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Abstract. In this paper, we introduce the notion of S-M -cyclic submodules,

which is a generalization of the notion of M -cyclic submodules. Let M,N be

right R-modules and S be a multiplicatively closed subset of a ring R. A sub-

module A of N is said to be an S-M -cyclic submodule, if there exist s ∈ S and

f ∈ HomR(M,N) such that As ⊆ f(M) ⊆ A. Besides giving many properties

of S-M -cyclic submodules, we generalize some results on M -cyclic submod-

ules to S-M -cyclic submodules. Furthermore, we generalize some properties

of principally injective modules and pseudo-principally injective modules to

S-principally injective modules and S-pseudo-principally injective modules,

respectively. We study the transfer of this notion to various contexts of these

modules.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

are unitary right R-modules. Let M be a right R-module. The annihilator of M ,

denoted by AnnR(M), is AnnR(M) = {r ∈ R | Mr = 0}. A nonempty subset S

of R is said to be multiplicatively closed set of R, if 0 /∈ S, 1 ∈ S and ss
′ ∈ S for

all s, s
′ ∈ S. From now on S will always denote a multiplicatively closed set of R.

In this paper, we concern with S-M -cyclic submodules which are generalizations of

M -cyclic submodules. Let M be a right R-module. Recall from [15], a submodule

N of M is called M -cyclic, if it is isomorphic to M/L for some submodule L of

M . Hence any M -cyclic submodule X of M can be considered as the image of an

endomorphism of M . Nguyen Van Sanh et al. in their paper [15] gave the concept of

M -cyclic submodules and used them to characterize certain classes of M -principally

injective modules. A right R-module N is called M -principally injective, if every

R-homomorphism from an M -cyclic submodule of M to N can be extended to
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M . Nguyen Van Sanh et al. give some characterizations and properties of quasi-

principally injective modules which generalize results of Nicholson and Yousif ([10]).

The notion of M -principally injective module has attracted many researchers and it

has been studied in many papers. See, for examples, [8], [11], [12] and [14]. Recall

from [5] that a right R-module N is called pseudo-M -principally injective, if every

monomorphism from an M -cyclic submodule X of M to N can be extended to an

R-homomorphism from M to N . They study the structure of the endomorphism

ring of a quasi-pseudo-principally injective module M which is a quasi-projective

Kasch module (see [5, Theorem 2.5 and Theorem 2.6]). The readers can refer to

[4], [6], [13] and [17] for more details on pseudo-M -principally injective modules.

In this paper, we introduce S-M -cyclic submodules, S-M -principally injective

modules and S-pseudo-M -principally injective modules which are generalizations of

M -cyclic submodules, M -principally injective modules and pseudo-M -principally

injective modules, respectively. In Section 2, we give some examples of S-M -cyclic

submodules, see Example 2.3. We give the necessary and sufficient conditions

for the submodule of a right R-module to be an S-M -cyclic submodule, list in

Theorem 2.15 and Theorem 2.16. At the end of Section 2, we give the necessary

and sufficient conditions for a simple module to be an S-M -cyclic submodule, list

in Proposition 2.16 and Proposition 2.17. In Section 3, we give an example of S-M -

principally injective module, see Example 3.2. Several characterizations and some

properties of S-M -principally injective modules are given in this section. As the

main results, in Section 4, we give the necessary and sufficient conditions for the S-

pseudo-M -principally injective module to be an S-M -principally injective module,

see Theorem 4.12.

2. S-M-cyclic submodules

We start with the following definitions.

Definition 2.1. Let S be a multiplicatively closed subset of R, M and N be right

R-modules.

(1) A submodule A of N is called an S-M -cyclic submodule of N , if there exist

s ∈ S and f ∈ HomR(M,N) such that As ⊆ f(M) ⊆ A.

(2) A right R-module N is called an S-M -cyclic module, if every submodule of

N is an S-M -cyclic submodule of N .

(3) A right (left) ideal I of R is called an S-R-cyclic right (left) ideal of R, if

IR (RI) is an S-R-cyclic submodule of RR (RR) and a ring R is called right

(left) S-R cyclic, if RR (RR) is an S-R-cyclic module.
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Remark 2.2. (1) Let M be a right R-module and S a multiplicatively closed

subset of a ring R. If annR(M)∩S 6= φ, then M is trivially an S-M -cyclic

module.

