ITU Computer Science, Al and Robotics ITU %)
ITU/ICSAR

Improving Sample Efficiency of Reinforcement Learning Control Using
Autoencoders

Burak Er! ', Mustafa Dogan’

! |stanbul Technical University

2 Istanbul Technical University
3

Abstract: This study presents a novel approach for improving the sample efficiency of reinforcement learning (RL)
control of dynamic systems by utilizing autoencoders. The main objective of this research is to investigate the
effectiveness of autoencoders in enhancing the learning process and improving the resulting policies in RL control
problems. In literature, most applications use only the latent space of autoencoders during learning. This approach
can cause loss of information, difficulty in interpreting latent space, difficulty in handling dynamic environments, and
outdated representation. In this study, the proposed novel approach overcomes these problems and enhances sample
efficiency by using both states and their latent space during learning. The methodology consists of two main steps.
First, a denoising-contractive autoencoder is developed and implemented for RL control problems, focusing on state
representation and feature extraction. The second step involves training a Deep Reinforcement Learning algorithm using
the augmented states generated by the autoencoder. This algorithm is compared against a baseline Deep Q-Network
(DQN) in the LunarLander environment, where observations are subject to Gaussian noise.

Keywords: Reinforcement Learning, Autoencoders, Control
|

Pekistirmeli Ogrenme Kontrolde Otokodlayicilar ile Ornek Verimliligini
Arttirma

Ozet: Pekistirmeli 6grenme ydntemlerinde egitim sirasinda cok sayida 6rnek gerekmesi zaman kaybina, bitcesel
problemlere neden olmakta ve gercek diinya uygulamalarinda risk alinmasina sebep olmaktadir. Bu ¢alismada
otokodlayicilar yardimiyla sistemin durumlarinin kodlanmasi ile elde edilen gizli uzay durumlarla birlikte kullanilarak
herhangi bir pekistirmeli 6grenme yénteminin egitimi igin drnek verimliliginin arttinlmasi amacglanmaktadir. Literatlrde
sadece gizli uzayin kullanildigi durumlarda bilgi kaybi, sistem dinamiginin degismesi durumunda gizli uzayin durumlarin
glncel olmayan bir temsilini icermesi gibi problemlere neden olmaktadir. Bu ¢aligsmada sunulan yeni algoritma ile
ornek olarak Derin Q-Ag1 (DQN) yéntemininin verimliligi arttinimistir. Temel DQN ve Otokodlayici ile Gelistiriimis DQN
algoritmasi OpenAl Gym Lunar Lander sisteminde denenerek birbirleriyle karsilastiriimis, hem érnekleme verimliliginin
arttirdigi hem de 6nceki galismalardaki sorunlarin Ustesinden gelindigi gdsterilmigtir.

Anahtar Kelimeler: Pekistirmeli Ogrenme, Otokodlayicilar, Kontrol
|

RESEARCH PAPER
Corresponding Author: Burak Er, erb20@itu.edu.tr

Reference: B. Er, M. Dogan, (2024), Improving Sample Efficiency of Reinforcement Learning Control Using
Autoencoders, ITU Computer Science Al and Robotics, 1, (1) 39-48.

Submission Date: 09, May, 2024
Acceptance Date: 15, May, 2024
Online Publishing: 20, Jul, 2024

Burak Er, Mustafa Dogan 39

https://orcid.org/0009-0000-7540-995X
https://orcid.org/0000-0001-5215-8887

ITU Computer Science, Al and Robotics

1 Introduction

A subset of machine learning called reinforcement learn-
ing (RL) teaches agents to make series of decisions by
environment interaction ([1]). These agents learn to opti-
mize their decisions, or actions, over time to maximize cu-
mulative reward. This concept has been particularly effec-
tive in several domains, including game playing, resource
management, and control tasks ([2], [3]). Control of dy-
namic systems, which are systems that change over time, is
one of the areas where RL has shown substantial promise.
Dynamic systems are prevalent in various fields such as
robotics, economics, and biology. They often involve com-
plex, non-linear behaviors that are difficult to model and
control with traditional methods. RL, with its capacity to
learn complex behaviors from interaction with the environ-
ment, presents an attractive approach to these challenges.
However, one major challenge in applying RL to dynamic
system control is the issue of sample efficiency. To learn an
efficient strategy, many interactions with the environment
are frequently necessary for RL techniques. This is partic-
ularly problematic in dynamic systems, where each interac-
tion can be expensive, time-consuming and risky ([4]).

