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Abstract 

Nowadays, with the use of various energy technologies, interest in integrated energy systems is increasing, where the energy 
hub(EH) is the most attractive in them. EH optimization problems are the complex and high-dimensional due to the 
combining the different energy sources and the generation of different demands at the output. For this reason, the meta-
heuristic search algorithms needs to be used to solve the EH problems. In this study, a novel LSHADE with semi-parameter 
adaptation hybrid with CMA-ES including fitness-distance balance(FDB-LSHADESPACMA) was developed to solve EH 
optimization problems. Using the five input energy carriers and four output energy sources, different EH structures were 
created and three test systems were presented to the literature for the first time. Besides, two objective functions were used 
which are minimization of total cost and total loss. To validate the performance of FDB-LSHADESPACMA, it was applied on 
benchmark and EH optimization problems. In experimental study about EH optimization problems, six case studies were 
considered. Accordingly, the FDB-LSHADESPACMA was obtained 3292.2784mu, 1.6753pu, 5052.0203mu, 2.1126pu, 
5217.2151mu, and 2.7051pu for Case-1, Case-2, Case-3, Case-4, Case-5, and Case-6, respectively. The simulation results 
demonstrated that FDB-LSHADESPACMA achieved successful performance for solving both EH optimization and 
benchmark problems. 
Keywords: Energy hub, Optimization, Fitness-Distance Balance, LSHADESPACMA algorithm 

STOKASTİK RÜZGAR VE GÜNEŞ ENERJİSİNİN BİRLEŞTİRİLDİĞİ ENERJİ HUB 
OPTİMİZASYONU İÇİN GELİŞTİRİLMİŞ LSHADESPACMA ALGORİTMASI  

Özet 

Günümüzde çeşitli enerji teknolojilerinin kullanılmasıyla birlikte entegre enerji sistemlerine, özellikle enerji hub (EH) 
problemine olan ilgi artmaktadır. EH optimizasyon problemleri, farklı enerji kaynaklarının birleştirilmesi ve farklı 
taleplerin üretilmesi nedeniyle karmaşık ve yüksek boyutludur. Bu nedenle EH problemlerinin çözümü için meta-sezgisel 
arama algoritmalarının kullanılması gerekmektedir. Bu çalışmada, EH optimizasyon problemlerini çözmek için FDB-
LSHADESPACMA olarak isimlendirilen uygunluk-mesafe dengesi tabanlı yarı parametre uyarlamalı LSHADE ile hibrit CMA-
ES (LSHADE-SPACMA) algoritması önerilmiştir. Çalışmada, beş giriş enerji taşıyıcısı ve dört çıkış enerji kaynağı 
kullanılarak farklı EH yapıları oluşturulmuş ve üç test sistemi ilk kez literatüre sunulmuştur. Ayrıca, toplam maliyetin ve 
toplam kaybın minimizasyonu olmak üzere iki amaç fonksiyonu kullanılmıştır. Önerilen algoritmanın performansı, 
kıyaslama ve EH optimizasyon problemleri üzerinde test edilmiştir. EH optimizasyon problemlerine yönelik deneysel 
çalışmada altı durum çalışması dikkate alınmıştır. Buna göre, FDB-LSHADESPACMA Durum-1, Durum-2, Durum-3, Durum-
4, Durum-5 ve Durum-6 için sırasıyla 3292.2784mu, 1.6753pu, 5052.0203mu, 2.1126pu, 5217.2151mu ve 2.7051pu 
değerlerini elde etti. Simülasyon sonuçları, FDB-LSHADESPACMA algoritmasının hem EH optimizasyonu hem de kıyaslama 
problemlerinin çözümünde üstün performans elde ettiğini göstermiştir. 
Anahtar Kelimeler: Enerji hub, Optimizasyon, Uygunluk-Mesafe Dengesi, LSHADESPACMA algoritması 
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1. Introduction 

Energy has always been one of the people’s most 
important and basic requirements from past to the 
present. The need for energy has become increasingly 
significant as a result of increasing population, finite 
fossil fuel resources, ever-increasing energy 
consumption, human life’s increasing dependence on 
energy, and the emergence of various energy consumer 
technologies [1-3]. Fossil fuels are the primary source of 
energy for power plants. However, the depletion of fossil 
fuel sources and their environmental effects have 
prompted consideration of alternative energy sources [2, 
3]. Furthermore, traditional energy systems have been 
operated and planned independently. On the other hand, 
residential, commercial, and industrial customers need 
different types of energy. For these reasons, the 
utilization of integrated energy systems has grown 
unavoidable in recent years, as new technologies have 
emerged. Nonetheless, the interactions between various 
energy systems have greatly expanded [4, 5]. Different 
energy infrastructures, such as electricity, natural gas, 
and heat, can operate together in the multi-energy 
systems unlike the conventional system. As a result, the 
energy hub (EH) concept has been arisen to provide the 
optimal operation of multi-energy systems (MESs).  

EH can be defined as an interface between energy 
producers and consumers, where the multiple energy 
carriers (MECs) are used to meet various types of 
demands. Various different EH structures have been 
introduced in the literature. Generally, the inputs can be 
electricity, heat, and natural gas among them. The energy 
conversion between different energy forms can be done 
via transformers, combined heat and power (CHP) 
technologies, heater exchangers, and other devices. The 
outputs of the EH can be electricity, heat, and cooling [6, 
7]. 

