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Abstract  Öz  

Industrial automatic fabric inspection system, a critical 

technology in the industry, enhances both total production 

quantity and quality compared to conventional inspection 

techniques. This study aims to create a reliable and effective 

real-time automated visual inspection system for fabrics, 

focusing on defect detection. The goals of the study can be 

stated as; installing a system with advanced technology for 

capturing and processing images swiftly, the development 

and deployment of a system capable of autonomously 

learning and scanning fabrics in use, and the creation of a 

smart framework for accurate fabric defect detection and 

classification. We focus on the development of unsupervised 

fabric defect detection using a convolutional autoencoder 

model, and defect classification using a convolutional neural 

network model, which takes input as the feature vector 

generated by the convolutional autoencoder. The 

experimental outcomes have displayed significant success 

rates in both detecting defects and classifying them, 

confirming the effectiveness of the framework in real-time 

visual inspection systems. 

 Endüstriyel otomatik kumaş inceleme sistemi, endüstride 

klasik inceleme tekniklerine göre hem toplam üretim 

miktarını hem de kaliteyi artıran kritik bir teknolojidir. Bu 

çalışma, kumaşlar için güvenilir ve etkili bir gerçek zamanlı 

otomatik görsel inceleme sistemi oluşturmayı 

amaçlamaktadır ve odak noktası olarak hata tespiti üzerinde 

yoğunlaşmaktadır. Çalışmanın hedefleri; hızlı bir şekilde 

görüntüleri yakalama ve işleme yeteneğine sahip gelişmiş 

teknolojiye sahip bir sistem kurmak, kullanımdaki kumaşları 

otomatik olarak öğrenme ve tarayabilme yeteneğine sahip bir 

sistem geliştirme ve, doğru kumaş hata tespiti ve 

sınıflandırması için akıllı bir yaklaşım oluşturmak şeklinde 

ifade edilebilir. Çalışmada, evrişimli otokodlayıcı modeli 

kullanarak denetimsiz bir kumaş hata tespiti ve evrişimli 

sinir ağı modeli kullanarak hata sınıflandırma geliştirme 

işlemleri üzerinde durulmaktadır. Sınıflandırmada kullanılan 

evrişimli sinir ağının girişine evrişimli otokodlayıcı 

tarafından üretilen özellik vektörü sunulmaktadır. Deney 

sonuçları analiz edildiğinde, hem hataları tespitte hem de 

bunları sınıflandırmada önemli başarı sergilenmiştir ve 

yaklaşımın gerçek zamanlı görsel inceleme sistemlerindeki 

etkinliğini gösterilmiştir. 

Keywords: Fabric defect detection, Fabric inspection 

system, Convolutional autoencoder. 

 

 Anahtar kelimeler: Kumaş hatası tespiti, Kumaş inceleme 

sistemi, Evrişimli otokodlayıcı. 

1 Introduction  

The process of fabric inspection involves checking and 

assessing textile lots to make sure they meet certain 

standards, specifications, or requirements, as well as 

measuring the fabrics to verify that they meet the necessary 

criteria. Color, appearance, fabric construction, printing 

defects, and cross-shading are usually checked during a 

fabric inspection. By controlling fabrics, it is possible to 

determine where any defects may be and also to get more 

yields from production, thus guaranteeing that the materials 

to be manufactured in the future are having the highest 

quality. In the traditional visual inspection system, a single 

individual is responsible for all the inspection tasks and 

report writing. This method has the potential to introduce 

human errors and slow down textile production. Commonly 

the defects are detected and classified with the help of 

artificial intelligence (AI) supported systems. The basic 

requirement of AI training is presenting the related datasets.  

The manufacturer piles up thousands of defect-free and 

defective image samples for a certain operation period from 

the initial setup. Afterward, trained models are obtained for 

testing or indeed for visual inspection and evaluation tasks. 

These systems permit manufacturers to store data regarding 

both fabric defects and repairs and generate relevant reports. 

The formation of fabric is accomplished by joining fabric 

fibers in different ways. At the end of the manufacturing 

process, fabric surfaces may display errors known as defects, 

and it is estimated that this decreases fabric sales prices by 

https://orcid.org/0000-0001-8737-298X
https://orcid.org/0000-0002-4347-3583
https://orcid.org/0000-0001-7553-6887


 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1100-1114 

M. Mercimek, M. A. N. Öz, Ö. T. Kaymakçı 

 

1101 

45% to 60% [1]. The goal of quality control is to detect and 

locate any imperfections in the fabric. Due to fatigue and 

carelessness, the control process done by people can cause 

human errors. Thus, automatic optical fabric inspection 

systems have been designed to produce better-quality fabrics 

in greater quantities. Automatic fabric defect inspection 

systems, with all the required components, can detect 

mistakes at a rate of 90%, whereas traditional methods only 

manage to do so at a rate of 60% [2]. 

Despite the potential of automated inspection systems to 

be free of human mistakes, the complexity of more than 60 

types of fabric defects and the speed of the inspection table 

still make these systems error-prone [3]. Various fabric 

defect inspection techniques with high detection rates have 

been studied, yet they are not suitable for real-time operation 

due to their high processing load or they can only detect 

fabric defects of a few fabric types. Despite the solutions that 

have been implemented in the market, there is still a demand 

to develop systems for various fabrics and defects. The 

manufacturer must invest in updating the inspection system 

for any fabric they plan to manufacture. This is commonly 

observed when the utilized approaches for the analysis 

involve efforts other than machine learning.  