Model-based RL provides a compelling avenue to ad-
dress sample efficiency. It builds a model of the environ-
ment to simulate outcomes of various actions, reducing the
necessity for extensive exploration in the actual environ-
ment. Dyna-Q ([5]) was one of the earliest attempts to com-
bine model-free and model-based RL. It alternates between
updating the model of the environment and the Q-values,
leveraging simulated experience to learn the policy. Prob-
abilistic Ensembles with Trajectory Sampling (PETS) ([6])
uses an ensemble of probabilistic models to make predic-
tions about future states and rewards. This approach al-
lows the uncertainty of the model’s predictions to be incor-
porated into the policy, improving robustness and efficiency.
AlphaNPI ([7]) combines model-based planning with imita-
tion learning, using a model of the environment for looka-
head search to train a neural program interpreter. CCFDM
is a notable example of this approach.CCFDM trains a deep
convolutional neural network-based image encoder using
contrastive learning and a forward dynamics model. Given
the current observation and action, the forward dynamics
model predicts the following observation, and the prediction
error is employed as an intrinsic reward. This encourages
the agent to explore novel observations, thereby improving
the sample efficiency of the RL algorithm ([8]).

In literature unsupervised representation learning tech-
niques are used to improve Deep Reinforcement Learning
([9])- But these methods are generally used for processes
which have too high dimensions like images. Also only
latent space is used in these techniques. This approach
can cause loss of information, difficulty in interpreting la-
tent space, difficulty in handling dynamic environments and
outdated representation.

ITU

Improving exploration strategies is another approach to
increase sample efficiency in RL. UCT ([10]) incorporates
a measure of uncertainty into the selection of actions, im-
proving exploration in domains with large action spaces.
Intrinsic Motivation ([11]) introduces an additional reward,
encouraging the agent to explore less familiar states. Ran-
dom Network Distillation (RND) ([12]) measures novelty by
comparing the output of two networks, one fixed and one
learnable, and uses this to incentives exploration.

Transfer Learning and Meta-Learning can also enhance
sample efficiency by utilizing prior knowledge or quickly
adapting to new tasks. Progressive Networks ([13]) encap-
sulate knowledge from previous tasks in reusable modules,
allowing the transfer of skills to new tasks. Model-Agnostic
Meta-Learning (MAML) ([14]) trains a model to learn quickly
from a few examples, making it suitable for new task adap-
tation. Reptile ([15]) simplifies the MAML approach, using
a meta-gradient descent to improve efficiency and stability
in meta-learning.

Offline RL, also known as batch RL, leverages pre-
collected data to improve policies, making it a potentially
efficient approach for sample-efficiency. Deep Q-Learning
from Demonstrations (DQfD) ([16]) combines demonstra-
tion data with online interaction, enabling the RL agent
to learn both from human demonstrations and exploration.
Conservative Q-Learning (CQL) ([17]) augments the value
function with an auxiliary loss to learn a conservative Q-
function and prevent overestimation, thus stabilizing the
learning process in offline RL. Reinforcement Learning with
Augmented Data (RAD) ([18]) extends offline RL to visual
domains, using data augmentations to leverage the full
batch of data effectively.

Autoencoders are a type of Artificial Neural Networks
used for encoding of input data. Autoencoders can de-
velop the ability to represent high-dimensional states in a
latent space with lesser dimensions, potentially simplify-
ing the learning task for the RL agent. Embed to Control
(E2C) ([19]) combines autoencoders with model-based RL
for continuous control tasks. It uses a variational autoen-
coder to learn a low-dimensional representation of the en-
vironment, then learns a linear control model in this latent
space. Ha and Schmidhuber ([20]) proposed World Mod-
els, incorporating VAEs to learn and generate new envi-
ronments, which are then used to train the agent, thereby
improving the efficiency of learning. However, the use of
autoencoders in RL for dynamic systems control is an area
that has not been thoroughly explored.