(2) To avoid this trivial case, from now on we assume that all multiplicatively

closed subset of a ring R satisfies annR(M) ∩ S = φ.

(3) Let M be a right R-module. The M -cyclic submodule of M is a special

case of S-M -cyclic submodule of M when S = {1}.

Example 2.3. (1) From [3], for right R-modules M and N , N is called a fully-

M -cyclic module, if every submodule A of N , there exists f ∈ HomR(M,N)

such that A = f(M). It is clear that every fully-M -cyclic module is an S-

M -cyclic module.

(2) Let M be a right R-module. We can see that every simple module is an

S-M -cyclic module for any multiplicatively closed subset S of R.

(3) Let Zp be the set of all integers modulo p where p is a prime number,

R =

{[
a 0

0 b

]
| a, b ∈ Zp

}
,M =

{[
a b

0 0

]
| a, b ∈ Zp

}

and

N =

{[
a 0

b 0

]
| a, b ∈ Zp

}
.

Then

(3.1) R is a ring.

(3.2) M and N are right R-modules.

(3.3) N is an S-M -cyclic module.

Proof. The proof of (3.1) and (3.2) are routine by using definitions of a ring and

a right R-module.

(3.3) Note that all nonzero submodules of N are{[
a 0

0 0

]
| a ∈ Zp

}
, Ek =

{[
ak 0

a 0

]
| a ∈ Zp

}
where k ∈ Zp and N .

Let A be a nonzero submodule of N .

Case 1. A =

{[
a 0

0 0

]
| a ∈ Zp

}
. Define f : M → N by

f

([
a b

0 0

])
=

[
a 0

0 0

]
for all

[
a b

0 0

]
∈M.
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It is clear that f ∈ HomR(M,N). Choose s ∈ S. We can show that

As ⊆ f(M) ⊆ A.

Case 2. A = Ek =

{[
ak 0

a 0

]
| a ∈ Zp

}
for some k ∈ Zp.

Define fk : M → N by

fk

([
a b

0 0

])
=

[
ak 0

a 0

]
for all

[
a b

0 0

]
∈M.

It is clear that fk ∈ HomR(M,N). We can choose s ∈ S and show that

As ⊆ fk(M) ⊆ A.

Case 3. A = N . It is obvious.

From Case 1, Case 2 and Case 3, we have N is an S-M -cyclic module. �

Proposition 2.4. Let M and N be right R-modules. Every M -cyclic submodule

of N is an S-M -cyclic submodule of N for any multiplicatively closed subset S of

R.

Proof. Let S be a multiplicatively closed subset of R and A be an M -cyclic sub-

module of N . There exists f ∈ HomR(M,N) such that A = f(M). Choose s ∈ S.

Let as ∈ As. Since a ∈ A = f(M), there exists m ∈ M such that a = f(m).

Then as = f(m)s = f(ms) ∈ f(M) and thus As ⊆ f(M). So As ⊆ f(M) ⊆ A.

Therefore A is an S-M -cyclic submodule of N . �

Proposition 2.5. Let U(R) be the set of all units in a ring R and M , N be right

R-modules. If S ⊆ U(R), then every S-M -cyclic submodule of N is an M -cyclic

submodule of N .

Proof. Suppose that S ⊆ U(R). Let A be an S-M -cyclic submodule of N . There

exist s ∈ S and f ∈ HomR(M,N) such that As ⊆ f(M) ⊆ A. Then

Ass−1 ⊆ f(M)s−1 ⊆ As−1,

A ⊆ f(M)s−1 ⊆ A.

So A = f(M)s−1. Since A = f(M)s−1 = f(Ms−1) ⊆ f(M) ⊆ A, f(M) = A.