In the literature, several studies have been carried out 
about energy hub optimization problems. In studies on 
this subject, generally, the total energy cost of the EH was 
to minimize. The authors in [6] proposed an EH model to 
solve the optimal power flow (OPF) problem. The goal of 
the problem was to minimize the total production costs. 
The same authors introduced an EH model with MECs, 
where an optimization approach for the optimal power 
dispatch problem was developed in [8]. In another study, 
the same authors introduced a steady-state power flow 
model involving the conversion and transmission of any 
number of energy carriers for the optimization of 
combined power [7]. In [9], the authors developed a 
method for decomposing the combined power flow 
studies using MECs into the traditional OPF problem. 

In addition to electricity, heat, and natural gas energy 
sources, renewable energy sources have been used in the 
EH. In [10], the optimal management strategy of 
electrical and thermal resources in a micro-grid with EH 
was presented. The objective of the proposed model was 
to minimize the expected operation costs while 

considering all network constraints and uncertainties. In 
[11], an EH model integrated wind and solar energy was 
proposed. The objective was to minimize the total 
operation cost of the system and a mixed-integer linear 
programing formulation for this problem was proposed. 
The authors in [12] proposed a smart EH system. The aim 
was to minimize the operation cost, the deviation of the 
electrical load profile from its desired value, and the 
emission pollution. 

In the literature, to solve the operation cost of the EH 
system, the researchers were used to meta-heuristic 
search (MHS) algorithms. The authors presented the 
modified TLBO algorithm to decrease the cost of the 
system. In [13], the authors presented an algorithm 
called TVAC-PSO and applied it on MECs economic 
dispatch problems. In [14], the same groups proposed a 
novel algorithm called SAL-TVAC-GSA to solve the EH 
optimization problems. Three objective functions, which 
were the minimization of total cost, the minimization of 
total loss, and the minimization of total cost and loss, 
simultaneously. The authors in [15] proposed Fitness-
Distance Balance (FDB) based LSHADE algorithm in 
order to solve the EH optimization problems. The results 
of the problems showed  that the proposed algorithm 
was a competitive performance compared to its 
competitors. 

In this study, an EH model integrated with wind and solar 
energy was proposed, where the inputs of the EH were 
wind energy, natural gas, electricity, solar energy, and 
heat, and the demands of it were electricity, cooling, heat, 
and compressed air. Based on this model, sixteen EH 
structures were presented and by using them, three 
different scale test systems were created. Besides, two 
objective functions were considered: minimization of the 
total EH cost and minimization of the total EH losses. 
Using these test systems and two objective functions, six 
case studies were carried out. The other most important 
point of the study was that FDB based LSHADESPACMA 
algorithm was proposed to solve the EH optimization 
problems. In order to compare the performance of the 
proposed algorithm in solving EH optimization 
problems, 14 MHS algorithms were considered. The 
performance of the algorithms was compared according 
to the best optimal solution values obtained from them 
and the statistical analysis methods. The contributions of 
the article to the literature can be summarized as below: 

 Novel EH test systems were introduced to the 
literature.  

 The FDB-LSHADESPACMA algorithm was 
presented to the literature as a strong MHS 
algorithm. 

 A comprehensive simulation studies were 
presented to the literature in both the solution 
of the benchmark and EH optimization 
problems. 
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 The statistical analysis were carried out to prove 
the performance of the proposed algorithm. 

The remainder of this paper is organized as follows: 
Section 2 defines proposed EH structures, the 
formulation of the objective functions and the 
constraints of the problem, and the stochastic modelling 
of wind and solar energy sources. Section 3 introduces 
the proposed FDB-LSHADESPACMA algorithm. In section 
4, all results of the simulation studies carried out on the 
solving both EH optimization and benchmark problems 
are presented and analyzed. Section 5 summarizes the 
conclusions. 

2. Formulation of the Energy Hub Optimization 
Problem 

2.1. Energy Hub structures 

In the literature, different definitions of EH have been 
presented by the researchers. EH receives various energy 
carriers and produces the desired demands at the output 
ports. Because the input and output ports on EH might 
vary, a multiple input and multiple output energy hub 
system is modeled as follows [6]: 

out in

out in

out in

C EE inout

E EC C C

C C CE E

C C CE E

    
    
        
    
       

   

   

   

 

(1) 

where outE  and inE  are the output and input energy 

vector, respectively, the subscripts  , , ,   represent 

the energy carriers, and C is the coupling matrix. 

The general structure of EH used in this study is given in 
Figure 1. In the structure, there are five input energy 
carriers, including wind energy (w), electricity (e), 
natural gas (g), solar energy (s), and heat (h), and four 
output energy carriers including electricity (e), 
compressed air (a), heat (h), and cooling (c). In addition, 

there are two dispatch factors: 1v  is used for output and 

2v is used for input. 

 
Figure 1. The model of the EH structure.  

The EH structures proposed in this study are presented 
in the Table 1. The mathematical expressions of the EH 
structures can be obtained using Equation (1) and the 
data in Table 1.  