This study is mainly focused on efforts towards 

producing a real-time smart inspection system that utilizes 

deep learning-based inspection to reduce the need for feature 

selection and also processes large amounts of data more 

effectively than traditional methods. This differs from the 

majority of studies found in the literature, which have been 

developed for ideal laboratory conditions with non-moving 

textile lots and minimal noise. A system is investigated that 

is capable of detecting over 90% of significant fabric defects 

on plain fabric samples. Efforts have been made to address 

identified deficiencies through the development of an 

autonomous system. Deep learning, which does not 

necessitate feature selection and has a lower processing load, 

is utilized. An offline system is developed to quickly adjust 

the parameters of the devised methods for the fabrics. An AI 

framework is studied based on the convolutional 

autoencoders (CAE), model both for defect detection and 

classification. This framework is designed to perform defect 

detection, thereby identifying defects that do not conform to 

the fabric weave pattern. The classification of identified 

fabric defects is established using a convolutional neural 

network (CNN) model, which accepts input as the feature 

vector generated by CAE. This classification process allows 

for the determination of fabric quality based on designated 

categories. To facilitate the mapping of detected and 

classified defects, a defect localization system is also 

implemented, and the data related to identified defects and 

their locations can be stored in the database. 

In Section 2, we will first discuss conventional 

approaches found in existing literature dealing with fabric 

defects, addressing the necessity of AI-based defect 

detection and classification. Following that, we will discuss 

AI-based methods, with the main focus on the convolutional 

autoencoder used in this study. In Section 3, the visual 

inspection system configuration is introduced with its 

hardware components, and the dataset acquired with the 

inspection system is explained. The experimental results and 

a comprehensive analysis of the outcomes of the AI 

framework for fabric defect detection and classification are 

presented in Section 4. Finally, in Section 5, the study 

concludes by highlighting the accomplishments and 

discussing the potential future work. 

2 Related Work 

The utilization of computer-based quality control 

systems is commonly needed when the manufacturing 

process cost is very high in the medium and long term. The 

most important component for such a system is to have an 

image acquisition setup suitable for detecting errors with the 

least amount of effort to be spent in image processing. To 

address these issues, automated fabric inspection systems 

have been developed. It has been stated that 70% of the 

defects on fabric surfaces can be detected in generic visual 

inspection tasks. A group of commercial products by Agteks 

as quality bar and finishing bar are declared to be used as 

online fabric defect control systems on woven, non-woven, 

and knitted fabrics [4]. The scanning speed has been stated 

as 50m/min. Defect location on the fabric, defect image, 

defective region properties, and assigned defect labels are 

recorded as the common output of such systems. In general, 

the detection of fabric defects has relied on manual 

inspection conducted by an expert. This process involves the 

expert visually identifying defects in fabric rolls as they pass 

through an illuminated inspection platform at a speed 

ranging from 8 to 10 meters per minute. In this regard, there 

is a trade-off between generating an accurate solution and the 

system cost & inspection time.   

We can outline the primary blocks of defect detection 

systems as; image transformation, defect detection, and 

classification. In this section, we discuss the conventional 

solutions for handling fabrics mentioned in the existing 

literature, to raise a particular focus on the importance of AI-

based defect detection and classification. There is a 

tremendous number of studies on AI-based fabric defect 

detection and classification, the Discussion of AI-involved 

literature will be covered next.  

2.1 Defect detection and classification  

Raw images obtained through cameras contain a lot of 

data such as patterns and colors, which is difficult to process 

and detect defects in. To ensure the system works properly 

and reduces the processing load, it is important to identify 

and examine the parts that break the monotony on the fabric. 

Li et al. categorized fabric defect detection algorithms into 

two main groups: traditional algorithms and learning-based 

algorithms [5]. A comprehensive literature review was 

conducted on both categories. Traditional algorithms, as 

outlined by the authors, rely on feature extraction methods, 

encompassing statistical, structural, spectral, and model-

based approaches. On the other hand, learning-based 

algorithms were further subdivided into classical machine 

learning algorithms and deep learning algorithms. Talu et al. 

stated that three main groups of methods were proposed in 

the literature for defect detection; statistical, spectral, and 

learning-based methods [6]. 
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Statistical methods aim to reveal fabric defects by taking 

advantage of the fact that the defective parts on the fabric 

have different statistical properties than the defect-free parts. 

The biggest advantage of this approach, which is widely used 

in real-time systems, is its low processing load. Yet, it is very 

sensitive to noise and it fails to identify different types of 

defects. Autocorrelation measure and its variations can be 

used to identify defects in an image by utilizing a metric that 

takes into account the similarity between pixels [7]. An 

alternate approach, the co-occurrence matrix, is utilized to 

measure the repetition of the gray-level pixel distribution 

values. This method is commonly used for defect detection 

and can compute low-level statistical parameters quickly and 

with minimal processing effort. It is possible to determine 

the location of the defective parts by calculating the first-

order statistical parameters of the gray level. Examining the 

pixels in groups is more effective than examining them 

individually when carrying out this calculation. One of the 

techniques that can be used in this context is the fractal 

dimension method, which measures the geometric structure 

of the objects [8]. This method, which takes advantage of its 

geometric structure to separate different objects in the image, 

has also been used to reveal defects. Although it is a method 

with a very low processing load, it is still insufficient to 

determine the location of the defects.  

Spectral methods are utilized since standard statistical 

techniques are not enough to uncover errors concealed by 

intensity changes in the spatial domain. Forming fabrics 

through the repetition of simple patterns is a crucial 

requirement for discovering defects with spectral methods, 

as they are composed of periodic structures. In contrast, 

random-textured images are made up of unpredictable gray-

level distributions, with no repetition or periodicity. As a 

result, spectral approaches are not effective in detecting 

imperfections in materials with a random texture [9]. Fourier 

transform is a method used to decompose signals to express 

them as a sum of many signals of different frequencies It 

allows extraction of the meaningful information necessary to 

detect defects by revealing gray-level distributions repeating 

over the image. The biggest drawback of this popularly used 

method is that it cannot provide information about where in 

the image are the distributions of frequencies while 

providing correct results about the frequency distribution. To 

overcome this limitation, Wavelet transform can be used 

[10]. This transform can calculate the frequency spectrum 

wherein the image is the spectrum component for a temporal 

interval. However, it is difficult to express patterns in the 

image using this method. Gabor filters with angular, axial 

frequency bandwidths and center frequency are more 

suitable for examining flaws in the image than Fourier and 

Wavelet transform [11]. The researchers in [6], utilized six 

different groups of features. Histogram of Oriented Gradient 

(HoG), Co-occurrence HOG (CoHoG), and Statistical 

features (energy, contrast, correlation, homogeneity) were 

the spatial features. The other three included Fast Fourier 

Transform (FFT), Wavelet, and Shearlet. In addition to these 

feature extraction methods, they employed several models; 

Inception V3, MobileNet V2, a Self-Supervised neural 

network, and a CNN model trained using the proposed 

Fourier transform–based defective patch capture algorithm. 