Therefore A is an M -cyclic submodule of N . �

Proposition 2.6. Let M,N be right R-modules and A,B be submodules of N such

that A ⊆ B. If A is an S-M -cyclic submodule of B, then A is an S-M -cyclic

submodule of N .
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Proof. Suppose that A is an S-M -cyclic submodule of B. There exist s ∈ S

and f ∈ HomR(M,B) such that As ⊆ f(M) ⊆ A. But B ⊆ N , we have f ∈
HomR(M,N) and thus A is an S-M -cyclic submodule of N . �

Proposition 2.7. Let M be a right R-module, A and B be submodules of M . If

A is an S-M -cyclic submodule of M and B is an S-A-cyclic submodule of A, then

B is an S-M -cyclic submodule of M .

Proof. Suppose that A is an S-M -cyclic submodule of M and B is an S-A-cyclic

submodule of A. There exist s1, s2 ∈ S, f1 ∈ EndR(M) and f2 ∈ EndR(A) such

that As1 ⊆ f1(M) ⊆ A and Bs2 ⊆ f2(A) ⊆ B. Since S is a multiplicatively closed

subset of R, s2s1 ∈ S and thus Bs2s1 ⊆ f2(A)s1 ⊆ f2f1(M) ⊆ f2(A) ⊆ B where

f2f1 ∈ EndR(M). Therefore B is an S-M -cyclic submodule of M . �

Proposition 2.8. Let M and N be right R-modules. Then N is an S-M -cyclic

module if and only if every submodule of N is an S-M -cyclic module.

Proof. First, we suppose that N is an S-M -cyclic module. Let A be a submodule

of N and B be a submodule of A. Then B is a submodule of N and by the

assumption, there exist s ∈ S and f ∈ HomR(M,N) such that Bs ⊆ f(M) ⊆ B.

Since f(M) ⊆ B and B ⊆ A, f ∈ HomR(M,A). Hence A is an S-M -cyclic module.

The converse of this proposition is obvious. �

We can change from submodules to be essential submodules which is shown in

the following result.

Proposition 2.9. Let M and N be right R-modules. Then N is an S-M -cyclic

module if and only if every essential submodule of N is an S-M -cyclic module.

Proof. (⇒) It follows by Proposition 2.8.

(⇐) Since N is an essential submodule of N and by assumption, N is an S-M -cyclic

module. �

Proposition 2.10. Let M,P and Q be right R-modules with P ∼= Q. If P is an

S-M -cyclic module, then Q is an S-M -cyclic module.

Proof. Suppose that P is an S-M -cyclic module. Let L be a submodule of Q.

Since P ∼= Q, there exists an isomorphism f : Q → P. By assumption, there exist

s ∈ S and h ∈ HomR(M,P ) such that f(L)s ⊆ h(M) ⊆ f(L). Then

f(Ls) ⊆ h(M) ⊆ f(L), f−1f(Ls) ⊆ f−1h(M) ⊆ f−1f(L), Ls ⊆ f−1h(M) ⊆ L.

But f−1h ∈ HomR(M,Q), we have Q is an S-M -cyclic module. �



6 SAMRUAM BAUPRADIST

Proposition 2.11. Let M,M
′

and N be right R-modules which N is an S-M -

cyclic module. If M is an R-epimorphic image of M
′
, then N is an S-M

′
-cyclic

module.

Proof. Suppose that M is an R-epimorphic image of M
′
. There exists an R-

homomorphism α : M
′ → M such that α(M

′
) = M . Let A be a submodule of N .

Since N is an S-M -cyclic module, there exist s ∈ S and β : M → N such that

As ⊆ β(M) ⊆ A. Then As ⊆ βα(M
′
) ⊆ A. But βα ∈ HomR(M

′
, N), we have N

is an S-M
′
-cyclic module. �

Proposition 2.12. Let M,N be right R-modules and A,B be submodules of N such

that B ⊆ A. If A is an S-M -cyclic submodule of N , then A/B is an S-M -cyclic

submodule of N/B.

Proof. Suppose that A is an S-M -cyclic submodule of N . There exist s ∈ S

and f ∈ HomR(M,N) such that As ⊆ f(M) ⊆ A. Define f : M → N/B by

f(m) = f(m) + B for all m ∈ M . It is clear that f is well defined and an R-

homomorphism. Then (A/B)s ⊆ f(M) ⊆ A/B. Therefore A/B is an S-M -cyclic

submodule of N/B. �

Lemma 2.13. Let M , N be right R-modules and S1, S2 be multiplicatively closed

subsets of R such that S1 ⊆ S2. If N is an S1-M -cyclic submodule of N , then N

is an S2-M -cyclic submodule of N .

