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 Inspired by the applications in machine learning, we study a variation of the separation 
problem for a given set of bichromatic points- blue (𝐵) and red (𝑅) with |𝐵| = 𝑚 and |𝑅| = 𝑛, 
where these sets are separated by a geometric object. The objective of our work is to compute 
one or two geometric covering objects whose union covers every red point and as few blue 
points as possible. We consider rectangles, squares and convex polygons as the geometric 
covering object for the bichromatic point set. We design an 𝑂(𝑚 + 𝑛) time algorithm to solve 
the aforesaid problem using  two disjoint rectangles. For the same problem, it takes 𝑂(𝑚) time 
to compute a square which is used as geometric covering object. We also present an algorithm 
for the same problem with two disjoint squares as the geometric covering objects in 𝑂(𝑛𝑚) 
time. If the geometric covering objects are two disjoint convex polygons, then it takes 
𝑂(𝑛2(𝑚 + 𝑛)𝑙𝑜𝑔𝑛) time. The preprocessing tasks in the algorithms for each of the aforesaid 
problems need 𝑂(𝑚𝑙𝑜𝑔𝑚 + 𝑛𝑙𝑜𝑔𝑛) time and all these problems need 𝑂(𝑚 + 𝑛) space. 
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1. Introduction  
 

We focus our research to compute geometric 
covering object 𝐺 for two distinct classes of given point 
sets so that  𝐺 covers each point of one class and as few 
points of other class as possible. This problem is a 
variation of the separability problem, where we are given 
two sets of distinct colored (blue (𝐵) and red (𝑅), with 
|𝐵| = 𝑚 and |𝑅| = 𝑛) points, and a set 𝐺 of geometric 
objects to be used as a separator for these colored points 
lying on ℝ2. In the separability problem, we find out a 
separator in 𝐺 which partitions the entire regions so that 
one of the regions contain the points in 𝑅 and the other 
region contains only the points in 𝐵. The geometric 
objects may be a straight line, strip, rectangle, square or 
circles.  If it is feasible to find out such separator, then 
compute it for the given point set. If there exist multiple 
solutions, then find out the separator that minimizes 
some criteria, e.g., the width of the strip, the perimeter of 
the rectangle, the radius of the circle etc [1-2]. In image 
processing and machine learning, to classify the data, 
geometric separability problem plays a vital role. This 
problem find application in the surgery of tumours in 

patients [3-4]. 
 
Motivation: Separability finds applications to recon-
struct the urban scene by reconstructing buildings with 
LIDAR data. First, the data points are clustered and then 
the points from each of such clusters are projected onto 
an appropriate plane to build the structures, e.g., roofs or 
walls that corresponds to clusters [5-7].  Generally, the 
buildings' structures consist primarily of rectangles or 
other rectilinear forms, necessitating the identification of 
an appropriate rectangular contour encompassing the 
points. Occasionally, some points are recognized to be 
outside the facet under reconstruction. Consequently, the 
objective is to locate a shape that encompasses the facet's 
points (considered +ve samples) while disregarding 
points that are recognized to lie beyond the facet 
(considered -ve samples) [8-9]. We assign distinct colors 
to the positive and negative samples which motivates to 
consider rectangular objects while working with the 
problem of separability. Van Kreveld et al. [5-6] used 
rectangle as a separator 𝐺 to study the problem of 
separability in ℝ2 and proposed an algorithm with 
𝑂(𝑛𝑙𝑜𝑔𝑛) time. 
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The oncologists deal with both healthy cells and 
cancer cells of tumour present in the patient’s body. 
While performing the radiation therapy or surgery to the 
cancer patient, the objective of the doctor is to eliminate 
the cancer cells as much as possible keeping intact the 
healthy cells. We assign red color to the cancer cells and 
blue color to the healthy cells to distinguish between the 
two types of cells. Due to such constraint of the treatment 
procedure, different geometric combinatorial optimiza-
tion problems arise, e.g., computing the square or circle 
with minimum area enclosing the red points or 
separating blue points and red points. This inspires us to 
study the covering problem for the bichromatic point set 
by rectangles, squares which cover every red point and 
as few blue points as possible.   
 

Related Works: There has been considerable research 
on various types of separators, both in 𝑑-dimensional 
(d≥2) space [10-12]. Megiddo [13] demonstrated that 
determining whether a line can separate two point sets, 
can be achieved in linear time. O’Rourke [14] focused on 
a different form of separators, specifically a circle 𝐶, 
presenting an 𝑂(𝑚 + 𝑛) time algorithm to ascertain 
whether 𝐶 can separate the two point sets. Edelsbrunner 
and Preparata [15] designed an algorithm to check 
whether a convex polygon with the fewest edges can 
separates two point sets, if such a polygon exists, in 
𝑂(𝑛 𝑙𝑜𝑔 𝑛) time. Fekete [16] showed whether a simple 
polygon with fewest number of edges can separate the 
bichromatic point sets is NP-hard, while its 
approximation algorithm was designed by Mitchell [17]. 
Seara [18] offers an in-depth investigation into the 
separability issues concerning separators shaped as 
strips and wedges, as highlighted in previous research by 
Hurtado et al. [19]. 