Learning-based algorithms have been utilized in many 

studies for fabric defect detection and classification. A 

powerful structure to accommodate machine learning 

strategies, artificial neural networks can create complex 

decision boundaries and they have been widely used due to 

their low processing load and ease of training [12]. With the 

development of advanced data processing capabilities such 

as cloud computing, more complex neural networks can be 

created and trained.  CNN as the introductory model 

incorporating these learning strategies can autonomously 

acquire hierarchical feature representations. In this process, 

lower layers specialize in getting fundamental features, 

while higher layers focus on understanding complicated 

ones. Additionally, CNNs are built to identify patterns within 

spatial relationships, interpreting them highly efficiently for 

tasks such as image recognition, where an understanding of 

the spatial arrangement of pixels is important. Also, pre-

trained CNN models on large datasets (like ImageNet) can 

be fine-tuned for specific tasks, conveying the knowledge 

gained during the initial training. The study in [13] made use 

of pre-trained versions of extensively used VGG16, 

Densenet, Mobilenet, Inception V3, Resnet50, and Xception 

models. 

U-Net (U-shaped Encoder-Decoder Network), a type of 

CNN different from traditional convolutional deep learning 

models, performs well with small datasets [14]. Since data 

sets available for fabric defects are mostly small, U-Net has 

been commonly utilized for defect detection. The researchers 

in [15] introduced an innovative model for identifying and 

categorizing fabric defects. They trained and assessed the 

model using the AITEX dataset [16]. In this approach, fabric 

images went through initial processing with U-Net to 

ascertain the presence of defects. Subsequently, VGG16 

(Visual Geometry Group-16) and random forest algorithms 

were employed for the classification of specific defects 

within the fabrics. In the paper by Jing et al. [17], researchers 

employed an enriched architecture of AlexNet for fabric 

defect classification. They optimized network layers and 

convolution filters specifically to identify yarn dye defects. 

In the paper by Guo et al. [18] the atrous spatial pyramid 

pooling (ASPP) module was used in the YOLOv5 network. 

They mentioned that this integration facilitated the extraction 

of multiscale feature information from feature maps 

encompassing diverse receptive fields. This allowed for the 

detection of defects of varying sizes without modifying the 

resolution of the input image. Wang et al. constructed a dual 

convolutional network (ConvNet) architecture for fabric 

defect detection [19]. In this setup, the initial ConvNet was 

dedicated to fabric category classification, while the second 

ConvNet, specific to each category, was employed for 

detecting defective regions. In the study by Zhou et al. the 

study was on the modification of the Faster region-based 

convolutional neural network (Faster R-CNN) model, 

creating a deep learning model named FabricNet. 

Reportedly, the classification success for fabric defects was 

increased through the use of the deformable convolution 

block structure [20]. In [21] researchers incorporated a visual 
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long-short-term memory (VLSTM) module within a CNN 

framework; they aimed at mimicking human visual 

perception.  

Autoencoders are a type of artificial neural network used 

in unsupervised learning [22]. Since our ablation study 

involves the real-time smart inspection system aided by 

convolutional autoencoders, the discussion of AI-involved 

literature will continue with autoencoders and will be 

covered next. 

2.2 Autoencoders 

Although autoencoders have been known for a long time, 

their practical applications emerged in the 1980s. What sets 

autoencoders apart from other types of neural networks is 

their ability to compress data primarily in hidden layers and 

then attempt to reconstruct the input data using the 

compressed data [23]. The fundamental goal of this process 

is to demonstrate that the features present within the data can 

be extracted, allowing for the reconstruction of the data. The 

phase where features are extracted takes place in the hidden 

layers, which contain the lowest-dimensional data. 

This feature is used in studies that aim to have 

autoencoders discover feature vectors within the data. It is an 

undeniable fact that finding the features of data is crucial 

when training neural networks. Using the concept, data to be 

used for training a network can be generated by another 

network. When autoencoders reconstruct data, it is expected 

that they cannot reproduce noisy signals or any pattern-less 

components present in the input data [24]. Due to this 

characteristic, they can also be considered for separating data 

from noise or defects, serving as a key point for our study. 

Namely, the defects can be highlighted and located within 

the fabric images. Bergmann et al. improved the 

autoencoder's performance in defect detection by applying a 

perceptual loss function [25]. They observed that current 

techniques resulted in significant residual errors in edge 

areas with minor localization inaccuracies. To address this 

issue, they introduced a novel approach employing a 

perceptual loss function grounded in structural similarity for 

defect detection. This loss function gauges luminance, 

contrast, and structural disparities among image patches. 

Autoencoders have two different structures within their 

artificial neural networks, known as the encoder and the 

decoder. To explain their roles, the neural network in the 

encoder part is responsible for reducing the dimension of the 

input data in a way that allows the extraction of features 

sufficient for the decoder to reconstruct it. On the other hand, 

the neural network in the decoder part is responsible for 

enlarging the dimensions of the features extracted by the 

encoder to reconstruct the input data. The features lying 

between these two structures find applications in various 

fields. We can express autoencoders mathematically as; 

 

φ ∶  𝑋 →  𝐹 
𝛾 ∶  𝐹 →  𝑋′ 

(1) 

φ, γ =  arg min
φ,γ

M(𝑋 −  𝑋′) (2) 

where φ represents an encoder neural network, 𝛾 

represents a decoder neural network, 𝑋 represents the data 

given as input to the autoencoder and intended to be 

reconstructed, 𝐹 represents the feature data generated by the 

encoder, and M represents a cost function, 𝑋′ is the output of 

the autoencoder. The general autoencoder structure is 

depicted in Figure 1. 