Table 1. EH structures proposed in this study [37] 

Hub No Inputs Energy Conversion Elements Outputs 
e w s g h T CONV INV CHP CHCP GF C HE e h c a 

1 •     ▪            
2  •  •   ▪   ▪ ▪       

3   • •    ▪ ▪ ▪  ▪      

4 •  • •  •  ▪   ▪       
5 •   •  •   ▪  ▪ ▪      

6  •  •   ▪   ▪ ▪ ▪      

7 • •  •  ▪ ▪   ▪  ▪      

8  • • • •  ▪ ▪ ▪    ▪     
9   • • •   ▪  ▪ ▪ ▪ ▪     

10 •  • •  ▪  ▪  ▪ ▪ ▪      

11  • • • •  ▪ ▪ ▪ ▪ ▪  ▪     
12  • • • •  ▪ ▪  ▪ ▪ ▪ ▪     

13 • • • •  ▪ ▪ ▪ ▪  ▪       
14 • • • •  ▪ ▪ ▪  ▪  ▪      

15 • •  • • ▪ ▪  ▪  ▪ ▪ ▪     

16 • • • •  ▪ ▪ ▪  ▪ ▪ ▪      

 

2.2. Mathematical modeling of the energy hub 
optimization problems 

The EH systems involves five input energy sources (i.e., 
wind energy, natural gas, electricity, solar energy, and 
heat). The cost models of them are evaluated separately 
as below. 

2.2.1. Cost model of electrical energy carrier 

Conventionally, the cost model of thermal generating 
units is calculated as [14, 15]: 

  2

0 , , , , ,

1

N

e i e i e i e i e i e

i

C x y P z E


  
 

(2) 

where , , ,, ,i e i e i ex y z  denote the cost coefficients for thermal 

generating unit, N is the total number of generating units, 
and i ,eE  is the output power of ith generating unit. The 

total cost including valve-point loading effect (VPLE) is 

defined as [14, 15]: 
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(3) 

where i,e and i,e  are the cost coefficients of the VPLE for 

the ith electrical carrier. eC  represents the total cost of 

the electrical energy carrier and ,min
,
in
i eE  is the minimum 

value of energy production of ith source, respectively. eN  

is the number of electrical energy carriers. 

2.2.2. Cost model of heat and natural gas energy 
carriers 

The costs of heat and natural gas energy carriers can be 
modelled based on the cost model of classical thermal 
generation units given in Equation (2) [14, 15]. The cost 
models of heat and natural gas energy carriers are 
expressed by Equations (4) and (5), respectively. Here, 

hCF  and gCF  are the total energy cost of the heat and 

natural gas, respectively. in
j,hE  and in

k,gE  are the energy 

production of  jth heat carrier and the energy production 
of  kth natural gas carrier, respectively. hN  and gN  are 

the number of the heat and natural gas energy carriers. 

 
2
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(5) 

2.2.3. Cost model of wind energy 

Three components make up the overall cost of wind 
energy: the reserve cost for the overestimation, the 
penalty cost for the underestimation, and the direct cost 
related to the planned electricity. The total cost of the 
wind power plant is denoted as [16, 17]: 

   

 

, , , , ,

1 , , ,

Nwg
Pw j wav j ws j w j ws j

w

j Rw j ws j wav j

C P P C P
CF

C P P

   
 
 
 


 

(6) 

Where  , , ,Pw j wav j ws jC P P ,  , , ,Rw j ws j wav jC P P , and  

 , ,w j ws jC P  are the penalty cost, the reserve cost, and 

direct cost for the wind power plant, respectively, and 

wgN  is the number of wind generators. To obtain more 

information about the cost model of the wind power 
plant, you can review the ref. [16]. 

2.2.4. Cost model of solar energy 

Similar to wind energy explained above, the total cost of 
solar energy is comprised of three costs: direct, penalty, 
and reserve. The solar power plant’s overall cost is stated 
as [16, 17]: 

   

 
, , , , ,

1 , , ,

Nsg
Rs k ss k sav k s k ss k

s

j Ps k sav k ss k

C P P C P
CF

C P P

   
 
 
 


 

(7) 

where  , , ,Ps k sav k ss kC P P ,  , , ,Rs k ss k sav kC P P , and  , ,s k ss kC P

are the penalty cost, the reserve cost, and the direct cost 
for the solar power plant, respectively, and SGN  is the 

number of solar generators. To obtain more information 
about the cost model of the solar energy, you can review 
the ref. [16]. 

2.2.5. Objective functions 

In this study, three objective functions are evaluated. 

(i) Minimization of total EH cost: The cost function 
includes the cost of the input energy carriers. The sum of 
them gives the total cost of the system given in Equation 
(8).  

 1 , , , , ,

1

Nhub

e m g m h m w m s m

m

OF CF CF CF CF CF


    
 

(8) 

Here, hubN  represents the total number of EH structures 

and 1OF  stands for the objective function. 

(ii) Minimization of total EH loss: The objective function 
related to the minimization of EH loss is expressed as 
below: 

 
 
 

2

1

Nhub
in out
m,p m,n

p e,w,s,g ,h, m

n e,a,h,c

OF E E
 



  

 

(9) 

where 2OF  refers to objective function and out
m,nE  stands 

for the output energy of the systems. 

2.2.6. Constraints 

Equality constraint includes the balance between the 
produced energy and the demands of the system. This 
constraint can be expressed as: 

 
1

Nhub
out demand
m,n n

m

E E ,     n e,h,a,c   


 
 

(10) 

Inequality constraints include the operational limits and 
limits of the dispatch factor values of the EH structure. 