 Barbay et al. [20] presented a quadratic time 
algorithm for the Maximum-Weight Box problem that 
computes an axis-parallel box 𝐷 with maximum weight 
𝑊(𝐷) for a given weighted point set 𝑃 (|𝑃| = 𝑛 and the 
weight of each point 𝑝 ∈ 𝑃 is either +ve or -ve) where 
𝑊(𝐷) is given by the sum of the weights of the points 
lying inside 𝐷. Dobkin et al. [21] studied the Maximum 
Bichromatic Discrepancy Box problem, where a box that 
maximizes |𝐵 − 𝑅|,  𝐵 and 𝑅 being the number of blue 
and red points inside the box is computed. This problem 
was solved in 𝑂(𝑛2𝑙𝑜𝑔𝑛) time, 𝑛 being the total number 
of blue and red points. Eckstein et al. [22] has proved that 
the Maximum Box problem which computes a box 
containing the maximum number of blue points without 
any red points, is NP-hard provided the dimension 𝑑 is 
also an input to the problem. This problem for 𝑑 = 2, was 
solved in 𝑂((𝑚 + 𝑛)2 log(𝑚 + 𝑛)) time by Liu and 
Nediak [23], and later it was improved by Backer et al. 
[24] which needs 𝑂((𝑚 + 𝑛) log3(𝑚 + 𝑛)) time. Bereg et 
al. [25] studied the maximum weighted circle (sum of 
weights of the points inside the circle) with minimum 
radius in 𝑂(𝑚2(𝑚 + 𝑛)log (𝑚 + 𝑛)) time and 𝑂(𝑚 + 𝑛) 
space. Abidha and Ashok [26] investigated the problem 
of geometric separability involving a given bichromatic 
point set 𝑃 = 𝐵 ∪ 𝑅 (with |𝑃| = 𝑛) consisting of blue (𝐵) 
and red (𝑅) points. They computed (i) fixed oriented 
non-uniform and uniform annulus of rectangular shape 
in 𝑂(𝑛) and 𝑂(𝑛𝑙𝑜𝑔𝑛) time, (ii) arbitrary oriented non-

uniform annulus of rectangular shape in 𝑂(𝑛2𝑙𝑜𝑔𝑛) time, 
(iii) fixed oriented annulus of squared shape in 𝑂(𝑛𝑙𝑜𝑔𝑛) 
time. In the geometric variant of the red-blue set cover 
problem, a set of objects and a set of bichromatic points 
are given, the objective is to select a subset of objects to 
cover every blue point and as few red points as possible 
and this problem is NP-Hard [27]. In a weighted 
geometric set cover problem, 2𝐷 unit squares are taken 
as objects and for this problem, a PTAS was designed by 
Chan and Hu [28]. Madireddy et al. [29] showed the APX-
Hardness results for defferent specialized red-blue set 
cover problems. Shanjani [10] proved the APX-hardness 
of the Red-Blue Geometric Set Cover Problem when the 
axis-aligned rectangles are considered as objects. Abidha 
and Ashok [26, 30] investigated the parameterized 
complexity for the generalized version of  red-blue set 
cover problem. Bereg et al. [31] investigated the class 
cover problem concerning axis-parallel rectangles and 
designed a constant approximation algorithm. Bitner et 
al. [32] computed the largest separating circle for 
bichromatic point set in 𝑂(𝑚(𝑚 + 𝑛)𝑙𝑜𝑔(𝑚 +  𝑛)) time. 
 

Our contributions: We design polynomial time 
algorithms to compute (i) an axis-parallel rectangle, (ii) 
two disjoint axis-parallel rectangles, (iii) an axis-parallel 
square, (iv) two disjoint axis-parallel squares and (v) two 
disjoint convex polygons that cover every red point and 
as few blue points as possible. To the best of our 
knowledge, there exist no works which are studied in this 
paper (see Table 1). 
 

Table 1. Comparison Table for similar works for 
bichromatic points (𝐵 ∪ 𝑅), with |𝐵| = 𝑚 and |𝑅| = 𝑛 

Sl_ 
No. 

Author 
Name 

Geometric 
Separator 

Time 
complexity 

Space 

1 
 

Abidha and 
Ashok 
(2024) [26] 

Arbitrary-
oriented 
rectangular 
annulus 

𝑂((𝑚 + 𝑛)2 
log (𝑚 + 𝑛)) 

𝑂(𝑚 + 𝑛) 

Square 
annulus 

𝑂((𝑚 + 𝑛) 
log (𝑚 + 𝑛)) 

𝑂(𝑚 + 𝑛) 

2 
Bereg et al. 
(2015) [25] 

Weighted 
circle 

𝑂(𝑚2(𝑚 + 𝑛) 
log (𝑚 + 𝑛)) 

𝑂(𝑚 + 𝑛) 

3 
Van Kreveld 
et al. (2012) 
[5] 

Rectangle 
𝑂((𝑚 + 𝑛) 

log (𝑚 + 𝑛)) 
𝑂(𝑚 + 𝑛) 

4 
Bitner et al. 
(2010) [32] 

Circle 
𝑂(𝑚(𝑚 + 𝑛) 
log (𝑚 + 𝑛)) 

𝑂(𝑚 + 𝑛) 

5 
Dobkin et al. 
(1996) [21] 

Discrepancy 
Box 

𝑂((𝑚 + 𝑛)2 

log (𝑚 + 𝑛)) 
𝑂(𝑚 + 𝑛) 

Our works discussed in this paper – Preprocessing time: 
𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) 

Sl 
No. 

Geometric Separator 
Time 
complexity 

Space 

1 
Two axis-parallel 
rectangles 

𝑂(𝑚 + 𝑛)  𝑂(𝑚 + 𝑛) 

2 Two axis-parallel square 𝑂(𝑛𝑚) 𝑂(𝑚 + 𝑛) 

3 Two convex polygons 
𝑂(𝑛2(𝑚 + 𝑛) 
𝑙𝑜𝑔𝑛) 

𝑂(𝑚 + 𝑛) 

 

Outline of the Paper: We introduce the essential 
concepts, terminologies, and notations in Section 2. In 
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this paper, we first study a single rectangle and two 
disjoint rectangles as the geometric covering objects for 
the bichromatic point sets in Sections 3.1 and 3.2, 
respectively. Then we study the same problem using a 
single square and two disjoint squares as the geometric 
covering objects in Sections 3.3 and 3.4.  In Section 3.5, 
two convex polygons are used as the geometric covering 
objects and then we conclude in Section 4. 
 

2. Preliminaries and Notations 
 

     Throughout this paper, the rectangles and squares are 
assumed to be axis-parallel, unless otherwise stated. For 
a point 𝑝, its 𝑥-coordinate and 𝑦-coordinate are denoted 
by 𝑥(𝑝) and 𝑦(𝑝), respectively. For a rectangle 𝑅1, its left 
side, right side, top side and bottom side are denoted by 
𝐿𝑆(𝑅1), 𝑅𝑆(𝑅1), 𝑇𝑆(𝑅1) and 𝐵𝑆(𝑅1), respectively. A 
rectangle or a square is said to be defined by a point 𝑝, if 
𝑝 lies on any side of that rectangle or square. The size of 
a rectangle or a square is measured by its perimeter.  