 

 

Figure 1. The autoencoder structure [26]. 

 

CNN can be used in the encoding and decoding parts of 

an autoencoder, making it a convolutional autoencoder 

(CAE). There are various types of autoencoders. From one 

point of view, they can be categorized into two main 

headings: regularized autoencoders and variational 

autoencoders. In another aspect with the development of the 

autoencoders, one can group methods as single-layer 

autoencoders and stacked autoencoders.  

Essentially autoencoders aim to obtain the input data as 

the output, they always strive to create a copy mechanism 

that moves data from input to output. Studies aimed at 

preventing autoencoders from simply copying data are 

referred to as regularized autoencoders. Examples of these 

regularized autoencoders include denoising autoencoders 

(DAEs) and no-peaking autoencoders. Different approaches 

have been tried in these models to prevent copying, resulting 

in successful outcomes. Mei et al. employed the multi-scale 

convolutional denoising autoencoder (MSCDAE) design, 

harnessing different image scales produced by the Gaussian 

pyramid and incorporating a salt-and-pepper noise model 

into the input image for the training of denoising 

autoencoders of varying dimensions [27]. As a final example 

of regularized autoencoders, split-brain autoencoders can be 

mentioned. The second type is variational autoencoder 

(VAE), for which generative adversarial networks (GANs) 

can be given as an example. In GAN, there are at least two 

competing neural networks [28]. Following its introduction 

by Goodfellow, the GAN framework has garnered 

significant interest among researchers [29]. In the paper [30] 

the researchers proposed a fabric defect detection method 

using a hybrid of CNN and VAE. The convolutional layers 

were employed to extract pattern features from fabric 

images, while the variational autoencoder was utilized to 

model latent characteristics and infer a reconstruction. 

While a single-layer autoencoder proves effective for 

basic tasks, the extraction of complex features from many 

real-world datasets remains challenging. Addressing this 

limitation, a stacked autoencoder (SAE) moderates the issue 

by employing cascaded multiple layers of autoencoders. 

These layers progressively learn complex features, 

establishing a hierarchical representation of the data. The 

integration of SAE with CNN resulted in the convolutional 
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autoencoder stack, subsequently evolving into stacked 

convolutional autoencoders (SCAEs). SCAEs represent 

multi-layer neural networks specifically designed to capture 

complex representations. It is stated in [31], that SCAEs can 

retain more spatial locality information and extract more 

representative image features while minimizing redundancy, 

in contrast to conventional CNNs and AEs. Therefore, SCAE 

is rather suitable for extracting related visual perception 

information. Han and Yu proposed a defect detection system 

using synthetic defect data based on a stacked convolutional 

autoencoder (SCAE) structure. Their straightforward 

adjustment involved utilizing autoencoders in the shape of 

CAE, where conventional feedforward autoencoders employ 

dense layers, whereas convolutional autoencoders 

incorporate convolutional and transposed convolutional 

layers [32]. Some of the recent deep learning-based studies 

for fabric defect detection and classification are listed in 

Table 1. 

 

Table 1. Deep learning-based studies for fabric defect detection and classification. 

Author 
Proposed or Tested 

Model 

AE-

based 
[Y/N] 

Dataset Evaluation Drawbacks 

Li et al. (2023) 
[5] 

N/A N/A N/A Literature Review 
Lacks specific model 
experimentation. 

Talu et al. (2022) 
[6] 

Fourier transform-

based DPC algorithm 

and CNN 

N 

Images from their 

defect detection 

system 

Classification 

Accuracy, Run time for 

one image 

Utilizes traditional feature 

extraction but lacks unsupervised 

learning approaches. 

Dewan et al. 

(2023) [13] 

VGG16, Densenet, 

Mobilenet, Inception 

V3, Resnet50, 
Xception 

N Wang dataset Classification Accuracy 

Limited dataset size affects model 
performance, no custom model 

training is implemented. 

Mohammed and 

Clarke (2022) 
[15] 

U-Net, VGG16, 

Random Forest 
N AITEX dataset 

Pixel and Classification 

Accuracy 

Lower accuracy for certain defect 

classifications. 

Jing et al. 

(2017)[17] 

Modified CNN 

(based on a variant of 
AlexNet) 

N N/A Classification Accuracy 
Lacks an unsupervised learning 

approach. 

Guo et al. 

(2023)[18] 
AC-YOLOv5 N 

Self-built fabric defect 

dataset 
Classification Accuracy 

Limited information on specific 

aspects like scalability and 
computational load. 

Wang et al.  

(2017)[19] 
Deep CNN N 

Competition dataset 

from the DAGM 2007 
symposium 

Classification 

Accuracy, Run time for 
one image 

May require a larger and more 

diverse dataset due to complexity. 

Zhou et al. 
(2019)[20] 

VLSTM-CNN Y 

Fabric defect dataset 

of aliyun Tianchi 

competition 

Classification 

Accuracy, Precision, 
Recall, F1-measure, G-

mean, AUC 

Relatively intricate architecture 
with specialized modules. 

Zhao et al. 

(2020)[21] 
FabricNet N 

Competition dataset 
from the DAGM 2007 

symposium 

Distance IoU (DIoU) 
Dependency on Region Proposal 

Network (RPN). 

Tian and Li. 

(2019)[24] 

Autoencoder-based 

Method 
Y TILDA dataset 

Classification 
Accuracy, Precision, 

Recall, 

Iterative update approach for defect 

detection. 