Proof. This is clear. �

Recall from [1], let S be a multiplicatively closed subset of R. The saturation

S∗ of S is defined as S∗ = {x ∈ R | x|y for some y ∈ S}. A multiplicatively closed

subset S of R is called a saturated multiplicatively closed set if S = S∗.

Theorem 2.14. Let M and N be right R-modules and A be a submodule of N .

Then A is an S-M -cyclic submodule of N if and only if A is an S∗-M -cyclic

submodule of N .

Proof. (⇒) Since S ⊆ S∗ and by Lemma 2.13, we have A is an S∗-M -cyclic

submodule of N .

(⇐) Suppose that A is an S∗-M -cyclic submodule of N . There exist x ∈ S∗ and

f ∈ HomR(M,N) such that Ax ⊆ f(M) ⊆ A. Choose y ∈ R with xy ∈ S. Then

Axy ⊆ f(M)y = f(My) ⊆ f(M) ⊆ A. Hence A is an S∗-M -cyclic submodule of

N . �
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Theorem 2.15. Let R be a commutative ring, M,N right R-modules and A a

submodule of N . Then A is an S-M -cyclic submodule of N if and only if As is an

S-M -cyclic submodule of N for all s ∈ S.

Proof. (⇒) Let s ∈ S. Since A is an S-M -cyclic submodule ofN , there exist s1 ∈ S
and f ∈ HomR(M,N) such that As1 ⊆ f(M) ⊆ A and thus As1s ⊆ f(M)s ⊆ As.

But R is a commutative ring, Ass1 ⊆ f(Ms) ⊆ As. Define h : M → N by h(m) =

f(ms) for all m ∈ M . It is clear that h is well-defined and an R-homomorphism

from M to N . So Ass1 ⊆ h(M) ⊆ As and hence As is an S-M -cyclic submodule

of N .

(⇐) Since 1 ∈ S, A is an S-M -cyclic submodule of N . �

Theorem 2.16. Let M and N be right R-modules which N is an S-M -cyclic

module and A is a submodule of N . Then

(1) A is an essential submodule of N if and only if for each t ∈ HomR(M,N)-

{0}, t(M) ∩A 6= {0}.
(2) A is a uniform module if and only if for each t ∈ HomR(M,A)-{0}, t(M)

is an essential submodule of A.

Proof.

(1) (⇒) It is obvious.

(⇐) Let B be a nonzero submodule of N . Since N is an S-M -cyclic module, there

exist s ∈ S and f ∈ HomR(M,N) such that Bs ⊆ f(M) ⊆ B. By assumption,

f(M) ∩ A 6= {0}. But {0} 6= f(M) ∩ A ⊆ B ∩ A, B ∩ A 6= {0}. Therefore A is an

essential submodule of N .

(2) (⇒) It is obvious.

(⇐) Let B and C be nonzero submodules of A. Since N is an S-M -cyclic module,

there exist s1, s2 ∈ S and f1, f2 ∈ HomR(M,N) such that Bs1 ⊆ f1(M) ⊆ B

and Cs1 ⊆ f2(M) ⊆ C. But B and C are submodules of A, we have f1, f2 ∈
HomR(M,A). By assumption, f1(M) and f2(M) are essential submodules of A

and thus f1(M) ∩ f2(M) 6= {0}. Since f1(M) ⊆ B and f2(M) ⊆ C, {0} 6=
f1(M)∩f2(M) ⊆ B∩C and thus B∩C 6= {0}. Therefore A is a uniform module. �

Proposition 2.17. Let M and N be right R-modules with HomR(M,N) 6= {0}.
Then N is a simple module if and only if N is an S-M -cyclic module with every

nonzero R-homomorphism from M to N an epimorphism.

Proof. (⇒) It is obvious.