This study aims to investigate the application of autoen-
coders to improve the sample efficiency of reinforcement
learning (RL) in controlling dynamic systems. By leverag-
ing autoencoders’ ability to efficiently represent complex,
high-dimensional states, this research seeks to enhance
RL agents’ capabilities, enabling them to learn control poli-
cies more quickly and robustly with fewer samples and in

Burak Er, Mustafa Dogan

40

ITU Computer Science, Al and Robotics

the presence of observation noise. Additionally, this study
aims to overcome the limitations associated with using only
the latent space of autoencoders.

This paper structured into four main sections. The ini-
tial section covers the background information essential for
understanding the field. This is followed by a detailed ex-
planation of the methodology and implementation of simu-
lation experiments. The subsequent section presents the
results and discusses their implications. Finally, the paper
concludes by summarizing the key findings and suggesting
directions for future research.

2 Background Information

In reinforcement learning, agents learn by interacting with
the environment and receives feedback in the form of re-
ward. An agent is an entity that makes decisions and takes
actions within an environment. In RL, the agent’s objective
is to identify a course of behavior that maximizes the total
reward over time. The agent’s operating space is known
as the environment. In response to the agent’s activities,
the environment provides the states, observations, and re-
wards of the agent.

A state is complete description of the situation or config-
uration of the environment at a given time and represented
as s. An agent’s choice to change the environment is re-
ferred to as an action an represented as “a”. A policy de-
fines an agent’s behavior by mapping states to actions and
represented as “n”.

If the probability distribution of the future states depends
solely on the current state and is conditionally indepen-
dent of the past states, a process is said to have the
Markov property. The mathematical model for the agent-
environment interaction in RL is called a Markov Decision
Process (MDP) if process has Markov Property. In this
study the process is assumed as MDP.

The agent’s main objective is to maximize cumulative re-
ward which is given in Equation]

oo

Gi=Ri1+YR2+VRis+...= Y, YRy,
=0

(1)

Here G; is discounted cumulative return, R, is immediate
return at time t and y is discount factor.

Mathematically, a deterministic policy is represented as
in Equation 2]
(@)

Finding an optimal policy n* that maximizes the expected
discounted cumulative reward for each state s is the agent’s
objective. The formal definition of this is given in Equation

Bl

n(s) =a,

(3)

In RL, the value (V) and action-value (Q) functions play
a critical role in helping the agent estimate the expected

Tt = argm;le[G,|st =s,7,

ITU

future rewards and make decisions. These functions rep-
resent the expected return for each state and state-action
pair, respectively, and are used to evaluate the quality of the
agent’s current policy. This functions are given in Equations
5

V(s) = E[G|s; = s,7] 4)

(5)

The Bellman Equations provide mathematical relation-
ship between the value and action-value functions of a
given state or state-action pair and their successors. These
equations are used to evaluate and update the value and
action-value functions, and given in Equations [6}{7]

0O(s,a) = E[Gy|s; = s,a; = a, 7]

V(s) =) n(als) (R(S’a)+YZ,P(S’S70)V(S')> (6)
O(s,a) = R(s,a) + ?’ZP(S/IW) Z,ﬂ(a/ls/)Q(S/va') (7)

Bellman optimality equations for V(s) and Q(s,a) are
given in Equations [8}{9]

V*(s) = max <R(s,a) + yZP(s’|s,a)V* (s')) (8)

Q'(5.0) = R(s.0) + YL P [s,)max 0 (s'a') (9)
s @

A family of model-free reinforcement learning algorithms
known as Temporal Difference (TD) learning combines the
principles of Dynamic Programming with Monte Carlo ap-
proaches ([1]). TD learning algorithms update value and
action value function estimates using value of next state
and observed reward. This enables TD learning algorithms
to learn from incomplete episodes and update value esti-
mates online, in contrast Monte Carlo methods, which re-
quire complete episodes. TD error is calculated as in Equa-
tion

O = Rip1 + YV (Sr41) = V(Sr) (10)
The V(s) is updated using the TD error as in Equation

(11)

This update rule is called one step TD as it updates the
value function based on one-step look ahead.

