N is called a pseudo-M -principally injective module that

one refer to [5].

Example 4.2. Let M be a right R-module. Then every S-M-principally injective

module is an S-pseudo-M-principally injective module.

Proposition 4.3. Let M, A and B be right R-modules such that A = B.
(1) If A is an S-pseudo-M -principally injective module, then B is an S-pseudo-
M -principally injective module.
(2) If M is an S-pseudo-A-principally injective module, then M is an S-pseudo-

B-principally injective module.
Proof. Straightforward. O

Proposition 4.4. Let A and M be right R-modules. Then A is an S-pseudo-M -
principally injective module if and only if A is an S-pseudo-X -principally injective
module for every S-M-cyclic submodule X of M.

Proof. It is similar to the proof of Theorem 3.6. O

Corollary 4.5. Let M and N be right R-modules. If N is an S-pseudo-M -
principally injective module and A is a direct summand of M, then N is an S-

pseudo-A-principally injective module.
Proof. By Proposition 4.4. [

Proposition 4.6. Let M be a right R-module. FEvery direct summand of an S-
pseudo-M -principally injective module is an S-pseudo-M -principally injective mod-

ule.

Proof. Let N be an S-pseudo-M-principally injective module and A be a direct
summand of N. Let B be an S-M-cyclic submodule of M and ¢ be a monomor-
phism from B to A. Since N is an S-pseudo-M-principally injective module, there
exists an R-homomorphism « from M to N such that aoig = i40¢ whereis and ip
are inclusion maps on A and B, respectively. So m4oqoig = w4004 0 = ¢ where
74 is a canonical projection of N to A. Therefore A is an S-pseudo-M-principally

injective module. O

Two right R-modules M; and M, are relatively (or mutually) S-pseudo princi-
pally injective, if M; is an S-pseudo-Ms-principally injective module and M5 is an

S-pseudo-M;-principally injective module.
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Proposition 4.7. Let M; and My be right R-modules. If My & Ms is a quasi
S-pseudo-principally injective module, then My and My are relatively S-pseudo-

principally injective modules.

Proof. Let A be an S-Ms-cyclic submodule of My and ¢ a monomorphism from
A to M;. Define v : A — M; ® Ms by ¢¥(a) = (p(a),a) for all a € A. Tt is
clear that v is well-defined and an R-homomorphism. Since ¢ is a monomorphism,
1 is a monomorphism from A to My & My. But M; & Ms is a quasi S-pseudo-
principally injective module, there exists an R-homomorphism « from M; & M, to
My @& Mj such that o ipg, 044 = 1 where i4 is an inclusion map on A and iy,
is an injection map on Ms. So mp, cwoip, 0G4 = War © Y =  where myy, is
a projection map from M; & Ms to M. Hence M is an S-pseudo-Ms-principally
injective module. Similarly, we can proved that M5 is an S-pseudo-M;-principally

injective module. (|

Proposition 4.8. Let M and N; be right R-modules for all i = 1,2,...,n. If
@ N; is an S-pseudo-M -principally injective module, then N; is an S-pseudo-M -
i=1

principally injective module for all i =1,2,...,n.

Proof. Suppose that @ N; is an S-pseudo-M-principally injective module. Let

ie{l,2,...,n}, A be an S M-cyclic submodule of M and ¢ be a monomorphism

from A to N;. Since @ N, is an S-pseudo-M-principally injective module and
i=1

n
in, © ¢ is a monomorphism from A to @ N; where iy, is the i injective map
i=1

from N; to @ N;, there exists an R-homomorphism « from M to @ N; such that

i= =1
iN, 0P = « ozA where i4 is an inclusion map from A to M So N, o0 =

TN, 0N, © ¢ =  where 7y, is the th prOJectlon map from @ N; to N;. Therefore

=1
N, is an S-pseudo-principally injective module. O

Lemma 4.9. Let M be a right R-module and A be an S-M -cyclic submodule of M.
If A is an S-pseudo-M -principally injective module, then A is a direct summand of
M.

Proof. Suppose that A is an S-pseudo-M-principally injective module. Let i4 :
A — M be an inclusion map and I4 : A — A be the identity map. By assumption,
there exists an R-homomorphism ¢ : M — A such that poig = I4. Thus the short
exact sequence 0 — A — M splits. So I'm(ig) = A is a direct summand of M. O
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A right R-module M is called weakly co-Hopfian ([7]), if any injective endomor-
phism f of M is essential i.e., f(M) <. M.