 

3. Geometric Covering Object 
 

     We study the covering of one class of point set while 
minimizing the other class of point set using axis-parallel 
rectangle(s), square(s) and convex polygons. These 
problems are discussed in the following subsections.  
 

3.1. Axis-parallel rectangle 
 

Problem 1. Given a set 𝐵 = {𝑝1 , 𝑝2, … , 𝑝𝑚} of 𝑚 blue 
points and a set 𝑅 = {𝑞1, 𝑞2, … , 𝑞𝑛} of 𝑛 red points; the 
objective is to compute an axis-parallel rectangle that 
cover every red point and as few blue points as possible.  
 
     We take 𝑞𝑙 , 𝑞𝑟 , 𝑞𝑡  and 𝑞𝑏 to denote the leftmost, 
rightmost, topmost, and bottommost red-colored points, 
respectively. 
 

Observation 1.  A minimum area axis-parallel rectangle 
Ʀ that covers every red point and as few blue points as 
possible,  must be defined by the four red points 𝑞𝑙 , 𝑞𝑟 , 𝑞𝑡  
and 𝑞𝑏 which lie on the left, right, top and bottom sides of 
Ʀ, respectively (see Figure 1). 

 

Figure 1. Rectangle Ʀ that covers all the red points. 
 

Algortihm 1  

     We scan all the red points in 𝑅 to  determine the points 
𝑞𝑙  (with minimum 𝑥-coordinate), 𝑞𝑟 (with maximum 𝑥-
coordinate), 𝑞𝑏  (with minimum 𝑦-coordinate) and 

𝑞𝑡  (with maximum 𝑦-coordinate). We construct an axis-
parallel rectangle Ʀ passing through these four points 
𝑞𝑙 , 𝑞𝑟 , 𝑞𝑡  and 𝑞𝑏 . The size of the rectangle Ʀ cannot be 
reduced further keeping all the red points inside it and 
hence, Ʀ must be the optimal solution of Problem 1 that 
covers all red points and as few blue points as possible. 
Since the four red points 𝑞𝑟 , 𝑞𝑙 , 𝑞𝑡  and 𝑞𝑏 can be obtained 
in 𝑂(𝑛) time, we obtain the following result. 

 

Theorem 1. An axis-parallel rectangle of the minimum 
size that covers all red points and as few blue points as 
possible, can be determined in 𝑂(𝑛) time by maintaining 
𝑂(1) extra space. 

 

     Our solution for Problem 1 is also applicable in 
streaming model, where the infinite data (bichromatic 
points) arrives and we are restricted to use constant 
space to store the incoming data. In this model, we cannot 
store all the points due to non-availability of enough 
memory spaces. However, we can read the 𝑥-coordinate 
and 𝑦-coordinate of each point once as they arrive, and 
maintain four distinguished points 𝑞𝑙 , 𝑞𝑟 , 𝑞𝑏 and 𝑞𝑡  with 
minimum 𝑥-, maximum 𝑥-, minimum 𝑦- and maximum 𝑦- 
coordinates arrived so far, respectively. Thus we can 
report the smallest rectangle that covers all the red 
points and as few blue points as possible at any instant of 
time for Problem 1 in the streaming data model. 

 

3.2. Two disjoint axis-parallel rectangles  
 

Problem 2. Given a set 𝐵 = {𝑝1 , 𝑝2, … , 𝑝𝑚} of 𝑚 blue 
points and a set 𝑅 = {𝑞1, 𝑞2, … , 𝑞𝑛} of 𝑛 red points; the 
objective is to compute two disjoint axis-parallel 
rectangles whose union covers every red point and as few 
blue points as possible.  

 
Figure 2. Disjoint rectangles  𝑅1 and 𝑅2 are separable by 
a horizontal line lying below 𝐵𝑆(𝑅2) and above 𝑇𝑆(𝑅1). 

 

Preprocessing task: We arrange all the blue points in 
the increasing order of their 𝑥- (resp. 𝑦-) coordinate and 
store them in an array 𝐵𝑋 (resp. 𝐵𝑌). Similarly, the array 
𝑅𝑋 (resp. 𝑅𝑌) stores all the red points sorted with respect 
to their 𝑥- (resp. 𝑦-) coordinates. This preprocessing task 
needs 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) time. 
      
     First, we study the properties of a pair of two disjoint 
axis-parallel rectangles whose union covers each red 
point in 𝑅. Then we compute such a pair of rectangles 
that cover fewest blue points. Since our objective is to 
find two disjoint axis-parallel rectangles whose union 
covers every red point, we have the following 
observations.  
 

Observation 2.  Four red points 𝑞𝑙 , 𝑞𝑟 , 𝑞𝑡  and 𝑞𝑏 (defined 
in Section 3.1) along with another four red points in 𝑄 ∖
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{𝑞𝑙 , 𝑞𝑟 , 𝑞𝑡 , 𝑞𝑏} lie on the boundaries of two disjoint axis-
parallel rectangles 𝑅1 and 𝑅2 whose union covers every red 
point (see Figure 2 and Figure 3).  
Figure 3. Disjoint rectangles 𝑅1 and 𝑅2 are separable by 
a vertical line lying between 𝑅𝑆(𝑅1) and  𝐿𝑆(𝑅2). 
 

Observation 3.  The two disjoint  axis-parallel rectangles  
𝑅1 and 𝑅2 must be separable either by a horizontal line 
(see Figure 2) or a vertical line (see Figure 3). 
 

     Note that three of the four distinguished red points 
𝑞𝑙 , 𝑞𝑟 , 𝑞𝑏 and 𝑞𝑡  (mentioned in Observation 2) may define 
the three sides of a rectangle as shown in Figure 4. 
However, all these four red points cannot lie on the 
boundary of one of the two rectangles for Problem 2.  
 

Algorithm 2 

     We use the sweep line technique to compute all the 
feasible solutions of Problem 2. Without loss of 
generality, we take 𝑅1 and 𝑅2 as the lower (resp. left) and 
upper (resp. right) rectangles if the two rectangles  𝑅1 
and 𝑅2 are separable by a horizontal (resp. vertical) line 
𝐻 (resp. 𝑉) as per Observation 3, and the two relative 
positions of such rectangles  𝑅1 and 𝑅2 are shown in 
Figure 2 (resp. Figure 3). Our algorithm executes in two 
phases to compute such pair of rectangles as follows. 
 