(i) Operational limits of EH unit: 

      and   = 1, ,  in,min in in,max
j,i j ,i j ,i iE E E , i e,w,s,g,h j n  

 (11) 

(ii) Limitation of dispatch factor of EH: 

1 20 1 0 1v  ,  v   
 (12) 

2.2.7. Stochastic modeling of wind and solar energy 

Generally, Weibull Probability Density Function (PDF) is 

used to determine the wind speed distribution [16, 17]. The 

Weibull PDF is given in Equation (13), where wk  and wc  

represent shape and scale parameters for the PDF,  
respectively, and v  is the probability of wind speed. The 

mean value of the Weibull PDF is defined as: 

 
1 kwkw v

cw w
v

w w

k v
f v e ,    0<v

c c

   
 

  
    
    

(13) 

The output power of the solar energy systems is 
associated with solar irradiance (G). Lognormal PDF 
correctly defines the distribution of solar irradiance [16, 
17]. The Lognormal PDF is given in Equation (14), where 
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  and   are standard deviation and mean values of the 

Lognormal PDF, respectively. 
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(14) 

In this study, the solar and wind energy PDF parameters 
were obtained from [16]. Besides, you can check the 
reference [16] to learn more about the stochastic 
modeling of the wind and solar energy sources. 

3. Proposed FDB-LSHADESPACMA Algorithm 

In this study, the LSHADESPACMA algorithm was 
enhanced by using the Fitness-Distance Balance (FDB) 
[18] method and the proposed algorithm was named as 
FDB-LSHADESPACMA. The LSHADESPACMA algorithm, 
which is a population-based MHS algorithm, is an 
advanced variant of the DE algorithm [19]. The DE 
algorithm simulates the evolution process of the 
population in nature by using mutation, crossover, and 
selection operators in the optimization process. 
Generally, it has good global exploration capability to 
find the global optimum solution; however, it is slow in 
the neighborhood search of the solution [20, 21]. 
Therefore, the researchers have suggested different 
strategies to enhance the DE algorithm. The crossover 
operator and the mutation strategy are greatly affected 
the performance of the DE. In the literature, the new 
mutation strategies have been developed and the 
different versions of DE algorithm have been proposed.  

In this study, the mutation strategy of the algorithm was 
redesigned using the FDB selection method. Accordingly, 
four different variations or cases of FDB based 
LSHADESPACMA have been created. The definitions and 
mathematical models of the FDB-LSHADESPACMA 
variations (Case-1, Case-2, Case-3, Case-4) created using 
the FDB selection method are given in Table 2. Table 2 
provides the information about the proposed FDB-
LSHADESPACMA variants. Accordingly, the mutation 
strategy “DE/current-to-pbest/1/bin” was used to create 
the mutant vector in Case-1. In Equation (15), the 

candidate selected by the FDB method G
FDBx  is used 

instead of the 1
G
rx  solution candidate. In Case-2, the 

mutation strategy used in the original LSHADESPACMA 
algorithm was changed and the “DE/current-to-
rand/1/bin” mutation strategy (Mohamed et al., 2019) 
was used. Here, as in Case-1, the solution candidate was 

selected by FDB method, G
FDBx , is used instead of the 1

G
rx  

solution candidate. Case-3 is similar to Case-1; however, 

instead of the 1
G
rx  solution candidate, the candidate was 

selected by the Roulette FDB method G
RFDBx  is used. In 

Case-4, it has the same structure as Case-2, and the 

candidate solution was selected by Roulette FDB G
RFDBx  is 

used instead of the 1
G
rx  candidate solution. The FDB-

based LSHADESPACMA variants were created to enhance 
the balanced search capability and the exploration ability 
of the LSHADESPACMA algorithm. 

Table 2. Mathematical model of the FDB-LSHADESPACMA algorithm [37] 
 Explanation Mathematical Model of FDB-LSHADESPACMA Variations 

Case-1 

Here, “DE/current-to-pbest/1/bin strategy” was used as the 
mutation strategy. The solution candidate was chosen by the 

FDB method  G
FDBx  was substituted for 

 1

G

rx . 

 

   2

G G G G G G G G
i i i pbest i i FDB rv x F . x x F . x x    

 
(15) 

 

Case-2 

Here, “DE/current-to-rand/1/bin” strategy was used as the 
mutation strategy. The solution candidate was chosen by the 

FDB method  G
FDBx  was substituted for 

 1

G

rx . 
   2 3

G G G G G G G G
i i i FDB i i r rv x F . x x F . x x    

 
(16) 

 

Case-3 

Here, “DE/current-to-pbest/1/bin strategy” was used as the 
mutation strategy. The solution candidate was chosen by the 

roulette wheel FDB method  G
RFDBx  was substituted for 

 1

G

rx . 
   2

G G G G G G G G
i i i pbest i i RFDB rv x F . x x F . x x    

 
(17) 

 

Case-4 

Here, “DE/current-to-rand/1/bin” strategy was used as the 
mutation strategy. The candidate chosen by the roulette wheel 

FDB method  G
RFDBx was substituted for 

 1

G

rx . 
   2 3

G G G G G G G G
i i i RFDB i i r rv x F . x x F . x x    

 
(18) 

 

 

4. Simulation Study and Results 

The accuracy and analysis data derived from simulation 
studies is a key concern, since MHS algorithms are non-
deterministic approaches. As a result, while testing and 
comparing the MHS algorithms, the equity and standard 
compliance are critical. As a result, the maximum number 
of fitness evaluations (maxFEs) was utilized as the 
termination condition for all algorithms, with the value 
set to 10000*Dimension. Furthermore, the CEC2017 and 
CEC2020 benchmark test suites were employed to 
validate the algorithms’ performance. There are 39 
problems in all over two benchmark suites. The 
experiments were conducted in 30-, 50-, and 100-

dimensional search spaces for each challenge. There 
were 51 independent trials for each difficulty.  