Q-learning is a TD control method which action-value
function Q(s,a) is iteratively updated similar to updating V(s)
with TD error. This refines the policy in response to the new
action-value estimates. TD error for Q(s,a) is calculated as
in Equation[12]

V(S;) + V(S;) + ad;

& =Rt +ymzile(S,+1,a/) —0(8,A) (12)

Burak Er, Mustafa Dogan

41

ITU Computer Science, Al and Robotics

The Q(s,a) is updated using the TD error as in Equation

O(S1,Ar) + O(S1,A)) + oy

In Deep Q-Network (DQN) algorithm ([21]), action value
Q(s,a) is estimated using deep neutral networks. DQN
introduces approaches like experience replay and target
networks to reduce instability and divergence problems
caused by carelessly merging deep learning and reinforce-
ment learning. The training algorithm for baseline DQN al-
gorithm is given in Algorithm 1.

(13)

Algorithm 1: Baseline DQN Training
Initialize Replay Memory R
Initialize action-value function Q with random weights 6
Initialize target action-value function Q with random weights 6~
Initialize £
for episode = 1, N do
Reset Environment
while not done do
With probability € select random action a;
otherwise select action a; = argmax,Q(s;,a; 0)
Execute action g; on environment and observe next state s, and
reward r,
Store transition (s;,a;,7;,5;4+1) in R
if time for learn and enough samples available then
Sample random minibatch (sg, ak, 7k, Sk+1) from R
Set yp = ry if episode terminates at step k+1
otherwise set y; = -+ ymax O(sk1 s 67)
Perform gradient descent on (y; — Q(sy; 8))?
0" =1x0+(1—17)%6~
end
Set s; = s4+1
Decay € = g% 0¢
end
end

Autoencoders are used for the unsupervised learning of
efficient encodings using neural networks. An autoencoder
learns a representation (encoding) of a input data, often
to get lower dimensionality or noise. Autoencoders can ex-
tract meaningful features from input data to have better rep-
resentations. Encoder part encodes input to latent space
and decoder part rebuilds this input to original dimensions.
([22]). An example of Autoencoder is given in Figure 1.

Encoder Latent Decoder

Space

—
D(x)

Fig. 1 AutoEncoder

ITU

The autoencoder’s learning process includes minimizing
a loss function, also known as reconstruction error. The
most popular form of loss function for autoencoders is mean
squared error. This evaluates the distance between the
original input and the reconstructed output. This error func-
tion is given in Equation

L(x,%) = [x—£[|° (14)

where £ is reconstructed version of input x. For recov-
ering input data from a noisy version, denoising autoen-
coders can be used. The reconstruction loss calculated us-
ing noiseless version of x in this type of autoencoders. Also
a regularization term can be added to the loss function in
Equation [14] which promotes the model to learn a function
that is resistant to minor changes in input values. To get the
overall loss, the Frobenius norm of the encoder’s Jacobian
as a contractive loss can be added to reconstruction loss
as in Equation[15] ([23])

L(x,%) = [lx = 2[* + 4[| Vxh(x) |7 (15)

where 14 is a hyper-parameter, h is latent layer and x is
sampled batch of input.

3 Methodology and Implementation

The Lunar Lander simulation environment, provided by
OpenAl’'s Gym ([24]), serves as the primary experimental
setup for this study. This environment simulates a lunar
module that is tasked with the objective of landing safely
on the moon’s surface. The module starts each episode
in mid-air and is required to navigate to the landing zone,
which is always at zero x and y coordinates.

An 8-dimensional continuous space serves as the envi-
ronment’s state space for the Lunar Lander. It includes the
X and Y coordinates of the lander, its velocity in both the X
and Y directions, two boolean flags indicating if the lander’s
left and right legs have touched the ground, the angle and
angular velocity. A summary of observation space of Lunar
Lander environment is given in Table

Table 1 Observations of LunarLander Environment

Observations Constraints
X,y coordinates [-90, 90]

X,y speeds [-5, 5]

angle [-3.14, 3.14]
angular velocity [-5, 5]

two leg contact bool [0,1]

The action space, however, is a discrete space with four
actions: no action, firing the bottom (main) engine, firing
left engine, or firing the right engine. Each action affects
the state of the lander consequently, the received reward.
A summary of action space of Lunar Lander environment is
given in Table [2]

Burak Er, Mustafa Dogan

42

ITU Computer Science, Al and Robotics

Table 2 Actions of LunarLander Environment

Actions Action Number
No Action 0
Engine Firing: Left 1
Engine Firing: Main 2
Engine Firing: Right 3

The rewards of the environment is designed to encour-
age safe and efficient landings. For a successful landing
reward is +100 but for crashing penalty is -100. There are
also intermediate rewards and penalties for actions such as
firing the engines or moving away from the landing pad. A
summary of rewards of Lunar Lander environment is given
in Table 3

Table 3 Rewards of LunarLander Environment

Case Rewards for Each Step
Crashing -100

Safe Landing +100

Leg Contact +10

Side Engine Firing -0.08

Main Engine Firing -0.3

x,y coordinates —100+/x% +y?