Phase 1. Computation of pair of rectangles separable by a 
horizontal line. 

     We take a horizontal line 𝐻 that sweeps upward 
sequentially through its event points which are the red 
points sorted with respect to their 𝑦-coordinates stored 
in 𝑅𝑦 (see Figure 4). Without loss of generality, we 

assume that the sequence of red points in 𝑅𝑦 is given by 
{𝑞1, 𝑞2, … , 𝑞𝑛}, i.e., 𝑦(𝑞𝑖) ≤ 𝑦(𝑞𝑖+1), ∀ 𝑖 ∈ {1, 2, … , (𝑛-1)}. 
So, the bottommost and topmost red points 𝑞𝑏 and 𝑞𝑡  are 
also denoted by 𝑞1 and 𝑞𝑛 , respectively. Our algorithm 
always maintains two minimum-sized rectangles 𝑅1 and  
𝑅2, so that 𝑅1 covers all the red points lying on or below 
𝐻, while 𝑅2 covers the remaining red points lying above 
𝐻. We use 𝒉(𝒒𝒊) (resp. 𝒗(𝒒𝒊)) to denote a horizontal 
(resp. vertical) line passing through any red point 𝑞𝑖 . The 
symbol 𝓵(𝒔) is used to denote the line passing through 
the side 𝑠 of a rectangle. The function 𝒃𝒍𝒖𝒆𝒑𝒕(𝒍𝟏, 𝒍𝟐, 𝒍𝟑, 𝒍𝟒)  

gives a count of number of blue points lying within the 
rectangular region bounded by four axis-parallel lines  
𝑙1, 𝑙2, 𝑙3 and 𝑙4.  
 

Observation 4.  As the horizontal sweep line 𝐻 moves in 
upward direction, the size of 𝑅1 increases while that of 𝑅2 
decreases. The updated 𝑅1 contains the previous 𝑅1 
completely inside it, whereas the previous 𝑅2 contains the 
updated 𝑅2 completely inside it. 

 

     Observation 4 says that no blue points are removed 
from the previous 𝑅1, only the blue points and a single 
red point are added in 𝑅1 as the line 𝐻 sweeps upwards 
to its next event; whereas, for 𝑅2 some blue points and a 
single red point are removed without the insertion of any 
blue or red point into 𝑅2. The following pseudo code 
shows how to generate the optimal solution of Phase 1. 
 

Two_Axis-Parallel_Rectangles (𝑩 ∪ 𝑹) 

Input: Bichromatic point set 𝐵 ∪ 𝑅. 

Output: Two optimal rectangles 𝑅1
𝑜𝑝𝑡

 and 𝑅2
𝑜𝑝𝑡

 separable 

                 by a horizontal line, so that 𝑅1
𝑜𝑝𝑡

∪ 𝑅2
𝑜𝑝𝑡

covers all     
                 red points and minimum number of blue points. 

𝑅1 ← minimum-sized rectangle that covers 𝑞1 and 𝑞2. 

𝑅2 ← minimum-sized rectangle to cover the red points      
           in 𝑅𝑦 ∖ {𝑞1, 𝑞2}. 

𝐶𝑜𝑢𝑛𝑡1 ← number of blue points covered by 𝑅1. 

𝐶𝑜𝑢𝑛𝑡2 ← number of blue points covered by 𝑅2. 

𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡2; 

𝑅1
𝑜𝑝𝑡

← 𝑅1;            𝑅2
𝑜𝑝𝑡

← 𝑅2; 
For 𝑖 ← 3 to (𝑛 − 1) do 
 𝐻 ← horizontal sweep line passing through 𝑞𝑖 ; 

 𝑅1
𝑜𝑙𝑑 ← 𝑅1;             𝑅2

𝑜𝑙𝑑 ← 𝑅2; 

 𝑅1 ← Updated 𝑅1 with its top side passing through  
           𝑞𝑖  and covering all the red points lying on  
           or below 𝐻; 

 𝑅2 ← Updated 𝑅2 with its bottom side passing     
           through  𝑞𝑖+1 and covering all the red   
           points lying above 𝐻; 

 𝐶𝑜𝑢𝑛𝑡2 ← 𝐶𝑜𝑢𝑛𝑡2 − 𝑏𝑙𝑢𝑒𝑝𝑡(ℓ(𝐵𝑆(𝑅2
𝑜𝑙𝑑)),  

                                     ℓ(𝐿𝑆(𝑅2
𝑜𝑙𝑑)),(𝑅𝑆(𝑅2

𝑜𝑙𝑑)), ℎ(𝑞𝑖+1)); 

 𝐶𝑜𝑢𝑛𝑡3 ←   𝑏𝑙𝑢𝑒𝑝𝑡(ℓ (𝐿𝑆(𝑅1
𝑜𝑙𝑑)) , ℓ (𝑅𝑆(𝑅1

𝑜𝑙𝑑)),    

                      ℎ(𝑞𝑖−1), ℎ(𝑞𝑖)); 
 If  𝑥 (𝐿𝑆(𝑅1

𝑜𝑙𝑑)) ≤ 𝑥(𝑞𝑖) ≤ 𝑥 (𝑅𝑆(𝑅1
𝑜𝑙𝑑)) then 

  𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡3; 

 ElseIf  𝑥(𝑞𝑖) > 𝑥(𝑅𝑆(𝑅1
𝑜𝑙𝑑)) then 

   𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡3 + 𝑏𝑙𝑢𝑒𝑝𝑡(ℎ(𝑞𝑖), 

                         𝑣(𝑞𝑖), ℓ (𝐵𝑆(𝑅1
𝑜𝑙𝑑)) , ℓ (𝑅𝑆(𝑅1

𝑜𝑙𝑑))); 