To affirm the performance of the FDB-LSHADESPACMA 
algorithm, it was compared with the 14-competing MHS 
algorithms, including marine predators algorithm (MPA) 
[22], equilibrium optimizer (EO) [23], barnacle mating 
optimizer (BMO) [24], artificial electric field algorithm 
(AEFA) [25], adaptive guided differential evolution 
algorithm (AGDE) [28], supply-demand-based 
optimization (SDO) [27], artificial ecosystem-based 
optimization (AEO) [26], coyote optimization algorithm 
(COA) [29], salp swarm algorithm (SSA) [30], LSHADE-
SPACMA, linear population size reduction success 
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history based adaptive DE (LSHADE) [32],  moth flame 
optimization (MFO) [31], gravitational search algorithm 
(GSA) [33], and genetic algorithm (GA) [34]. When 
specifying the parameters of the algorithms, the data in 
the articles was used as a reference. To establish a fair 
comparison, the parameters of the proposed FDB-
LSHADESPACMA algorithm were set to the same values 
as the base LSHADESPACMA algorithm. 

4.1. Determining the best FDB-LSHADESPACMA 
method on benchmark test suites 

In this section, the search performances of the 
LSHADESPACMA and its variations were presented. To 
evaluate and test the performance of four different 
variants and the LSHADESPACMA algorithm, six 
experiments were carried out. Three dimensions 
(30/50/100) and two benchmark suites (CEC2017 [35] 
and CEC2020 [36]) were used in these experiments. In 
the Friedman tests, the error values of the algorithms in 
each experiments were used. The Friedman test results 
of the LSHADESPACMA and its variations are listed in 
Table 3. The highest score for each experiment is 
highlighted in bold in Table 3. 

Table 3. Friedman test results of the LSHADESPACMA 
and its variations [37] 

 
Case-1 Case-2 Case-3 Case-4 

LSHADE 
SPACMA 

CEC2017(D =30) 2.6528 3.3465 2.3891 3.167 3.4446 
CEC2020(D =30) 2.8137 3.101 2.5549 3.0431 3.4873 
CEC2017(D =50) 2.4804 3.4385 2.2657 3.4493 3.3661 
CEC2020(D =50) 2.6833 3.3392 2.2314 3.1314 3.6147 
CEC2017(D =100) 2.6085 3.6464 2.0801 3.4459 3.2191 
CEC2020(D =100) 2.6882 3.5922 1.8324 3.3627 3.5245 
Mean Rank 2.6545 3.4106 2.2256 3.2666 3.4427 

Besides Friedman test, the Wilcoxon signed-rank test 
was applied. The Wilcoxon test was used to compare the 
base LSHADESPACMA algorithm with each variant. Table 
4 shows the analysis findings from 24 separate 
comparisons.  

Table 4. Wilcoxon test results between LSHADESPACMA 
and its variations [37] 

vs.  
LSHADE 
SPACMA 
+/=/- 

D = 30 D = 50 D = 100 

CEC 
2017 

CEC 
2020 

CEC 
2017 

CEC 
2020 

CEC 
2017 

CEC 
2020 

Case-1 22/7/0 5/5/0 21/8/0 7/3/0 22/7/0 9/1/0 
Case-2 10/17/2 4/6/0 11/10/8 5/4/1 8/9/12 3/5/2 
Case-3 23/6/0 8/2/0 26/3/0 8/2/0 25/4/0 10/0/0 
Case-4 12/16/1 4/6/0 10/10/9 5/4/1 9/7/13 5/2/3 

According to Table 4, for D=30, it was seen that all FDB-
LSHADESPACMA variations outperformed the base 
algorithm in both CEC2017 and CEC2020 benchmark test 
suites. Case-3 yielded the best results in these 
experiments compared to other variations, with scores 
for CEC2017 test problems (23/6/0) and CEC2020 test 
problems (8/2/0), surpassing the base algorithm in 31 of 
39 test problems in total and showed 8 similar results.  

According to the analysis results, Case-3 was the most 
effective LSHADESPACMA variation of them all. In the 
following sections, the Case-3 version is referred to as the 
FDB-LSHADESPACMA. 

4.2. Application of the proposed FDB-
LSHADESPACMA algorithm for solving the energy 
hub optimization problems 

In this section, the FDB-LSHADESPACMA and other 14 
MHS algorithms were applied to solve the EH 
optimization problems given in Section 2.2.5. Within the 
framework of EH optimization, three test systems were 
created using the EH structures proposed in Section 2. 
Accordingly, the proposed EH test systems are presented 
in Table 5. The minimum, mean, standard deviation, and 
maximum fitness values obtained as a result of 30 
independent runs from the algorithms are given in Table 
9. 