(⇐) Let A be a nonzero submodule of N . Since N is an S-M -cyclic module, there
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exist s ∈ S and f ∈ HomR(M,N) such that As ⊆ f(M) ⊆ A. By assumption,

f(M) = N and thus A = N . Hence N is a simple module. �

A right R-module M is said to satisfy (∗∗)-property if every non-zero endomor-

phism of M is an epimorphism (see [16]).

Proposition 2.18. Let M be a right R-module. Then M is a simple module if and

only if M is an S-cyclic module with (∗∗)-property.

Proof. (⇒) It is clear.

(⇐) Suppose that M is an S-cyclic module with (∗∗)-property. Let N be a non-zero

submodule of M . By assumption, there exist s ∈ S and f ∈ EndR(M) such that

Ns ⊆ f(M) ⊆ N . Since M satisfies (∗∗)-property, f is an R-epimorphism and thus

f(M) = M . So we have M = N . Hence M is a simple module. �

Corollary 2.19. If a right R-module M is an S-cyclic module with (∗∗)-property,

then EndR(M) is a division ring.

3. S-M-principally injective modules

In this section, we introduce a general form of M -principally injectivity.

Definition 3.1. Let S be a multiplicatively closed subset of a ring R and M

be a right R-module. A right R-module N is called an S-M -principally injective

module (for short S-M -p-injective module) if every R-homomorphism from S-M -

cyclic submodule of M to N can be extended to an R-homomorphism from M to

N . M is called a quasi S-principally injective module (for short quasi S-p-injective

module), if M is an S-M -principally injective module. In the case of a ring R, R is

called a quasi S-principally injective module if RR is a quasi S-principally-injective

module. In the case S = {1}, N is called an M -principally-injective module that

one refer to [15].

Example 3.2. Let Zp be the set of all integers modulo p where p is a prime number,

R =

{[
a 0

0 b

]
| a, b ∈ Zp

}
, N =

{[
0 a

0 0

]
| a ∈ Zp

}
, and

M =

{[
0 0

a b

]
| a, b ∈ Zp

}
.

It is clear that R is a ring under matrix addition and matrix multiplication and M ,

N are right R-modules. Let S be a multiplicatively closed subset of R. Then

(1) N is an S-RR-principally injective module.
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(2) M is an S-M -principally injective module.

Proof. It is easy to prove. �

Proposition 3.3. Let M be a right R-module and N be an S-M -cyclic submodule

of M . If N is an S-M -principally injective module, then N is a direct summand

of M .

Proof. Suppose that N is an S-M -principally injective module. Consider the short

exact sequence 0 → N
iN−−→ M

πN−−→ M/N → 0 where iN is the inclusion map from

N to M and πN is the canonical projection from M to M/N . Since N is an S-

M -principally injective module, there exists an R-homomorphism α from M to N

such that α ◦ iN = iN . So the short exact sequence splits. Hence N is a direct

summand of M . �

Proposition 3.4. Let M , N and K be right R-modules with N ∼= K. If N is an

S-M -principally injective module, then K is an S-M -principally injective module.

Proof. Suppose that N is an S-M -principally injective module. Let A be an S-M -

cyclic submodule of M and α be an R-homomorphism from A to K. Since N ∼= K,

there exists an isomorphism f from K to N . But N is an S-M -principally injective

module, there exists an R-homomorphism g from M to N such that g ◦ iA = f ◦ α
where iA is the inclusion on A. So f−1 ◦ g ◦ iA = f−1 ◦ f ◦ α = α. Therefore K is

an S-M -principally injective module. �

Proposition 3.5. Let M and N be right R-modules and A be a direct summand

of N . If N is an S-M -principally injective module, then

(1) A is an S-M -principally injective module.

(2) N/A is an S-M -principally injective module.

Proof. Suppose that N is an S-M -principally injective module. Since A is a direct

summand of N , there exists a submodule A
′

of N such that N = A⊕A′
.

(1) Let B be an S-M -cyclic submodule of M and α be an R-homomorphism

from B to A. Since N is an S-M -principally injective module, there exists an

R-homomorphism β from M to N such that β ◦ iB = iA ◦ α where iA and iB

are inclusion maps on A and B, respectively. Let πA be a canonical projection

of N = A ⊕ A′
to A. Then πA ◦ β ◦ iB = πA ◦ iA ◦ α = α. Therefore A is an

S-M -principally injective module.