 Else /* 𝑥(𝑞𝑖) < 𝑥 (𝐿𝑆(𝑅1
𝑜𝑙𝑑)) ∗/ 

  𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡3+ 𝑏𝑙𝑢𝑒𝑝𝑡(ℎ(𝑞𝑖), 

                           𝑣(𝑞𝑖), ℓ (𝐿𝑆(𝑅1
𝑜𝑙𝑑)) , ℓ (𝐵𝑆(𝑅1

𝑜𝑙𝑑))); 

 EndIf 

 If (𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡2 < 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛) then 

  𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡2; 

  𝑅1
𝑜𝑝𝑡

← 𝑅1;    𝑅2
𝑜𝑝𝑡

← 𝑅2; 

 EndIf 

EndFor 

Return 𝑅1
𝑜𝑝𝑡

, 𝑅2
𝑜𝑝𝑡

; 

 

     Suppose 𝐻 passes through 𝑞𝑖−1 in an iteration, and 
then we have two rectangles  𝑅1 and 𝑅2 where the top 
side of the lower rectangle 𝑅1 passes through 𝑞𝑖−1. We 
have a count of the blue points lying inside both  𝑅1 and 
𝑅2. In next iteration, as the sweep line passes though the 
next red point 𝑞𝑖  that lies immediately above 𝑞𝑖−1 



Turkish Journal of Engineering – 2025, 9(1), 47-55 

 

  51  

 

(obtained from the array 𝑅𝑌), we update 𝑅1 by shifting its 
top side upwards to include  𝑞𝑖 ,  and update 𝑅2 by shifting 
its bottom side upwards to exclude 𝑞𝑖  so that 𝐵𝑆(𝑅2) 
passes through the red point 𝑞𝑖+1 lying immediately 
above  𝑞𝑖 . Also note that the number of blue points in any 
rectangular region bounded by four lines, i.e., in 𝑏𝑙𝑢𝑒𝑝𝑡() 

can be obtained from the sorted array 𝐵𝑋 and 𝐵𝑌. In this 
way we compute all feasible pair of rectangles where one 
of them lies above the other, and keep track of the pair 
covering fewest blue points. 
 

Phase 2. Computation of pair of rectangles separable by a 
vertical line. 

     We apply the same technique analogous to Phase 1 
described above to find out the pair of rectangles that are 
separable by a vertical line with minimum count of blue 
points contained by them. In this case, we need to sweep 
a vertical line 𝑉 through its event points which are the 
red points stored in the array 𝑅𝑋 (see Figure 5). 
 

     We compare the minimum count of blue points 
contained by the union of the pair of rectangles obtained 
in Phase 1 as well as Phase 2, and between them, we 
select the pair containing fewest blue points. Since each 
blue point is accessed at most twice while computing the 
optimal pair, the following theorem is obtained. 
 

Theorem 2. We can compute two disjoint rectangles 
whose union covers every red point and as few blue points 
as possible in 𝑂(𝑛 + 𝑚) time and 𝑂(𝑛 + 𝑚) space with a 
preprocessing task of 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) time. 
 

 
Figure 4. The red points are patritioned by the horizontal 
sweep line 𝐻 . 
 

3.3. An axis-parallel square  
 

Problem 3. Given a blue point set 𝐵 = {𝑝1, 𝑝2, … , 𝑝𝑚}  and 
a red point set 𝑅 = {𝑞1, 𝑞2, … , 𝑞𝑛} with |𝐵| = 𝑚, |𝑅| =
𝑛; the objective is to compute an axis-parallel square that 
cover every red point and as few blue points as possible. 
 

Observation 5. Three points uniquely define an axis-
parallel square, each lying on the three different sides of 
the square. 
      
Algorithm 3 

     First, we compute an axis-parallel rectangle which 
covers all the red points as discussed in Section 3.1. The 
left side, bottom side, right side, and top side of this 
rectangle are defined by the four distinguished red points  
Figure 5. The vertical sweep line 𝑉 at its event point 𝑞𝑖 , divides 
the red points into two parts. 
 

𝑞𝑙 , 𝑞𝑏 , 𝑞𝑟  and 𝑞𝑡 , respectively. Then, we compute a 
minimum-sized square 𝑆 that covers the aforesaid 
rectangle completely.  
 

 
Figure 6. All possible axis-parallel squares that cover all the red 
points with different subset of blue points. 
 

     Note that, the length of the side of such a square is 
defined by the length of the longer side of the rectangle. 
There are three possibilities as follows. 

Case 1: |𝑥(𝑞𝑟) − 𝑥(𝑞𝑙)| > |𝑦(𝑞𝑡) − 𝑦(𝑞𝑏)| 

The points 𝑞𝑙  and 𝑞𝑟 defines the 𝐿𝑆(𝑆) and 𝑅𝑆(𝑆), 
respectively. Under this condition, 𝑇𝑆(𝑆) (resp. 𝐵𝑆(𝑆)) 
may not pass through 𝑞𝑡  (resp. 𝑞𝑏) in order to minimize 
the number of blue points covered. In Figure 6, the 
horizontal length is longer than the vertical length of the 
rectangle, and hence, the difference of 𝑥(𝑞𝑟) and 𝑥(𝑞𝑙) 
defines the length of the side of the square 𝑆. 

𝐂𝐚𝐬𝐞 𝟐: |𝑥(𝑞𝑟) − 𝑥(𝑞𝑙)| < |𝑦(𝑞𝑡) − 𝑦(𝑞𝑏)|  
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The points 𝑞𝑡  and 𝑞𝑏 define the 𝑇𝑆(𝑆) and 𝐵𝑆(𝑆), 
respectively. Under this condition, 𝐿𝑆(𝑆) (resp. 𝑅𝑆(𝑆)) 
may not pass through 𝑞𝑙  (resp. 𝑞𝑟) in order to minimize 
the number of blue points contained in 𝑆. 

𝐂𝐚𝐬𝐞 𝟑: |𝑥(𝑞𝑟) − 𝑥(𝑞𝑙)| = |𝑦(𝑞𝑡) − 𝑦(𝑞𝑏)|  

The four points 𝑞𝑟 , 𝑞𝑙 , 𝑞𝑡  and 𝑞𝑏 define the four sides 
𝑅𝑆(𝑆), 𝐿𝑆(𝑆), 𝑇𝑆(𝑆) and 𝐵𝑆(𝑆), respectively. 
  