Table 5. The proposed EH test systems [37] 
Test Systems Energy Hubs D Demand Values (pu) 

e  h  c a  
Test System-1 1, 2, 10, 11, 16 20 3.5 3.5 0.5 0.9 
Test System-2 1, 5, 7, 9, 12, 13 24 5 4.5 0.6 1 
Test System-3 1, 3, 4, 6, 8, 14, 15 26 6 5 1 1.5 

4.2.1. Results of the Test System-1 

The information of the Test System-1 was given in Table 
5. Here, two case studies were considered. The optimal 
solutions of the Test System-1 for Case-1 and Case-2 
obtained by proposed algorithm are given in Table 6. 

Table 6. The optimal solutions for Case-1 and Case-2 
obtained by proposed algorithm [37] 

Hub No Input Energy Case-1 Case-2 
1 Electricity 0.7499 0.5085 

2 
Wind 0.3447 0.1549 
Gas 0.9403 0.1000 

10 
Electricity 0.1000 0.1963 

Solar 0.3656 0.1000 
Gas 1.8944 1.4612 

11 

Wind 0.2373 0.7482 
Solar 0.4998 0.4997 
Gas 1.8443 1.7946 

Heat 0.3142 0.2086 

16 

Electricity 1.1517 1.5000 
Wind 0.3409 0.6000 
Solar 0.1000 0.1000 
Gas 1.1747 1.7036 

Total Cost (mu) 3292.2784 3653.9692 
Total Loss (pu) 2.0577 1.6753 

Case-1: Minimization of total energy hub cost 

In this case, the minimization of total EH cost was the 
objective function given in the Equation (8). Accordingly, 
the obtained total cost by the FDB-LSHADESPACMA was 
3292.2784 mu; this was the minimum value compared to 
the other algorithms where the total EH cost values 
obtained by the MPA, BMO, AEFA, EO, AEO, SDO, AGDE, 
COA, SSA, LSHADESPACMA, MFO, LSHADE, GSA, and GA 
algorithms were 3460.9732 mu, 3321.6194 mu, 
3459.0479 mu, 3437.4563 mu, 3493.1946 mu, 
3449.0242 mu, 3330.6835 mu, 3340.7766 mu, 
3557.2218 mu, 3337.8356 mu, 3393.1189 mu, 
3336.5610 mu, 3524.4668 mu, and 3471.8640 mu. When 
comparing the mean total cost value of all algorithms 
presented in Table 9, the obtained result from the FDB-
LSHADESPACMA algorithm was the minimum value with 
3343.1827 mu.   
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Case-2: Minimization of energy hub loss 

The objective function in this case was to minimize the 
total EH loss given in the Equation (9). According to the 
results of all algorithms presented in Table 9, the lowest 
loss value was obtained from the FDB-LSHADESPACMA 
(1.6753 pu) algorithm than the MPA (1.9205 pu), EO 
(1.7547 pu), BMO (1.6895 pu), AEFA (1.7077 pu), AEO 
(1.8753 pu), SDO (1.8602 pu), AGDE (1.8236 pu), COA 
(1.7155 pu), SSA (1.8214 pu), LSHADESPACMA (1.6833 
pu), MFO (1.6864 pu), LSHADE (1.8756 pu), GSA (1.8648 
pu), and GA (1.8227 pu) algorithms. Meanwhile, from 
Table 9, the FDB-LSHADESPACMA algorithm yielded the 
best mean value (1.6753 pu) among all algorithms.  

4.2.2. Results of the Test System-2 

This test system includes the 6 EH structures and all 
information about the test system is given in in Table 5. 
Using this test system, two case studies were considered. 
The optimal solutions of the Case-3 and Case-4 obtained 
by proposed algorithm are listed in Table 7. 

Table 7. The optimal solutions for Case-3 and Case-4 
obtained by proposed algorithm [37] 

Hub No Input Energy Case-3 Case-4 
1 Electricity 0.1001 0.6265 
5 Electricity 1.8952 1.6557 

Gas 1.1475 1.3572 
7 Electricity 1.2492 1.5183 

Wind 0.1741 0.4835 
Gas 2.4432 2.6666 

9 Solar 0.1435 0.2699 
Gas 0.9985 0.6560 

Heat 0.5682 1.3430 
12 Wind 0.3742 0.3819 

Solar 0.4996 0.3192 
Gas 0.3640 0.1000 

Heat 0.6986 0.5581 
13 Electricity 0.8413 0.2000 

Wind 0.1796 0.3534 
Solar 0.1013 0.4012 
Gas 1.1775 0.4040 

Total Cost (mu) 5052.0203 5603.9056 
Total Loss (pu) 2.2539 2.1126 

 

Case-3: Minimization of total energy hub cost 

In this case, the objective was to minimize the total EH 
cost. From Table 9, the result of the LSHADE algorithm 
was 5016.7876 mu, yielding 35.2327 mu more than the 
best result by the proposed algorithm. However, the total 
cost with the proposed FDB-LSHADESPACMA algorithm 
was 5052.0203 mu which is the best result among the 
results of the MPA (5311.7039 mu), EO (5539.9438 mu), 
BMO (5298.9759 mu), AEFA (5183.8137 mu), AEO 
(5535.9251 mu), SDO (5535.9251 mu), AGDE 
(5246.6165 mu), COA (5193.8526 mu), SSA (5444.5390 
mu), LSHADESPACMA (5054.1576 mu), MFO (5407.3923 
mu), GSA (5500.1353 mu), and GA (5452.2800 mu) 
algorithms. Furthermore, according to Table 9, the FDB-
LSHADESPACMA algorithm achieved the lowest mean 
value with 5170.4820 mu among all algorithms.  