Bergmann et al. 

(2018)[25] 

Perceptual Loss-

based Model 
Y 

Self-built Woven 

fabric datasets 
AUC 

Lacks a comprehensive exploration 

of nuanced structural differences 

between input and reconstruction 

Mei et al. 

(2018)[28] 

Convolutional 
Denoising 

Autoencoder 

Y 
KTH-TIPS, Kylberg 
Texture, and Self-built 

dataset 

Pixel classification 
Accuracy, Precision, 

Recall, 

Computational complexity and 
potential sensitivity to parameter 

tuning. 

Rippel et al. 

(2020) [29] 

Image-to-Image 

Translation 
N 

Self-built fabric defect 

dataset 
AUROC 

Computational complexity 

involved in training the models 

Fan et al. 

(2021)[30] 
CNN-VAE Hybrid Y 

Patterned fabric 
datasets dataset from 

the Uni. of Hong 

Kong 

Image Level detection 

rate, false alarm rate, 
and accuracy 

Computational complexity. 

Han and Yu 
(2020)[32] 

Stacked 

Convolutional 
Autoencoders 

Y 
Self-built fabric defect 
dataset 

Pixel level Precision, 
F1-score, Recall 

Potential challenges in scalability 

and robustness to diverse defect 
types. 
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Throughout the training process, AEs, CAEs, and many 

other models for defect detection employ identical 

parameters such as the loss function, optimizer, batch size, 

and number of epochs. Autoencoders, generally structured 

with an Encoder-Bottleneck-Decoder architecture, serve the 

purpose of reconstructing the base data. Consequently, if a 

particular sample exhibits a significantly larger error in its 

output reconstruction, it may be indicative of an outlier or 

defect. The reconstruction error serves as a valuable metric 

for identifying unusual data points within a dataset. This 

proves particularly advantageous in unsupervised learning 

scenarios. In this paper, the ablation study has been 

conducted on CAE models which have been extensively 

worked on, well-received, and widely accepted in defect 

detection.  

3 Visual inspection system configuration and the 

dataset 

3.1 Visual inspection system  

The performance of the imaging system is dependent on 

a combination of different elements, including the lighting, 

fiber material type of the fabric to be inspected for errors, the 

versatility of the imaging setup, and the specifications of the 

cameras and lenses. The layout of the developed system for 

visual inspection is depicted in Figure 2. 

 

 

Figure 2. The layout of the developed visual inspection 

system. 

 

In the developed system we used area scan cameras as 

the main image acquisition devices, in two distinct phases; 

the offline training phase and the online testing phase. Area 

scan cameras have been selected in visual inspection systems 

commonly, considering the advantages such as ease of use 

and affordability. On the other hand, several important 

limitations of area scan cameras impede the efficiency of 

visual inspection. For example, if the object under inspection 

is large, and constantly moving, or the system requires high-

resolution and blur-free images, then area scan cameras are 

inadequate. For such problems, the use of an advanced group 

of cameras, namely, line scan cameras can be chosen. In 

cases of insufficient or blurred imaging of an object, the use 

of a line scan camera yields better results than area scan 

cameras. In this study we focus on image acquisition with 

low/mid speeds of the conveyor belt and area scan cameras 

are utilized with ease.  

To prevent under-sampling or over-sampling of the 

fabrics during image acquisition, a programmable encoder 

connected to the system is employed to synchronize the 

camera with the motion system and lighting. The most 

important factor affecting the performance of the image 

acquisition process for defect detection is the lighting of the 

environment [33]. The image acquisition process indeed is 

dependent on the lighting component that is dominant 

enough to eliminate any unwanted light reflected from the 

objects or environment, while also properly distributing the 

target areas in the image acquisition field. 

The imaging process has to be done in real-time or near 

real-time, in industrial computer-aided visual inspection 

systems. Hence, a certain size of fabric regions within certain 

time intervals must be processed and classified. In this 

context, a basic requirement arises for ensuring the quick 

passing of the fabrics through the system for defect detection 

in one cycle. To meet such a requirement, it is necessary to 

synchronize the encoder, AC servo motor, lighting, and 

computer vision codes. The mechanical setup consists of 

solid parts mounted on the belt which can be moved to adjust 

the height of the camera and the lighting device. An 

OMRON MX2 Inverter is used for speed control of the AC 

servo motor. This inverter is chosen for its compliance with 

industrial standards and its ability to meet the required speed 

conditions. To obtain visual data for use in fault detection 

algorithms, a conveyor belt system integrated with a camera 

module is developed. When capturing the images, the 

lighting device provides a uniform ambient light. The 

necessary lighting equipment has been procured, and its 

installation has been ensured in a way that does not obstruct 

the flow of fabric on the conveyor belt. Cognex CAM-CIC-

1300-60-G area scan camera (1.3MP, 60fps 1/1.8" 

CMOS sensor, C-mount, GigE) is used for offline training at 

the low speed of the conveyor belts. The camera is equipped 

with a Fujinon DF6HA-1B Lens featuring an aperture of 

f/1.2. A lens with such an aperture allows more light in, 

allowing for a faster shutter speed. To be able to describe the 

defects properly, a minimum defect size of 5 pixels is 

required. The cameras are equipped with proper lenses so 

that the field of view enables us to express one mm length of 

fabric section corresponding to a minimum of five pixels in 

the images. The square-shaped lighting device and the 

camera at the center are mounted onto the aluminum 

extrusion frames installed on the belt system. The triggers 

from the encoder on the belt are transmitted to the camera 

via the I/O cable thus the camera can be synchronized. The 

images of the system are given in Figure 3. The PC can 

communicate with the PLC through its Ethernet port and the 

speed of the band can be adjusted. Images of the fabric 

surface are acquired through trigger signals from the 

encoder. Power Over Ethernet (POE) adapters have two 

Ethernet connections and one power connection. The 

electrical energy from the power connection is transferred to 

the output Ethernet connection, allowing power to be 
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supplied to the camera through the Ethernet cable. The input 

Ethernet port connects to the computer, creating a local 

network connection between the computer and the camera in 

this way. The acquired images are transferred to the PC via 

Ethernet and presented to the defect detection algorithm to 

run various stages of autonomous visual inspection tasks. A 

desktop application capable of communicating with the 

camera module is created also to store the acquired images 

in a database. 