     In Case 1 and Case 2, there may exist multiple squares 
with the (same) minimum size that covers every red 
point in 𝑅 but different set of blue points (see Figure 6 for 
Case 1).  However, in Case 3 only a unique square 𝑆 exists. 
First, we discuss only the Case 1 to obtain the optimal 
square 𝑆𝑜𝑝𝑡 that covers all the red points and minimum 
number of blue points.  
     Using Observation 5, we have two squares 𝑆 and 𝑆′ 
(see Figure 6(a), 6(d)) for Case 1, where the bottom side 
of 𝑆 is defined by 𝑞𝑏 and the top side of 𝑆′ is defined by 
𝑞𝑡 . We show the pseudocode of the algorithm for Case 1 
as follows. 

One_Axis-Parallel_Square (𝑩 ∪ 𝑹) 

Input: Bichromatic point set 𝐵 ∪ 𝑅 satisfying Case 1. 
Output: An optimal square 𝑆𝑜𝑝𝑡 covering all red points  
               and minimum blue points. 
𝑆 ← a square with its left, right and bottom sides   
        passing through 𝑞𝑙 , 𝑞𝑟  and 𝑞𝑏 , respectively; 
𝑆′ ← a square with its left, right and top sides   
          passing through 𝑞𝑙 , 𝑞𝑟 and 𝑞𝑡 , respectively; 
𝑆𝑜𝑙𝑑 ←  𝑆; 
𝑆𝑜𝑝𝑡 ← 𝑆; 
𝐶𝑜𝑢𝑛𝑡1 ← no. of blue points lying within 𝑆;  
𝐶𝑜𝑢𝑛𝑡2 ← no. of blue points lying within 𝑆′; 
𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡1; 
𝐵′ ← set of blue points that lie within the rectangular   
       region bounded by 𝑇𝑆(𝑆), 𝐿𝑆(𝑆), 𝑅𝑆(𝑆) and 𝑇𝑆(𝑆′). 
𝐵′′ ← set of blue points that lie within the rectangular  
       region bounded by 𝐵𝑆(𝑆), 𝐿𝑆(𝑆′), 𝑅𝑆(𝑆′) and 
       𝐵𝑆(𝑆′). 
While (𝐵′ ∪ 𝐵′′ ≠ 𝜙) do 
 Compute the distance 𝑑 of blue point 𝑝𝑖 ∈ 𝐵′  

nearest from 𝑇𝑆(𝑆) 
 Compute the distance 𝑑′ of blue point 𝑝𝑗 ∈ 𝐵′′ 

nearest from 𝐵𝑆(𝑆) 
 If 𝑑 < 𝑑′ then 
  shift 𝑆 vertically downwards keeping its size 

same, so that its top side passes through 𝑝𝑖  
  If 𝑇𝑆(𝑆𝑜𝑙𝑑) passes through a blue point then 
   𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 − 1; 
   If 𝐶𝑜𝑢𝑛𝑡1 < 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛  then 
    𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡1; 
    𝑆𝑜𝑝𝑡 ← 𝑆; 
   EndIf 
  Else/*𝐵𝑆(𝑆𝑜𝑙𝑑) passes through a blue or red point*/ 
   𝐶𝑜𝑢𝑛𝑡1 remain same; 
  EndIf 
  𝐵′ ← 𝐵′ ∖ {𝑝𝑖}; 
  𝑆𝑜𝑙𝑑 ← 𝑆; 
 ElseIf  𝑑 > 𝑑′ then 
  shift 𝑆 vertically downwards keeping its size same, 

so that its bottom side passes through 𝑝𝑗  

  If 𝐵𝑆(𝑆𝑜𝑙𝑑) passes through a blue/red point then          

   𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 + 1; 
  Else/*𝑇𝑆(𝑆𝑜𝑙𝑑) passes through a blue point */ 
   𝐶𝑜𝑢𝑛𝑡1 remain same; 
  EndIf 
  𝐵′′ ← 𝐵′′ ∖ {𝑝𝑗} 

  𝑆𝑜𝑙𝑑 ← 𝑆; 
 Else /* 𝑑 = 𝑑′ */ 
  shift 𝑆 vertically downwards keeping its size same, 

so that its top and bottom side passes through 𝑝𝑖  
and 𝑝𝑗 , respectively. 

  If 𝐵𝑆(𝑆𝑜𝑙𝑑) passes through a blue/red point then          
   𝐶𝑜𝑢𝑛𝑡1 ← 𝐶𝑜𝑢𝑛𝑡1 + 1; 
  Else/*𝑇𝑆(𝑆𝑜𝑙𝑑) passes through a blue point */ 
   𝐶𝑜𝑢𝑛𝑡1 remain same; 
  EndIf 
  𝐵′ ← 𝐵′ ∖ {𝑝𝑖}; 

𝐵′′ ← 𝐵′′ ∖ {𝑝𝑗}; 

  𝑆𝑜𝑙𝑑 ← 𝑆; 
 EndIf 
EndWhile 
If 𝐶𝑜𝑢𝑛𝑡2 < 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 then 
 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡2; 
 𝑆𝑜𝑝𝑡 ← 𝑆′; 
EndIf 
If 𝐵𝑆(𝑆𝑜𝑝𝑡) passes through a blue point then 
 shift 𝑆𝑜𝑝𝑡 vertically upward by a very small 

distance 𝜖 > 0, to remove that blue point; 
 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 − 1; 
ElseIf  𝑇𝑆(𝑆𝑜𝑝𝑡) passes through a blue point then 
 shift 𝑆𝑜𝑝𝑡 vertically downward by a very small 

distance 𝜖 > 0, to remove that blue point; 
 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 − 1; 
EndIf 
Return 𝑆𝑜𝑝𝑡; 

 

     The Case 2, i.e., if |𝑥(𝑞𝑟) − 𝑥(𝑞𝑙)| < |𝑦(𝑞𝑡) − 𝑦(𝑞𝑏)|, 
can be handled similarly. However, in this case, we shift 
the square horizontally using the same technique as 
described above for Case 1 to obtain the optimal one. 
 