(2) By (1), A
′

is an S-M -principally injective module. Since A′ ∼= N/A and by

Proposition 3.4, N/A is an S-M -principally injective module. �
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Theorem 3.6. Let A and M be right R-modules. Then A is an S-M -principally

injective module if and only if A is an S-X-principally injective module for every

S-M -cyclic submodule X of M .

Proof. (⇒) Suppose that A is an S-M -principally injective module. Let X be

an S-M -cyclic submodule of M , B an S-X-cyclic submodule of X and ϕ an R-

homomorphism from B to A. By Proposition 2.8, B is an S-M -cyclic submodule

of M . But A is an S-M -principally injective module, there exists ϕ : M → N such

that ϕ ◦ iB = ϕ where iB is an inclusion map on B. Hence A is an S-X-principally

injective module.

(⇐) Clear. �

By A. Haghany and M. R. Vedadi [7], a right R-module M is called co-Hopfian

(Hopfian) if every injective (surjective) endomorphism f : M →M is an automor-

phism. According to [9], a right R-module M is called directly finite, if it is not

isomorphic to a proper direct summand of M .

Lemma 3.7. ([9, Proposition 1.25]) An R-module M is directly finite if and only

if f ◦ g = I implies g ◦ f = I for any f, g ∈ EndR(M).

Proposition 3.8. Let M be a quasi S-principally injective directly finite module.

Then M is a co-Hopfian module.

Proof. Let f : M →M be an R-monomorphism. Since M is a quasi S-principally

injective module and an S-M -cyclic submodule of M , there exists g : M →M such

that g ◦ f = IM where IM is an identity map on M . By Lemma 3.7, f ◦ g = IM

and thus f is an epimorphism. Therefore M is co-Hopfian. �

Corollary 3.9. Let M be a quasi S-principally injective and Hopfian module. Then

M is a co-Hopfian module.

4. S-pseudo-M-principally injective modules

In this section, we introduce a general form of pseudo-M -principally injectivity.

Definition 4.1. Let S be a multiplicatively closed subset of a ring R and M be a

right R-module. A right R-moduleN is called S-pseudo-M -principally injective (for

short S-pseudo-M -p-injective) if every monomorphism from S-M -cyclic submodule

of M to N can be extended to an R-homomorphism from M to N . The module M

is called quasi S-pseudo-principally injective (for short quasi S-pseudo-p-injective)

if M is an S-pseudo-M -principally injective module. In the case of a ring R, R
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is called quasi S-pseudo-principally injective if RR is a quasi S-pseudo-principally

injective module.

In the case S = {1}, N is called a pseudo-M -principally injective module that

one refer to [5].

Example 4.2. Let M be a right R-module. Then every S-M -principally injective

module is an S-pseudo-M -principally injective module.

Proposition 4.3. Let M , A and B be right R-modules such that A ∼= B.

(1) If A is an S-pseudo-M -principally injective module, then B is an S-pseudo-

M -principally injective module.

(2) If M is an S-pseudo-A-principally injective module, then M is an S-pseudo-

B-principally injective module.

Proof. Straightforward. �

Proposition 4.4. Let A and M be right R-modules. Then A is an S-pseudo-M -

principally injective module if and only if A is an S-pseudo-X-principally injective

module for every S-M -cyclic submodule X of M .

Proof. It is similar to the proof of Theorem 3.6. �

Corollary 4.5. Let M and N be right R-modules. If N is an S-pseudo-M -

principally injective module and A is a direct summand of M , then N is an S-

pseudo-A-principally injective module.

Proof. By Proposition 4.4. �

Proposition 4.6. Let M be a right R-module. Every direct summand of an S-

pseudo-M -principally injective module is an S-pseudo-M -principally injective mod-

ule.