 

 

 

 

Figure 3. The complete system for visual inspection. 

 

To ensure the recording of images during active 

processing and their storage in the necessary databases, 

ready-made interfaces do not meet the required needs. 

Therefore, a custom interface has been developed for the 

project using the SDK and developer libraries provided by 

Pylon Viewer. The developed interface shown in Figure 4 

has been prepared using the C# language, and 

communication with the camera has been established using 

the Pylon viewer libraries. The original images have 

dimensions of 1280×1024, which are later cropped to 

1280×704. 

 

 

Figure 4. The interfaces for image capturing and 

reshaping. 

3.2 The dataset 

We applied the proposed system to examine tulle fabric 

samples containing various defects. The system captures 

images at a variable speed of 25.23×10-3 seconds per image, 

which equals 40 images per second. Each pixel represents a 

length of 3.94×10-3 inches, resulting in an approximate 

spatial resolution of 253 pixels per inch or 100 pixels per 

centimeter. We configured the raw image height to be 1024 

pixels, meaning each image represents a 10.24 cm-length 

section of fabric. The fabric roll under study is 20.8 meters 

in length, thus, we obtained 203 non-overlapping images to 

cover the entire roll. The duration for shifting 1024 pixels 

during image acquisition is 4.35 seconds. The entire roll can 

be checked in 883.6 seconds (which is slow) and normally 

35343 images are created. However, many of them contain 

excessively repeated instances of the same defects. 

Consequently, a set of 203 non-overlapping images is 

decided to be sufficient. Additionally, there are still defect-

free images in this group. For defect detection and 

classification purposes in this study, we focused on the 58 

non-overlapping images that specifically exhibit defects. 

Many of the fabric sample defects were intentionally 

produced using tools like knives, needles, etc., while others 

occurred during the fabric manufacturing process. The 

strategy for dividing large 1280×704 images into smaller 

64×64 patches is depicted in Figure 5. There are 220 patches 

per image, totaling 12760 patches in 58 images. In the 

provided image in Figure 4, 17 patches exhibit defects, while 

203 patches are defect-free. The patches colored in red 

indicate the presence of defects. 
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Figure 5. The strategy for dividing large 1280×704 images into smaller 64×64 patches. The numbers are overlaid on patch 

images and a pixel-wide boundary is added for this illustration. (The images are down-scaled to 35%) 

 

Notably, the defect-free regions are significantly larger 

than the regions with defects. Out of the 12760 patches, 556 

patches contain defects. 660 defect-free patches are 

randomly picked up and used during the training phase of the 

CAE model to balance the number of patches with and 

without defects. A defect type {hole, cut, thread wear, stain, 

missing thread, knots, starting mark} is assigned by an expert 

from the textile industry to each patch image containing a 

defect. The defect types adopted and used in this study are 

presented and exemplified in Figure 6. The patches may have 

different types of defects at the same time. As much as we 

could, labels have been assigned for the defects in all patch 

samples. One cannot claim that the labeling process is a 

definitive success because, in certain samples, multiple 

defect types may be present. The number of assigned labels 

for the defects is listed in Table 2. If such a dataset is utilized 

for training because three classes have a notably higher 

number of samples, the defect will probably be assigned to 

one of these classes during the defect detection. 

 

Table 2. The number of patches having certain types of 

defects 

Defect Types Number of patches 

Hole 

 

Cut 
 

Thread wear 

 
Stain 

 

Missing thread 
 

Knots 

 
Starting mark 

38 

 

144 
 

178 

 
4 

 

20 
 

23 

 
149 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 6. The defect type samples visible on the fabric 

used in this study: a) hole, b) cut, c) thread wear, d) stain, 

e) missing thread, f) knots, and g) starting mark.  

4 Experimental study 

It is essential to detect and categorize defects within the 

images. This involves a series of sequential tasks, beginning 

with preprocessing the fabric images, followed by 
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unsupervised fabric defect detection using CAE, and 

concluding with defect classification using a CNN model, 

which receives input from the feature vector generated by 

CAE. 

The CAE model that we adopted to use both in defect 

detection and defect classification is given in Figure 7 and 

Figure 8. The structural form of the model is given as well. 

As can be seen from the depiction when autoencoders 

perform data reconstruction, it is anticipated that they will be 

unable to replicate noisy signals or any random elements 

found in the input data. This makes them suitable for 

distinguishing between data and noise or flaws. Specifically, 

this enables the identification and localization of defects 

within the fabric images. In this study, L2 Loss Function is 

used for the training of the model to minimize the error 

which is the sum of all the squared differences between the 

original patches and the reconstructed patches. The training 

phase employs a standard patch-splitting strategy to reduce 

the number of manually labeled patches. Conversely, during 

the testing phase, a different but widely used approach is 

adopted. This involves sliding a window of the same size as 

the training patch images across the larger image and passing 

each section through the convolutional autoencoder. This 

enables the comprehensive testing of the larger image for 

defect detection, piece by piece. An alternative advanced 

approach is the utilization of multi-scale convolutional 

autoencoders, which can handle images at various 

resolutions. This method entails training distinct 

autoencoders for different image scales. However, due to 

considerations of ease of implementation, multi-scale 

convolutional autoencoders are not currently favored in the 

study's current state. 