     We access the blue points in sorted order with respect 
to the 𝑦-coordinate stored in the array 𝐵𝑌 . In each 
iteration,  we are either adding or deleting a blue point to 
update the count (number of blue points covered by 
square), and each such blue point is added or deleted at 
most once. Hence, the computation of such a square 
needs amortized linear time. Thus, the following result is 
obtained. 
 
Theorem 3. We can compute an axis-parallel square, 
which covers every red point and as few blue points as 
possible, in 𝑂(𝑚) time and 𝑂(𝑛 + 𝑚) space along with a 
preprocessing task of 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) time. 
 

3.4. Two disjoint axis-parallel squares 
 

Problem 4. Given a blue point set 𝐵 = {𝑝1, 𝑝2, … , 𝑝𝑚}  and 
a red point set 𝑅 = {𝑞1, 𝑞2, … , 𝑞𝑛} with |𝐵| = 𝑚, |𝑅| =
𝑛;  the objective is to compute two disjoint axis-parallel 
squares whose union covers every red point and as few blue 
points as possible. 
     We represent the disjoint pair of squares by 𝑆1 and 𝑆2. 
Since the two squares are disjoint, they must be 
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separable either by a horizontal or a vertical line. We use 
two sweep lines - horizontal and vertical whose event 
points are all the red points stored in 𝑅𝑌  and 𝑅𝑋, 
respectively. For any event point 𝑞𝑖 ∈ 𝑅 of the horizontal 
(resp. vertical) sweep line 𝐻 (resp. 𝑉), the point set 𝑅 is 
divided into two disjoint subsets 𝑄1 and 𝑄2, where 𝑄1 and 
𝑄2 lies below (resp. to the left of) and above (resp. to the 
right of) the sweep line 𝐻 (resp. 𝑉), respectively. Figure 
7 shows an instance of the vertical sweep line 𝑉 passing 
through its event point 𝑞𝑖 .  

Algorithm 4 

     First, we describe the algorithm to compute the 
optimal pair of disjoint squares that are separable by a 
vertical line. We compute two squares 𝑆1 and 𝑆2 that 
cover 𝑄1 and 𝑄2. We already know that there exist 
multiple squares of same size where each one covers the 
same set of red points (i.e., 𝑄1 or 𝑄2) but different set of 
blue points and among these squares, the optimal one is 
obtained by shifting the square and computing the count 
of blue points contained by the square as described in 
Section 3.3. For a given position of vertical sweep line 𝑉, 
we follow the same technique to compute two squares 𝑆1  

and 𝑆2  that cover 𝑄1 and 𝑄2, respectively. If 𝑅𝑆(𝑆1) lies to 
the right of 𝐿𝑆(𝑆2) and 𝑇𝑆(𝑆1) lies above 𝐵𝑆(𝑆2), then 𝑆1 
and 𝑆2 overlaps with each other, e.g., the squares 𝑆1

′  and 
𝑆2 overlaps in Figure 7. We take an array 𝐴1 (resp. 𝐴2) to 
keep all possible squares 𝑆1 (resp.  𝑆2) that cover 𝑄1 
(resp. 𝑄2).  All the array elements, i.e., squares are 
ordered with respect to 𝑥-coordinate of their left sides. 
Note that all such squares have different set of blue 
points contained by them. The number of entries in each 
array are of the order 𝑂(𝑚) since each element (i.e., 
square) of the arrays, except the first and the last 
element, are defined by a blue point lying either on its left 
side or on its right side (if the squares are generated by 
shifting horizontally); the first and last elements (i.e., 
squares) of the array are defined by a red point on its 
right side and left side, respectively. For each square 𝑆1 
in array 𝐴1, we can search for a square 𝑆2 from the array 
𝐴2 so that 𝑆2 is disjoint with 𝑆1, and 𝑆2 contains fewest 
blue points, and this step needs 𝑂(𝑚) time. We compute 
all pairs of squares (𝑆1, 𝑆2) and choose the one for which 
the blue points covered by their union is minimum. This 
process needs 𝑂(𝑚2) time. We repeat the above 
procedure for all different (𝑛 − 2) positions of vertical 
sweep line 𝑉, and hence, the total time needed is 𝑂(𝑛𝑚2).  

Improvement: We can expedite the searching 
procedure by constructing another array 𝐴𝑚𝑖𝑛  of the size 
same as that of array 𝐴2. Let the squares stored in 𝐴2[𝑖] 
be denoted by 𝑆2[𝑖]. We define a 1-dimensional array 
𝐴𝑚𝑖𝑛 , whose 𝑖𝑡ℎ entry 𝐴𝑚𝑖𝑛[𝑖] stores the square with 
minimum number of blue points among the set of 
squares stored in 𝐴2[𝑖] through 𝐴2[𝑘], where 𝑘 is the 
rightmost index of array 𝐴2.  The 𝐴𝑚𝑖𝑛 [𝑖] is defined as 
below 

𝐴𝑚𝑖𝑛 [𝑖] = {
  𝐴2[𝑖],    𝑖𝑓 𝑖 = 𝑘, the rightmost index of 𝐴2 

minimum(𝐴𝑚𝑖𝑛 [𝑖 + 1], 𝐴2 [𝑖]),  otherwise
 

 
Here, the function minimum() returns the square 

containing fewest number of blue points.  We populate 
the array 𝐴𝑚𝑖𝑛 in the reverse direction (i.e., from the 

rightmost entry to the leftmost entry) by reading the 
array 𝐴2 in the backward direction from right to left. 
Thus we can compute all the entries of 𝐴𝑚𝑖𝑛 in linear 
time. Now for a square 𝑆1 in 𝐴1, we can search for an 
element (i.e., a square) in 𝐴𝑚𝑖𝑛 , say  𝐴𝑚𝑖𝑛[𝑗] whose left 
side lies to the right of 𝑅𝑆(𝑆1), while the left side of the 
square stored in preceding index, i.e.,  𝐴𝑚𝑖𝑛[𝑗 − 1] lies to 
the left of 𝑅𝑆(𝑆1). Thus, for the square 𝑆1, the square 
(lying to the right of 𝑆1) with minimum number of blue 
points covered is obtained in 𝐴𝑚𝑖𝑛[𝑗]. When we consider 
the next square 𝑆1 lying to the right of previous 𝑆1 in 𝐴1, 
then we continue to search square in 𝐴𝑚𝑖𝑛 from the 
position where we stopped searching in the previous 
iteration, since the right side of the corresponding square 
𝑆2 must not occur to the left of  𝐴𝑚𝑖𝑛[𝑗]. Thus, we can 
determine all pairs of disjoint squares (𝑆1, 𝑆2) in 
amortized 𝑂(𝑚) time, where the square 𝑆2 contains 
minimum number of blue points for its corresponding 
square 𝑆1. Among these pairs, we choose the one whose 
union contains fewest blue points. We repeat the above 
procedure at each event point of the vertical sweep line. 
Since the number of event points (which are the red 
points in set 𝑅) for the sweep line 𝑉 are 𝑂(𝑛), it needs 
𝑂(𝑛𝑚) time to compute the optimal pair of squares that 
are separable by a vertical line. 