Case-4: Minimization of energy hub loss 

In this case, the objective was to minimize the total EH 
loss. From Table 9, the minimum objective value was 
obtained by COA with 2.1004 pu, which was the 

minimum total loss value compared to the FDB-
LSHADESPACMA (2.1126 pu), MPA (2.2216 pu), EO 
(2.1462 pu), BMO (2.1186 pu), AEFA (2.1666 pu), AEO 
(2.2105 pu), SDO (2.1557 pu), AGDE (2.2306 pu), SSA 
(2.2127 pu), LSHADESPACMA (2.1176 pu), MFO (2.1726 
pu), LSHADE (2.2755 pu), GSA (2.2203 pu), and GA 
(2.1509 pu) algorithms. The FDB-LSHADESPACMA 
algorithm was the second best algorithm after the 
LSHADE algorithm. In addition, when the results given in 
Table 9 were evaluated, the best mean total loss value 
was yielded by the proposed algorithm. 

4.2.3. Results of the Test System-3 

Test System-3 includes the 7 EH structures and the data 
of the test system are given in in Table 5. Two case 
studies were considered using this test system. The 
optimal solutions of the Case-5 and Case-6 obtained by 
proposed algorithm are given in Table 8. 

Table 8. The optimal solutions for Case-5 and Case-6 
obtained by proposed algorithm [37] 

Hub No Input Energy Case-5 Case-6 
1 Electricity 0.7494 0.7420 
3 Solar 0.4390 0.2183 

Gas 0.9806 1.7998 
4 Electricity 1.1266 1.1744 

Solar 0.3062 0.1164 
Gas 0.8634 0.8430 

6 Wind 0.5204 0.5210 
Gas 0.9044 1.1000 

8 Wind 0.4824 0.7497 
Solar 0.3246 0.4925 
Gas 1.7981 1.2875 

Heat 0.8992 0.6616 
14 Electricity 1.6699 2.0545 

Wind 0.4671 0.1008 
Solar 0.2801 0.4937 
Gas 0.1012 1.7349 

15 Electricity 0.7493 0.4577 
Wind 0.3186 0.6000 
Gas 0.2015 0.2708 

Heat 0.1019 0.6980 
Total Cost (mu) 5217.2151 6311.5784 

Total Loss (pu) 2.9401 2.7051 

Case-5: Minimization of total energy hub cost 

In this case, the aim was to minimize the total EH cost. 
From Table 9, the LSHADE algorithm achieved the lowest 
cost value with 5193.6270 mu. The results of the other 
algorithms were the FDB-LSHADESPACMA (5217.2151 
mu), MPA (5428.6760 mu), EO (5438.3641 mu), BMO 
(5492.5474 mu), AEFA (5624.2177 mu), AEO 
(5592.9273 mu), SDO (5517.0042 mu), AGDE 
(5300.4345 mu), COA (5318.3889 mu), SSA (5711.0993 
mu), LSHADESPACMA (5218.9763 mu), MFO (5512.5763 
mu), GSA (5771.0521 mu), and GA (5442.6938 mu) 
algorithms. Moreover, the LSHADE algorithm ranked 
first among its competitors in terms of both minimum 
and mean fitness function values. The proposed 
algorithm followed the LSHADE and ranked second for 
both minimum and mean fitness function values. 

Case-6: Minimization of energy hub loss 

The aim of this case was to minimize the total EH loss in 
this case. From Table 9, the minimum fitness values were 
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FDB-LSHADESPACMA (2.7051 pu), MPA (2.8031 pu), EO 
(2.7832 pu), BMO (2.7399 pu), AEFA (2.8098 pu), AEO 
(2.8086 pu), SDO (2.8106 pu), AGDE (2.7998 pu), COA 
(2.6882 pu), SSA (2.7988 pu), LSHADESPACMA (2.7170 
pu), MFO (2.7762 pu), LSHADE (2.8375 pu), GSA (2.8315 

pu), and GA (2.7896 pu) algorithms. These results show 
that the proposed algorithm was second after the COA 
algorithm which had the best minimum fitness value. 
However, it ranked first in terms of the mean fitness 
value with 2.7372 pu from Table 9. 

 

 

 

 

Table 9. The min, max, mean, and std values by all MHS algorithms for all cases of test systems [37] 
Test System  Case   FDB-LSHADESPACMA LSHADESPACMA COA LSHADE AGDE 

Test  
System-1 

 

Case-1 

Min 3292.2784 3337.8356 3340.7766 3336.561 3330.6835 
Max 3349.9877 3364.374 3626.2768 3351.1087 3552.9225 
Mean 3343.1827 3353.1385 3511.8566 3344.9743 3475.8827 
Std 10.452 6.2062 68.4478 4.7963 48.6772 

Case-2 

Min 1.6753 1.6833 1.7155 1.8756 1.8236 
Max 1.7353 1.8528 1.9456 2.0752 2.0363 
Mean 1.716 1.7802 1.82 2.0258 1.9623 
Std 0.0182 0.0457 0.0671 0.0564 0.0563 

Test  
System-2 

 