X,y speeds —1004/%2 +y2

angle —100||angle||

An autoencoder is used to process the observations from
the environment, helping the reinforcement learning model
make sense of data. There is no need to interact with
the environment to train an autoencoder. It is sufficient to
have knowledge of the environment’s states and their con-
straints. By uniformly randomly sampling from these states,
a dataset can be created to train autoencoder. The struc-
ture of creating dataset for training autoencoder is given in

Figure[2|
Gaussian
Noise

Noise

Randomly sampled@%
(\

Environment's

Set of State AutoEncoder Train
S

Dat " Aut d

?

Fig. 2 Creating Dataset To Train AutoEncoder

The design of the autoencoder used in this study is a
feed-forward neural network, which contains fully linked lay-
ers for both the encoder and decoder. The autoencoder’s
encoder component is made up of three layers. The input
data is transformed into a hidden representation with the
dimensionality determined by the hidden dimension param-
eter in the first layer, which is a linear layer. The activation

ITU

function that bring non-linearity into the model, the Rectified
Linear Unit (ReLU), is then applied. The second layer is an-
other linear layer that further transforms the data, followed
by another ReLU activation. A linear layer that maps the
data into the latent space makes up the encoder’s last layer.
The latent dimension parameter determines how many di-
mensions there are in the latent space.

The decoder part of the autoencoder mirrors the archi-
tecture of the encoder but in reverse order. It starts with a
linear layer that takes the latent representation and trans-
forms it back to the hidden dimension, followed by a RelLU
activation. The second layer has same architecture. The
final layer of the decoder is a linear layer that reconstructs
the data back to its original dimensionality.

The autoencoder used in this study is also a denoising-
contractive mixed autoencoder ([25]). The difference from
a conventional autoencoder is, this autoencoder trained us-
ing noise corrupted observations and a contractive loss.
The reconstruction, encouraging the autoencoder to gener-
ate a reconstruction that closely matches the original data.
Contrarily, the contractive loss pushes the autoencoder to
develop a reliable and consistent representation of the data
in the latent space, which reduces its sensitivity to minor
changes in the input data. Training algorithm for autoen-
coder is given in Algorithm 2. The algorithm begins with
creating a dataset as shown in Figure [2l To prevent en-
coder and decoder stuck in local minima, their neural net-
work weights should be initialized randomly. Then using all
data from dataset, the reconstruction loss which was given
in Equation|15|can be calculated. By performing backprop-
agation on this loss function, optimal weights of encoder
and decoder can be obtained.

Algorithm 2: Denoising-Contractive Autoencoder Training

Create training dataset T with randomly sampled and noise added states
Create validation dataset V with randomly sampled and noise added states
Initialize Encoder E with random weights @

Initialize Decoder D with random weights &

fort=1, Ndo

Sample train batch noiseless x; and noisy %; from T

Calculate contractive loss 4 ||V, h(x;)||7 where h is hidden layer of E
Calculate reconstruted sample £, = D(E(%:0); D)

Calculate reconstruction loss L(x;, %)

Perform gradient descent on total loss L(x;, %) + A ||V, h(x,)[|7 Sample

validation batch and calculate total loss in similar way if minimum
validation loss den’t change for 1000 steps then
| Early stop
end
end

The RL model used in this study is a Deep Q-Network
(DQN) agent. The methodology also involves the use of a
replay buffer for storing and sampling experiences, which
allows the model to learn from past experiences and im-
prove its performance over time. Trajectories are stored in
memory and randomly sampled in batches when needed.
A structural comparison of the proposed and baseline re-

Burak Er, Mustafa Dogan

43

ITU Computer Science, Al and Robotics

inforcement learning algorithms is provided in Figure
The baseline reinforcement learning control algorithms use
states directly, whereas the proposed algorithms augment
these states with latent spaces obtained by encoding the
states. The training algorithm for the baseline DQN is pre-
sented in Algorithm 1, while the training algorithm for the
proposed technique is detailed in Algorithm 3. The differ-
ence between Algorithm 3 and Algorithm 1 is in Algorithm
3 there is an encoder which was pretrained using Algorithm
2. This pretrained encoder is used to find latent states of
the system and then given as an extra input to a baseline
DRL algorithm alongside with normal states.