Proof. Let N be an S-pseudo-M -principally injective module and A be a direct

summand of N . Let B be an S-M -cyclic submodule of M and ϕ be a monomor-

phism from B to A. Since N is an S-pseudo-M -principally injective module, there

exists an R-homomorphism α from M to N such that α◦iB = iA◦ϕ where iA and iB

are inclusion maps on A and B, respectively. So πA ◦α◦ iB = πA ◦ iA ◦ϕ = ϕ where

πA is a canonical projection of N to A. Therefore A is an S-pseudo-M -principally

injective module. �

Two right R-modules M1 and M2 are relatively (or mutually) S-pseudo princi-

pally injective, if M1 is an S-pseudo-M2-principally injective module and M2 is an

S-pseudo-M1-principally injective module.
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Proposition 4.7. Let M1 and M2 be right R-modules. If M1 ⊕ M2 is a quasi

S-pseudo-principally injective module, then M1 and M2 are relatively S-pseudo-

principally injective modules.

Proof. Let A be an S-M2-cyclic submodule of M2 and ϕ a monomorphism from

A to M1. Define ψ : A → M1 ⊕ M2 by ψ(a) = (ϕ(a), a) for all a ∈ A. It is

clear that ψ is well-defined and an R-homomorphism. Since ϕ is a monomorphism,

ψ is a monomorphism from A to M1 ⊕M2. But M1 ⊕M2 is a quasi S-pseudo-

principally injective module, there exists an R-homomorphism α from M1 ⊕M2 to

M1 ⊕M2 such that α ◦ iM2 ◦ iA = ψ where iA is an inclusion map on A and iM2

is an injection map on M2. So πM1
◦ α ◦ iM2

◦ iA = πM1
◦ ψ = ϕ where πM1

is

a projection map from M1 ⊕M2 to M1. Hence M1 is an S-pseudo-M2-principally

injective module. Similarly, we can proved that M2 is an S-pseudo-M1-principally

injective module. �

Proposition 4.8. Let M and Ni be right R-modules for all i = 1, 2, . . . , n. If
n⊕
i=1

Ni is an S-pseudo-M -principally injective module, then Ni is an S-pseudo-M -

principally injective module for all i = 1, 2, . . . , n.

Proof. Suppose that
n⊕
i=1

Ni is an S-pseudo-M -principally injective module. Let

i ∈ {1, 2, . . . , n}, A be an S-M -cyclic submodule of M and ϕ be a monomorphism

from A to Ni. Since
n⊕
i=1

Ni is an S-pseudo-M -principally injective module and

iNi
◦ ϕ is a monomorphism from A to

n⊕
i=1

Ni where iNi
is the ith injective map

from Ni to
n⊕
i=1

Ni, there exists an R-homomorphism α from M to
n⊕
i=1

Ni such that

iNi
◦ ϕ = α ◦ iA where iA is an inclusion map from A to M . So πNi

◦ α ◦ iA =

πNi
◦ iNi

◦ϕ = ϕ where πNi
is the ith projection map from

n⊕
i=1

Ni to Ni. Therefore

Ni is an S-pseudo-principally injective module. �

Lemma 4.9. Let M be a right R-module and A be an S-M -cyclic submodule of M .

If A is an S-pseudo-M -principally injective module, then A is a direct summand of

M .

Proof. Suppose that A is an S-pseudo-M -principally injective module. Let iA :

A→M be an inclusion map and IA : A→ A be the identity map. By assumption,

there exists an R-homomorphism ϕ : M → A such that ϕ◦ iA = IA. Thus the short

exact sequence 0→ A→M splits. So Im(iA) = A is a direct summand of M . �
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A right R-module M is called weakly co-Hopfian ([7]), if any injective endomor-

phism f of M is essential i.e., f(M)�e M .

Theorem 4.10. Let M be a quasi S-pseudo-principally injective module.

(1) If M is a weakly co-Hopfian module, then M is a co-Hopfian module.

(2) Let X be an S-M -cyclic submodule of M . If X is an essential submodule

of M and M is a weakly co-Hopfian module, then X is a weakly co-Hopfian

module.

Proof. (1) Suppose that M is a weakly co-Hopfian module. Let f : M → M be

an R-monomorphism. So f(M) ∼= M and thus there exists an isomorphism ϕ from

f(M) to M . Let A be an S-M -cyclic submodule of M and α : A → f(M) be an

R-monomorphism. Since M is an quasi S-pseudo-principally injective module and

ϕ ◦ α is an R-monomorphism, there exists an R-homomorphism ψ : M → M such

that ϕ ◦ α = ψ ◦ iA where iA is an inclusion map from A to M . So ϕ−1 ◦ ψ ◦ iA =

ϕ−1◦ϕ◦α = α. We have that f(M) is an S-pseudo-M -principally injective module.