Yet the error maps as the difference between the original 

image data and the reconstructed versions are not readily 

usable, various post-processing needs to be applied such as 

thresholding, morphological operators, and blob detection 

steps depicted in Figure 8. The post-processing of the 

reconstructed patch images holds significance in various 

aspects. The application of consistent post-processing 

techniques plays a crucial role in establishing uniformity 

across a set of images, thereby enhancing the reliability of 

comparisons and analyses. Particularly in the training of 

machine learning models, the preprocessing of images 

proves to be pivotal, exerting a substantial influence on the 

overall performance of the model. Keras/Tensorflow 

libraries are used for building, training, and testing neural 

network models, and the OpenCV library is used for image-

based functions.  

 

 

 

 

Figure 7. Defect detection: CAE model trained for defect detection using the small patch images. 

 

 

Figure 8. Computation steps of fabric defect detection – testing phase.  
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Figure 9-12 depict examples of defect results on various 

fabric images. These images showcase the following: the 

complete fabric images with defects, the defect detection 

results using CAE for the entire image, the ground truth for 

the defects, and an overlay that displays the defects, 

detection results, and ground truth in these images. 58 

images with dimensions of 1280×704 have been manually 

segmented using tools of ImageJ program to obtain ground 

truth regions for the defects used in this study. 

 

 

 

(a) 

 

 (b,c) 

 

(d,e) 

Figure 9. Defect detection result for a fabric image, a) fabric image as whole b) a patch with defect, c) defect detection result 

of the whole image with CAE d) the ground truth for the defect e) overlay of the defect, detection result, and the ground truth. 

(The images down-scaled to 30%) 

 

 

(a) 

 

(b,c) 

 

(d,e) 

Figure 10. Defect detection result for a fabric image, a) fabric image as whole b) a patch with defect, c) defect detection result 

of the whole image with CAE d) the ground truth for the defect e) overlay of the defect, detection result, and the ground truth. 

(The images down-scaled to 30%) 

 

 

(a) 

 

(b,c) 

 

(d,e) 

Figure 11. Defect detection result for a fabric image, a) fabric image as whole b) a patch with defect, c) defect detection result 

of the whole image with CAE d) the ground truth for the defect e) overlay of the defect, detection result, and the ground truth. 

(The images are down-scaled to 30%) 
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(a) (b) (c) 

 

 

 

 

  

  
 

 (d)                                    (e)  

Figure 12. Defect detection result for a fabric image for multiple defects, Results for four defects are depicted a) fabric 

image as whole b) patches with defects, c) defect detection result of the whole image with CAE d) the ground truth for 

the defects e) overlay of the defects, detection results, and the ground truth.. (The images are down-scaled to 30%) 

 

This paper places a greater emphasis on defect detection 

rather than defect classification. This decision is based on the 

recognition that, as mentioned earlier, we cannot definitively 

assert the success of the labeling process for the specific 

fabric type employed in this study. The established 

framework is designed to generate defect detection scores for 

each test image. Since all 58 images are tested collectively, 

overall performance scores can then be computed. These 

scores are derived by comparing the ground truth regions for 

defects with those highlighted through CAE-based defect 

detection. It's important to note that determining an 

appropriate threshold value is necessary for this process, and 

post-processing steps applied to candidate defective regions 

can inadvertently affect the scores. Following thresholding, 

individual pixels may be classified as either defective or 

defect-free. To evaluate the success of segmentation four 

fundamental values must be calculated. These fundamental 

values as true positive pixels (𝑇𝑃𝑃), false positive pixels 

(𝐹𝑃𝑃), false negative pixels (FNP) and true negative pixels 

(𝑇𝑁𝑃). are illustrated in Figure 13.  

 

 

Figure 13. Categorization of image pixels. (The images 

are down-scaled to 75%) 

 

A pixel labeled as defective is considered true positive. 

Similarly, a pixel labeled as defect-free is considered true 

negative. To evaluate the effectiveness of defect detection 

using CAE we utilize we use Recall, Precision, F1 score, 

Accuracy, and IoU metrics, 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑃  /(𝑇𝑃𝑃  +  𝐹𝑁𝑃) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑃  / (𝑇𝑃𝑃  +  𝐹𝑃𝑃) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 

 2 ×  𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 / (𝑅𝑒𝑐𝑎𝑙𝑙 
+  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

(𝑇𝑃𝑃  +  𝑇𝑁𝑃)/(𝑇𝑁𝑃  +  𝐹𝑁𝑃  +  𝑇𝑃𝑃  +  𝐹𝑃𝑃)  
×  100% 

𝐼𝑜𝑈 =  𝑇𝑃𝑃/(𝐹𝑃𝑃  +  𝑇𝑃𝑃  +  𝐹𝑁𝑃) 

(3) 
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Recall represents the percentage of actual defects 

correctly identified by the defect detection system. Precision, 

signifies the percentage of cases identified as defects by the 

detection system that are indeed actual defects. The accuracy 

metric quantifies the number of accurate predictions made by 

a model across the entire dataset. The F1 score assesses a 

model's performance by combining its Precision and Recall 

scores. IoU quantifies the degree of overlap between ground 

truth and result sets. The performance of the fabric defect 

detection using CAE for different evaluation metrics is given 

in Table 3. 

 

Table 3. Performance of the fabric defect 

detection using CAE. 

𝑅𝑒𝑐𝑎𝑙𝑙 0.967 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 0.625 

𝐹1 𝑠𝑐𝑜𝑟𝑒 0.760 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) 99.095 

𝐼𝑜𝑈 0.612 

 

The Recall score primarily focuses on identifying or 

detecting defects, whereas the Precision score provides 

information about the exact location of the defects. In our 

experiments, the areas identified as defects by the CAE-

based detection system often encompass a larger region, with 

the ground truth being a subset of this area, as shown in 

Figure 10. One possible explanation for this behavior may be 

the use of 64×64 patch images. When a defect is detected, it 

is enclosed within a larger region than necessary. As 

previously mentioned, several post-processing steps, such as 

thresholding, morphological operators, and blob detection, 

are required to eliminate weak candidates for defects and 

ensure that the defect detection framework accurately 

delineates the defect regions. The F1 score assesses 

performance using Precision and Recall scores. IoU score is 

proportional to the Precision score as both expressions have 

𝑇𝑃𝑃  parameter in their numerators. If the primary concern is 

correctly identifying defects, Recall and Accuracy scores can 

be considered. Conversely, if precision in detecting defects 

is more important, Precision and IoU can be considered. 