BASELINE ALGORITHM

DRL

States —>Actions;

PROPOSED ALGORITHM

Augmented

States ERE

—>Actions

Latent

Space

States—>» Encoder

Fig. 3 Baseline and Proposed Controllers

Algorithm 3: Encoder Augmented DQN Training
Pretrain Encoder E
Initialize Replay Memory R
Initialize action-value function Q with random weights 6
Initialize target action-value function Q with random weights 6
Initialize &
for episode = 1, N do
Reset Environment
while not done do
With probability € select random action g,
Find latent states z; = E(s;)
otherwise select action a; = argmaxaQ(si,zi,a; 9)
Execute action a; on environment and observe next state s+ and
reward ry
Store transition (s,,a,r;,5,11) in R
if time for learn and enough samples available then
Sample random minibatch (sg, @y, g, sp41) from R
Find latent states zx = E(sx) and zg41 = E(s5¢+1)
Set y; = ry if episode terminates at step k+1
otherwise set y; = ry + ymax O(Skriszir1,a; 0)
Perform gradient descent on (v — Q(s;, 242 0))?
0" =Tx0+(1—1)%x0~
end
Set s, = s41
Decay £ = £ x 8¢

end
end

ITU

4 Results and Discussion

The goal of this study’s experimental setting was to investi-
gate the potential of combining a denoising-contractive au-
toencoder with a DQN within the Lunar Lander simulation
environment. The autoencoder, designed with three layers
for both encoding and decoding, featured a hidden layer
dimension of 64 and a variable latent layer dimension for
comparison. Implemented as a denoising contractive au-
toencoder—known for its efficacy in learning robust repre-
sentations—the settings included a contractive lambda of
1074, a learning rate of 1073, and RelLU as the activation
function. The training batch size was set to 64, with a Gaus-
sian noise of zero mean and 0.01 standard deviation added
to the observations for the denoising process.

In the reinforcement learning framework, the DQN was
configured with a discount factor of 0.99 to control the
weighting of potential rewards. The soft update tau, con-
trolling the rate at which the target network is updated, was
set to 1073. The DQN’s batch size and learning rate were
also set to 64 and 5x10~*, respectively.

The loss function is a numerical measure that reflects the
norm between the batch of states and the reconstructed
batch of states from the autoencoder. A lower loss num-
ber indicates that the autoencoder is better capturing the
essential features of the input data. The results showed a
steady decrease in the loss value over the training epochs,
suggesting that the autoencoder was effectively learning
the representations of the environment’s state. For differ-
ent latent dimensions, autoencoder training and validation
losses are given in Figure [4]- [6l

—— Training
Validation
0.05 A
0.04 -
2
S0.03
0.02 A
0.01 A
0 20000 40000 60000 80000 100000
Step

Fig. 4 AutoEncoder Losses for Latent Dim 2

Burak Er, Mustafa Dogan

44

ITU Computer Science, Al and Robotics

—— Training

0.025 Validation

0.020 1

0.015 1

Loss

0.010 1

0.005 1

40000 60000 80000 100000

Step

0 20000

Fig. 5 AutoEncoder Losses for Latent Dim 4

—— Training
Validation

40000 60000 80000 100000

Step

0 20000

Fig. 6 AutoEncoder Losses for Latent Dim 12

The experiments were conducted over a series of
episodes, with variations in the size of the latent space and
the seed, each episode representing a complete game run
in the Lunar Lander environment. The cumulative reward
earned for each episode and the difference between the
target action-value and the expected action-value in DQN
were used to assess the model’s performance. The cumu-
lative reward is a numerical measure that reflects the suc-
cess of the agent in achieving the game’s objective, which
is to land the lunar module safely. The training losses of
agent are given in Figure [7]-[9] and the moving average re-
wards of episodes are given in Figures[10]-[12

For both algorithms, in the initial episodes, the model’s
performance, as indicated by the cumulative reward, was

ITU

relatively low. This initial low performance is expected, as
the model begins with no prior knowledge about the envi-
ronment and learns through trial and error. However, as the
number of episodes increased, we observed a significant
improvement in the model’s performance. The cumulative
reward per episode showed an increasing trend, indicating
that the model was learning from its experiences and im-
proving its strategy over time.