Theorem 4.10. Let M be a quasi S-pseudo-principally injective module.

(1) If M is a weakly co-Hopfian module, then M is a co-Hopfian module.
(2) Let X be an S-M-cyclic submodule of M. If X is an essential submodule
of M and M is a weakly co-Hopfian module, then X is a weakly co-Hopfian

module.

Proof. (1) Suppose that M is a weakly co-Hopfian module. Let f : M — M be
an R-monomorphism. So f(M) = M and thus there exists an isomorphism ¢ from
f(M) to M. Let A be an S-M-cyclic submodule of M and o : A — f(M) be an
R-monomorphism. Since M is an quasi S-pseudo-principally injective module and
@ o« is an R-monomorphism, there exists an R-homomorphism v : M — M such
that ¢ o a = 1 0 i4 where i4 is an inclusion map from A to M. So ¢l opoiy =
¢ topoa = a. We have that f(M) is an S-pseudo-M-principally injective module.
By Lemma 4.9, f(M) is a direct summand of M. There exists a submodule B of M
such that M = f(M) @ B and thus f(M) N B = 0. But M is a weakly co-Hopfian
module, B=10. Then M = f(M)+ B = f(M). So f is an epimorphism. Therefore
M is a co-Hopfian module.

(2) Suppose that X is an essential submodule of M and M is a weakly co-Hopfian
module. Let f: X — X be an R-monomorphism. Since M is an quasi S-pseudo-
principally injective module and ix o f is a monomorphism where ix : X — M
is an inclusion map, there exists an R-homomorphism ¢ : M — M such that
ixofoix =¢. So Ker(p)NX =0. But X <. M, Ker(¢) =0. By [7, Corollary
1.2], o(X) <. M. Since f(X) = ¢(X), we have f(X) <. M. But f(X) C X C M,
so f(X) <. X. Therefore X is a weakly co-Hopfian module. O

Recall that a right R-module M is said to be multiplication if each submodule
N of M has the form N = MT for some ideal I of R ([2]).

Proposition 4.11. Let M be a multiplication quasi S-pseudo-principally injec-
tive module. Then every S-M -cyclic submodule of M is quasi S-pseudo-principally

injective.

Proof. Let N be an S-M-cyclic submodule of M, L be an S-N-cyclic submodule
of N and ¢ be a monomorphism from L to N. So L is an S-M-cyclic submodule
of M. But M is a quasi S-pseudo-principally injective module, there exists an

R-homomorphism « from M to M such that oy, = ¢ where iy, is an inclusion
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map on L. Since M is a multiplication module, there exists an ideal I of R with
N = MI. Then o(N) = a(MI) = a(M)I C MI = N and thus a|y: N - N. So

a|nyoip, = ¢. Therefore N is a quasi S-pseudo-principally injective module. (]

Theorem 4.12. Let M be a uniform module. Then every quasi S-pseudo-principally

injective module is a quasi S-principally injective module.

Proof. Suppose that M is a quasi S-pseudo-principally injective module. Let A
be an S-M-cyclic submodule of M and ¢ an R-homomorphism from A to M.

Case 1. ker(p) = 0. We see that ¢ is a monomorphism. But M is a quasi
S-pseudo-principally injective module, there exists @ : M — M such that @4 = ¢.

Case 2. ker(p) # 0. Since M is a uniform module, ker(y) is an essential sub-
module of M. But ker(y) Nker(¢ +i4) = 0 where i4 is the inclusion map from
A to M, we have ker(¢ +i4) = 0 and thus ¢ + i4 is a monomorphism. Since M
is a quasi S-pseudo-principally injective module, there exists an R-homomorphism
o : M — M such that a(a) = (p +ia)(a) for all @ € A. Choose = a — iy
where Iy, is an identity map on M. Then ®(a) = (o —in)(a) = ala) —ipy(a) =
w(a) +ia(a) — In(a) = p(a) for all a € A. We have B4 = .

From Case 1 and Case 2, we have that M is a quasi S-principally injective

module. O

Proposition 4.13. Let M be a right R-module and A be a submodule of M. If
M is a quasi S-pseudo-principally injective module, A is an essential and S-M -
cyclic submodule of M, then every monomorphism ¢ : A — M can be extended to

monomorphism in Endg(M).

Proof. Since M is a quasi S-pseudo-principally injective module, there exists © :
M — M such that B|4 = ¢. Since ANker(®) =0 and A is an essential submodule
of M, ker(g) = 0. Thus @ is a monomorphism in Endgr(M). O
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