By Lemma 4.9, f(M) is a direct summand of M . There exists a submodule B of M

such that M = f(M)⊕B and thus f(M) ∩B = 0. But M is a weakly co-Hopfian

module, B = 0. Then M = f(M) +B = f(M). So f is an epimorphism. Therefore

M is a co-Hopfian module.

(2) Suppose that X is an essential submodule of M and M is a weakly co-Hopfian

module. Let f : X → X be an R-monomorphism. Since M is an quasi S-pseudo-

principally injective module and iX ◦ f is a monomorphism where iX : X → M

is an inclusion map, there exists an R-homomorphism ϕ : M → M such that

iX ◦ f ◦ iX = ϕ. So Ker(ϕ) ∩X = 0. But X �e M , Ker(ϕ) = 0. By [7, Corollary

1.2], ϕ(X)�e M . Since f(X) = ϕ(X), we have f(X)�e M . But f(X) ⊆ X ⊆M ,

so f(X)�e X. Therefore X is a weakly co-Hopfian module. �

Recall that a right R-module M is said to be multiplication if each submodule

N of M has the form N = MI for some ideal I of R ([2]).

Proposition 4.11. Let M be a multiplication quasi S-pseudo-principally injec-

tive module. Then every S-M -cyclic submodule of M is quasi S-pseudo-principally

injective.

Proof. Let N be an S-M -cyclic submodule of M , L be an S-N -cyclic submodule

of N and ϕ be a monomorphism from L to N . So L is an S-M -cyclic submodule

of M . But M is a quasi S-pseudo-principally injective module, there exists an

R-homomorphism α from M to M such that α ◦ iL = ϕ where iL is an inclusion
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map on L. Since M is a multiplication module, there exists an ideal I of R with

N = MI. Then α(N) = α(MI) = α(M)I ⊆ MI = N and thus α|N : N → N . So

α|N◦iL = ϕ. Therefore N is a quasi S-pseudo-principally injective module. �

Theorem 4.12. Let M be a uniform module. Then every quasi S-pseudo-principally

injective module is a quasi S-principally injective module.

Proof. Suppose that M is a quasi S-pseudo-principally injective module. Let A

be an S-M -cyclic submodule of M and ϕ an R-homomorphism from A to M .

Case 1. ker(ϕ) = 0. We see that ϕ is a monomorphism. But M is a quasi

S-pseudo-principally injective module, there exists ϕ : M →M such that ϕ|A = ϕ.

Case 2. ker(ϕ) 6= 0. Since M is a uniform module, ker(ϕ) is an essential sub-

module of M . But ker(ϕ) ∩ ker(ϕ + iA) = 0 where iA is the inclusion map from

A to M , we have ker(ϕ + iA) = 0 and thus ϕ + iA is a monomorphism. Since M

is a quasi S-pseudo-principally injective module, there exists an R-homomorphism

α : M → M such that α(a) = (ϕ + iA)(a) for all a ∈ A. Choose ϕ = α − iM
where IM is an identity map on M . Then ϕ(a) = (α − iM )(a) = α(a) − iM (a) =

ϕ(a) + iA(a)− IM (a) = ϕ(a) for all a ∈ A. We have ϕA = ϕ.

From Case 1 and Case 2, we have that M is a quasi S-principally injective

module. �

Proposition 4.13. Let M be a right R-module and A be a submodule of M . If

M is a quasi S-pseudo-principally injective module, A is an essential and S-M -

cyclic submodule of M , then every monomorphism ϕ : A → M can be extended to

monomorphism in EndR(M).

Proof. Since M is a quasi S-pseudo-principally injective module, there exists ϕ :

M →M such that ϕ|A = ϕ. Since A∩ ker(ϕ) = 0 and A is an essential submodule

of M , ker(ϕ) = 0. Thus ϕ is a monomorphism in EndR(M). �
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