100 A

—— Baseline DQN
l AE Augmented DQN

80 1

|
o

\ " ‘
“ M‘M. AT

0 25000 50000 75000 100000 125000 150000 175000 200000
Step

60 -

Loss

Fig. 7 Training Losses of Baseline DQN and AE DQN with La-
tent Dim 2

I —— Baseline DQN

80 4 AE Augmented DQN

60{|

Loss

20 4

1 ' i A) A
Whul o MLl
- M&-;..M‘“‘MTN‘ e L

0 25000 50000 75000 100000 125000 150000 175000 200000
Step

Fig. 8 Training Losses of Baseline DQN and AE DQN with La-
tent Dim 4

Burak Er, Mustafa Dogan

45

ITU Computer Science, Al and Robotics

100 A —— Baseline DQN
AE Augmented DQN

80 1

60

Loss

40 4

!
20]
J N #q‘;"’:‘,‘u“

0 50000

100000 150000 200000

Step

Fig. 9 Training Losses of Baseline DQN and AE DQN with La-
tent Dim 12

As can be seen from the Figures|[7]-[9] the training losses
of the proposed algorithm have decreased more rapidly in
first 50000 step than those of the baseline algorithm for a
latent dimension of 12. However, for some latent dimen-
sions, they remain higher. Also it can be observed that their
performances are similar at the and of steps. So proposed
algorithm has advantage at the early steps. Optimizing the
number of latent dimensions or designing an early step cri-
teria could yield better performance for proposed algorithm.

200 A

A

—100 A

Average Reward

/ —— Baseline DQN
——— AE Augmented DQN

1750

1000 1250 1500

Episode

0 250 500 750

Fig. 10 Rewards of Baseline DQN and AE DQN with Latent Dim

ITU

—— Baseline DQN
AE Augmented DQN

200 A

100 A

Average Reward

—100 A

-200 T T T T
1000 1250 1500 1750

Episode

0 250 500 750

Fig. 11 Rewards of Baseline DQN and AE DQN with Latent Dim
4

200 A

100 A

Average Reward

—100 A

—— Baseline DQN
AE Augmented DQN

-200

1000 1250 1500 1750

Episode

0 250 500 750

Fig. 12 Rewards of Baseline DQN and AE DQN with Latent Dim
12

The results in Figures [10] - [T2] showed that, in terms of
landing accuracy, stability, and total score, the suggested
model outperformed the baseline DQN model in most appli-
cations. The suggested model's cumulative rewards reach
high levels faster with fewer samples (episodes), and gen-
erally have higher and more stable rewards than the base-
line model. This indicates that the inclusion of the au-
toencoder for state representation learning improved the
model’s performance. The autoencoder was able to effec-
tively extract important features from the encoding of states
to latent space, which seemed to facilitate the model’s
decision-making process. Performance varies with differ-

Burak Er, Mustafa Dogan

46

ITU Computer Science, Al and Robotics

ent latent space sizes, suggesting that this can be a critical
design parameter.

5 Conclusion

The pursuit of this research project began with the ob-
jective to investigate the capabilities of an autoencoder-
augmented DQN model in the context of enhancing sam-
ple efficiency. The literature typically focuses on using only
the latent space in algorithms, which has several limita-
tions such as information loss, dependence on the quality
of the autoencoder, and difficulty in handling dynamic envi-
ronments due to outdated representations. In this study, a
novel algorithm is proposed, where states augmented with
the latent space from their encoding are utilized in deep re-
inforcement learning (DRL) algorithms. This approach aims
to overcome these limitations and enhance sample effi-
ciency. A denoising-contractive autoencoder was designed
to encode states for this purpose. The results showed that
the proposed algorithm outperformed baseline algorithms
by achieving higher rewards with fewer episodes and ob-
taining more stable rewards. Since proposed algorithm has
advantage at the early steps and the number of latent di-
mensions have effect on performance, optimizing the num-
ber of latent dimensions and designing an early step criteria
can be future research opportunities.