Figure 7. Pairs of disjoint squares (𝑆1, 𝑆2) and (𝑆1
′ , 𝑆2

′ ) 
when the vertical sweep line 𝑉 passes through 𝑞𝑖  . 

 

Similarly, we can compute the optimal pair of 
squares that are separable by a horizontal line by 
sweeping horizontal line 𝐻 through the red points stored 
in 𝑅𝑌. Finally, between the pairs of disjoint squares 
obtained by sweeping the vertical line 𝑉 and the 
horizontal line 𝐻, we choose the pair of squares whose 
union covers fewest blue points and report that pair as 
the optimal solution to Problem 4. Therefore, the 
following result is obtained.  

 

Theorem 4. We can compute two disjoint axis-parallel 
squares whose union covers every red point and as few blue 
points as possible in 𝑂(𝑛𝑚) time using 𝑂(𝑛 + 𝑚) space 
along with  𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) preprocessing time.  
 

3.5. Two disjoint convex polygons 
 

Problem 5. Given a blue point set 𝐵 = {𝑝1, 𝑝2, … , 𝑝𝑚}  and 
a red point set 𝑅 = {𝑞1, 𝑞2, … , 𝑞𝑛} with |𝐵| = 𝑚, |𝑅| = 𝑛; 
the objective is to compute two disjoint convex polygons, 
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whose union covers every red point and as few blue points 
as possible.  
Algorithm 5 

     A minimum-sized convex polygon that covers a set of 
red points must be a convex hull for that point set. We use 
convex hull as a geometric tool to solve Problem 5 and 
the pseudocode of the algorithm is shown below. 
 

Two_Convex_Polygons (𝑩 ∪ 𝑹) 

Input: Bichromatic point set 𝐵 ∪ 𝑅.  
Output: Two optimal convex polygons 𝐶𝐻1

𝑜𝑝𝑡
 and   

                 𝐶𝐻2
𝑜𝑝𝑡

 𝑐overing all red points and minimum      
               number of blue points. 
𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← ∞;  /* stores the number of blue points 
                                   covered by the union of two optimal  
                                   convex polygons */  
For 𝑖 = 1 to (𝑛 − 1) do 
 For 𝑗 = (𝑖 + 1) to 𝑛 do 
  𝐿 ← The line passing through the pair of red  

         points (𝑞𝑖 , 𝑞𝑗) and directed from 𝑞𝑖  to 𝑞𝑗; 

  𝑄ℓ ← The set of red points lying to the left of 𝐿; 
  𝑄𝑟 ← The set of red points lying to the right of 𝐿; 
  𝐶𝐻1 ← Convex hull of the red points in                                  

             𝑄ℓ ∪ {𝑞𝑖 , 𝑞𝑗}; 

  𝐶𝑜𝑢𝑛𝑡1 ← no. of blue points lying inside 𝐶𝐻1; 
  𝐶𝐻2 ← Convex hull of the red points in 𝑄𝑟; 
  𝐶𝑜𝑢𝑛𝑡2 ← no. of blue points lying inside 𝐶𝐻2; 
  If (𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡2 ≤ 𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛) then 
   𝐶𝑜𝑢𝑛𝑡𝑚𝑖𝑛 ← 𝐶𝑜𝑢𝑛𝑡1 + 𝐶𝑜𝑢𝑛𝑡2; 
   𝐶𝐻1

𝑜𝑝𝑡
← 𝐶𝐻1; 

   𝐶𝐻2
𝑜𝑝𝑡

← 𝐶𝐻2;  
  EndIf 
 EndFor 
EndFor 

Return 𝐶𝐻1
𝑜𝑝𝑡

, 𝐶𝐻2
𝑜𝑝𝑡

; 
 

The number of separator lines 𝐿 that passes through 

every pair of red points is 
 𝑛

𝐶2, i.e., 𝑂(𝑛2). For a particular 
𝐿, we compute each of the corresponding two convex 
hulls in 𝑂(𝑛𝑙𝑜𝑔𝑛) time [10]. We can check whether a blue 
point lies inside a convex hull in 𝑂(𝑙𝑜𝑔𝑛) time, and we 
repeat this step for all 𝑚 blue points in 𝐵. Hence, we can 
count the number of blue points contained by the pair of 
convex hulls, i.e., convex polygons in 𝑂(𝑚𝑙𝑜𝑔𝑛) time. 

Thus, for a line 𝐿, it takes 𝑂((𝑚 + 𝑛)𝑙𝑜𝑔𝑛)  time to 

construct the pair of convex hulls and to count the total 
number of blue points lying inside them. The number of 
such lines 𝐿 are 𝑂(𝑛2) and hence, the following result is 
obtained. 

 

Theorem 5. We can compute two disjoint convex polygons 
whose union covers all the red points and as few blue 
points as possible, in 𝑂(𝑛2(𝑚 + 𝑛)𝑙𝑜𝑔𝑛) time and 𝑂(𝑛 +
𝑚) space along with 𝑂(𝑛𝑙𝑜𝑔𝑛 + 𝑚𝑙𝑜𝑔𝑚) preprocessing 
time.  

 

4. Conclusion  
 

     In this work we have shown how to compute 
geometric objects such as rectangles, squares, convex 
polygons whose union covers every red point and as few 

blue points as possible. In future, it remains a challenge 
to solve these problems in higher dimensions. 
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