Case-3 

Min 5052.0203 5054.1576 5193.8526 5016.7876 5246.6165 
Max 5201.9358 5233.3845 5493.9772 5206.7568 5504.8776 
Mean 5170.482 5189.5146 5386.5036 5178.7296 5405.1501 
Std 39.3372 47.9793 92.51 36.4988 65.8468 

Case-4 

Min 2.1126 2.1176 2.1004 2.2755 2.2306 
Max 2.1706 2.2352 2.3012 2.381 2.338 
Mean 2.1461 2.1922 2.2158 2.3562 2.2942 
Std 0.0198 0.0325 0.051 0.0212 0.032 

Test  
System-3 

 

Case-5 

Min 5217.2151 5218.9763 5318.3889 5193.627 5300.4345 
Max 5258.1804 5317.4979 5538.3283 5263.4826 5546.7985 
Mean 5243.6879 5279.007 5469.9934 5239.3687 5474.6452 
Std 13.1156 26.9089 58.765 20.3962 52.9214 

Case-6 

Min 2.7051 2.717 2.6882 2.8375 2.7998 
Max 2.7524 2.7848 2.8525 2.8916 2.8871 
Mean 2.7372 2.7541 2.8109 2.8822 2.8603 
Std 0.0135 0.0199 0.0326 0.0113 0.0199 

4.2.4. Statistical analysis  

The performances of the proposed FDB-LSHADESPACMA 
and fourteen MHS algorithms were analyzed using 
Friedman test on nine case studies. The Friedman test 
was performed based on the mean of the fitness function 
values for 30 runs. Friedman ranks of all algorithms for 
nine different case studies are presented in Table 10. The 
mean rank of the algorithms was listed in the last column. 

When examined the results given in Table 10, FDB-
LSHADESPACMA ranked first among the all algorithms in 
5 of 6 cases studies. When the results given in Table 10 
were evaluated in terms of the mean rank value, FDB-
LSHADESPACMA ranked first and showed a superior 
performance compared to its competitors. When the 
base LSHADESPACMA algorithm ranked second, the COA 
algorithm ranked third in terms of mean rank value. 

Table 10. Friedman ranks of all meta-heuristic algorithm for test systems [37] 
Algorithm Test System-1 Test System-2 Test System-3 Mean Rank 

Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 
FDB-LSHADESPACMA 1.2667 1.0000 1.2333 1.0333 1.7667 1.0333 1.2222 
LSHADESPACMA 3.0667 2.1000 2.8333 2.1667 3.0000 2.0333 2.5333 
COA 5.0000 3.2000 4.4667 2.8000 4.4333 2.9667 3.8111 
AGDE 4.0333 7.1000 4.6333 8.1333 4.5667 8.9667 6.2389 
LSHADE 1.8000 13.300 1.9333 14.6333 1.2333 12.5333 7.5722 
BMO 11.8333 5.0000 9.7333 4.7333 9.3333 5.7667 7.7333 
MPA 6.7667 10.4667 6.0333 6.3667 6.2333 12.3667 8.0389 
GA 12.2333 7.0000 8.8667 10.3000 6.8333 6.5 8.6222 
SDO 6.7333 11.5333 7.1000 11.1667 8.1667 7.4667 8.6945 
EO 13.6000 5.2667 12.0000 5.4667 9.4667 9.9 9.2834 
MFO 9.9667 8.0667 13.2333 9.8333 10.9667 10.7333 10.4667 
AEO 12.9000 10.6000 10.9333 12.6000 12.6333 5.7667 10.9056 
SSA 12.6000 11.3000 10.0333 9.2667 14.8000 8.6 11.1000 
AEFA 8.8000 9.7667 14.1667 10.9667 12.4667 14.6333 11.8000 
GSA 9.4000 14.3000 12.8000 10.5333 14.1000 10.7333 11.9778 
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5. Conclusions 

In this paper, Fitness-Distance-Balance based 
LSHADESPACMA (FDB-LSHADESPACMA) algorithm was 
proposed to solve the EH optimization problems. The 
following conclusions was obtained as a result of this 
study: 

 The novel EH test systems were introduced to the 
literature: An energy hub model was proposed, where 
the input energy carriers were electricity, wind 
energy, natural gas, solar energy, and heat and the 
outputs can be electricity, cooling, heat, and 
compressed air. Based on them, 16 EH structures 
were created and three different scale of the EH test 
systems were introduced to the literature.  

 A strong MHS algorithm was proposed for the solution 
of the optimization problems: The guide used in the 
mutation strategy of the LSHADESPACMA was 
redesigned by using the FDB method. Four variations 
of the LSHADECPACMA were created and tested on 
the CEC2017 and CEC2020 benchmark problems in 
three dimensional (30/50/100) search space. The 
best variation was determined and used in the rest of 
the studies. 

 The proposed algorithm was applied to the solution of 
the EH optimization problems: In this study, two 
objective functions were considered: (i) minimization 
of total cost and (ii) minimization of total loss. Using 
the three test systems and two objective functions, six 
case studies were carried out. The results of the 
proposed algorithm were compared to the 14 
competing MHS algorithms. The Friedman test were 
applied to the results of the case studies for 
comparing the performance of the proposed 
algorithm. According to the Friedman results, the 
proposed algorithm ranked first with 1.2926 score 
value among them.  

To sum up, these results demonstrate that the proposed 
algorithm outperformed the its rivals in solving in 
solving EH optimization problems. 
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