References

[1] R.S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-
level control through deep reinforcement learning,’
nature, vol. 518, no. 7540, pp. 529-533, 2015.

[3] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mas-
tering the game of go without human knowledge,” na-
ture, vol. 550, no. 7676, pp. 354—359, 2017.

[4] G. Dulac-Arnold, D. Mankowitz, and T. Hester, Chal-
lenges of real-world reinforcement learning, 2019.
arXiv:[1904.12901 [cs.LG].

[5] R. S. Sutton, “Dyna, an integrated architecture for
learning, planning, and reacting,” ACM Sigart Bul-
letin, vol. 2, no. 4, pp. 160—163, 1991.

[6] K. Chua, R. Calandra, R. McAllister, and S. Levine,
“Deep reinforcement learning in a handful of trials us-
ing probabilistic dynamics models,” Advances in neu-
ral information processing systems, vol. 31, 2018.

[71 R. Agarwal, C. Liang, D. Schuurmans, and M.
Norouzi, “Learning to generalize from sparse and un-
derspecified rewards,” in International conference on
machine learning, PMLR, 2019, pp. 130-140.

(8]

(9]

[10]

(1]

[12]

(13]

(14]

[19]

[16]

(17]

(18]

(19]

(20]

(21]

ITU

T. Nguyen, T. M. Luu, T. Vu, and C. D. Yoo,
“Sample-efficient reinforcement learning representa-
tion learning with curiosity contrastive forward dy-
namics model,” in 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
IEEE, 2021, pp. 3471-3477.

N. Botteghi, M. Poel, and C. Brune, Unsupervised
representation learning in deep reinforcement learn-
ing: A review, 2022. arXiv: 2208.14226 [cs.LG].

L. Kocsis and C. Szepesvari, “Bandit based monte-
carlo planning,” in European conference on machine
learning, Springer, 2006, pp. 282—-293.

P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motiva-
tion? a typology of computational approaches,” Fron-
tiers in neurorobotics, vol. 1, p. 108, 2007.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov,
“Exploration by random network distillation,” arXiv
preprint arXiv:1810.12894, 2018.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, et
al., “Progressive neural networks,” arXiv preprint
arXiv:1606.04671, 2016.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic
meta-learning for fast adaptation of deep networks,”
in International conference on machine learning,
PMLR, 2017, pp. 1126—1135.

A. Nichol, J. Achiam, and J. Schulman, “On
first-order meta-learning algorithms,” arXiv preprint
arXiv:1803.02999, 2018.

T. Hester, M. Vecerik, O. Pietquin, et al., “Deep g-
learning from demonstrations,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32,
2018.

A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Con-
servative g-learning for offline reinforcement learn-
ing,” Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 1179-1191, 2020.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and
A. Srinivas, “Reinforcement learning with augmented
data,” Advances in neural information processing sys-
tems, vol. 33, pp. 19884—19 895, 2020.

M. Watter, J. Springenberg, J. Boedecker, and M.
Riedmiller, “Embed to control: A locally linear la-
tent dynamics model for control from raw images,’
Advances in neural information processing systems,
vol. 28, 2015.

D. Ha and J. Schmidhuber, “World models,” arXiv
preprint arXiv:1803.10122, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing atari
with deep reinforcement learning, 2013. arXiv: |1312.
5602 [cs.LG].

Burak Er, Mustafa Dogan

47

https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/2208.14226
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

ITU Computer Science, Al and Robotics

[22]

[23]

[24]

[25]

I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016, http : / / www .
deeplearningbook.org.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Ben-
gio, “Contractive auto-encoders: Explicit invariance
during feature extraction,” in Proceedings of the 28th
international conference on international conference
on machine learning, 2011, pp. 833-840.

O. Gym, Openai gym, https://www.gymlibrary .
dev.
F.-g. Chen, Y. Wu, G.-d. Zhao, J.-m. Zhang, M.

Zhu, and J. Bai, Contractive de-noising auto-encoder,
2014. arXiv:[1305.4076 [cs.LG].

ITU

Burak Er, Mustafa Dogan

48

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.gymlibrary.dev
https://www.gymlibrary.dev
https://arxiv.org/abs/1305.4076

	Introduction
	Background Information
	Methodology and Implementation
	Results and Discussion
	Conclusion