In defect classification, we utilize a total of 556 patch 

images, each has a size of 64×64 pixels. These patches 

exclusively contain defects. For the training dataset, we 

randomly select three-fourths of the patches from each defect 

group, reserving the remaining one-fourth for testing (Table 

4). Notably, employing the patches as-is, without addressing 

the imbalance in sample numbers across defect classes, can 

lead to a classification task that inherently favors the classes 

with a larger sample size. 

The defect classification task is employed regarding the 

model given in Figure 14. One can refer to the depiction of 

the CAE model trained for fabric defect detection using the 

small image patches given in Figure 6 to identify the blocks 

corresponding to the CAE encoder located on the right-hand 

side of the feature vector. 

 

Table 4. The number of defective patch images used for 

the training and testing phases. 

 Total Training Testing 

Hole 
Cut 

Thread wear 

Stain 
Missing Thread 

Knots 

Starting mark 

38 
144 

178 

4 
20 

23 

149 

29 
108 

120 

3 
15 

18 

111 

9 
32 

58 

1 
5 

5 

37 

 556 404 147 

 

 

Figure 14. Defect classification: The feature vector from 

the encoder module already created in the patch 

reconstruction is to be introduced to the classifier module 

for the classification of the defects. 

 

The confusion tables for the training and the test phases 

for the classification task are given in Figures 15 and 16 and 

classification rates for each class in given in Table 5. 

 

 

 

Figure 15. Confusion matrix for the training patch 

images. 
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Figure 16. Confusion matrix for the test patch images. 

 

As previously mentioned, the labeling process for the 

fabric types utilized in this study can pose a bottleneck for 

defect classification. Among the classes, there is one with an 

extremely limited number of samples (stain class: 3), while 

three other classes have only a small number of samples 

(missing thread: 20, knots: 23, hole: 38). In contrast, the 

remaining classes have a larger number of samples (cut: 144, 

starting mark: 149, thread wear: 178). It can be noticed that 

the stain class samples are misclassified mostly as thread 

wear (Table 5). 

 

Table 5. Classification rates for defective patch images.  

Training patch images Test patch images 

Defect Type 
Classificatio
n Rate (%) 

Defect Type 
Classification 
Rate(%) 

Hole 68.97 Hole 77.78 

Cut 85.18 Cut 81.25 
Thread wear 81.67 Thread wear 72.41 

Stain 0 Stain 0 

Missing thread 46.67 Missing thread 40 
Knots 38.89 Knots 60 

Starting mark 81.08 Starting mark 78.38 

 77.72  74.15 

 

The class imbalance presents a challenge when training 

models, particularly in the context of defect detection. 

Neural networks may assign labels from the majority classes 

to the under-represented class samples, and this leads to poor 

generalization. Boosting algorithms are reported to be well-

suited for addressing imbalanced datasets because they 

assign higher weights to the minority class for successive 

iterations [34]. Additionally, employing an appropriate 

evaluation metric that accounts for class imbalance can 

provide a more accurate representation of a classifier's 

performance. 

The scanning speed for the system was set to 1.412 

m/min (or 0.02354 m/s), which is low for a commercial 

product. The main reason for this speed level is the lack of a 

fabric winding system associated with the inspection system. 

The winding process was managed mechanically at low 

scanning speeds. The conveyor belt can reach a speed of 8-

10 m/s, yet the winding process will not support such a speed 

range.  

The training duration of the neural network varies 

depending on the value desired in the loss function and the 

network size. In the studies conducted for fabric defect 

detection, the neural network was trained for an average of 

three hours. For defect detection, the testing duration of a test 

image with dimensions of 1280×704 was measured to be 

5.156 seconds. For 203 non-overlapping images of 20.8 m 

fabric roll, overall testing was completed in 17.44 minutes. 

The defect classification was managed in a supervised 

manner utilizing the designated defective patches. The 

training phase of the classification took 18.50 minutes, and 

overall testing was completed in 7.843 seconds for 556 

defective regions. All computations were evaluated on a 

computer with an Intel Core i7-6700HQ 2.59 GHz processor 

and 16.0 GB of RAM. 

5 Conclusions 

The main thrust of this revolved around the development 

of an automatic visual inspection system that utilizes deep 

learning to reduce the need for feature selection. The system 

processes large amounts of data more effectively than 

traditional methods in this manner. Efforts have been made 

to address deficiencies through the development of an 

autonomous visual inspection system. We investigated 

unsupervised fabric defect detection using CAE, and defect 

classification using a CNN model, which takes input as the 

feature vector generated by the CAE. The model constructed 

and trained for defect detection is developed on our tulle 

fabric image dataset. Additionally, we implemented a defect 

localization system that records data of identified defects and 

their respective relative locations in a database. 

Experimental results have demonstrated high rates of success 

in both defect detection and classification, affirming the 

applicability of our approach to real-time visual inspection 

systems. Regarding the scanning speed of the inspection 

system for the data acquisition process, the conveyor belt can 

operate at speeds up to 8-10 m/s. However, the current 

winding process does not support this speed range. 

Additionally, the testing duration at the current project stage 

is moderate. Therefore, a light version of the model with 

fewer parameters should be considered to remain 

competitive.  

In the future, we will put out efforts to improve the 

detection accuracy and experiment with different strategies 

to further enhance reconstruction detail. For defect detection 

multi-scale convolutional autoencoders that can handle 

images at various resolutions and boosting algorithms to 

overcome the problems of imbalanced dataset use will be 

investigated.  
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