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Abstract

Since its inception, soft set theory has shown to be a useful mathematical framework for addressing
problems involving uncertainty, proving its usefulness in a variety of academic and practical disciplines.
The operations of soft sets are at the very core concept of this theory. In this regard, a new kind of soft set
operation known as the complementary extended gamma operation for soft sets is presented in order to
improve the theory and theoretically contribute to it in this study. To shed light on the relationship between
the complementary extended gamma operation and other soft set operations, a thorough analysis of this
operation's attributes, including its distributions across other soft set operations, has been conducted.
Additionally, this paper aims to contribute to the literature on soft sets by examining the algebraic structure
of soft sets from the perspective of soft set operations, which provides a thorough grasp of their use as well
as an appreciation of the ways in which soft sets can be applied to both classical and nonclassical logical
thought.

Keywords: Soft Set, Soft Set Operations, Complementary Extended Soft Set Operations.

1. INTRODUCTION

In our daily lives, we often encounter subjective concepts which lack the objectivity of scientific knowledge
and vary from person to person. To address the complexities of the uncertainty we face, people have sought
various solutions over time. However, existing methods have shown discrepancies in tackling new complex
problems arising from changing conditions. Among the theories proposed to handle uncertain situations,
Zadeh's theory of fuzzy sets stands out as the most prominent. Fuzzy sets are defined by their membership
functions. As fuzzy set theory rapidly developed, certain structural issues came to light. In response,
Molodtsov [1] introduced soft set theory as a solution to these structural problems.
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The soft set has been applied in many theoretical and practical situations since its debut, and several
additional studies have been published in the literature. Maji et al. [2] paved the path for more study on the
subject of soft set theory by defining the equality of two soft sets, the subset and superset of a soft set, the
complement of a soft set, and soft binary operations like and/or, union, and intersection operations for soft
sets. Set theory concepts led Pei and Miao [3] to redefine the concepts of "soft subset" and "intersection of
two soft sets." Ali et al. [4] then suggested a number of other soft set operations, which Sezgin and Atagiin
[5] and Ali et al. [6] carefully investigated. Sezgin et al. [7] and Stojanovic [8] described the extended
difference and extended symmetric difference of soft sets, respectively, and their properties were carefully
investigated in relation to other operations on soft sets.

Soft set operations may be broadly classified into two types: restricted soft set operations and extended soft
set operations, according to an analysis of the research conducted thus far. Eren and Calisic1 [9] developed
and evaluated the soft binary piecewise difference operation for soft sets, and Sezgin and Calisic1 [10]
carried out an in-depth investigation of the properties of this soft set operation. The inclusive and exclusive
complement of sets is a novel concept in set theory that was presented in 2021 by Cagman [11]. Sezgin et
al. [12] provided five new concepts pertaining to binary complement operations that were already described
by Cagman [11]. Aybek [13] explored the properties of numerous more restricted and extended soft set
operations with the motivation of [11,12]. Moreover, the soft binary piecewise operation form-of which
Eren and Cagman [9] were the pioneers-was modified somewhat by taking the complement of the image
set in the first row. Consequently, several researchers have studied the complementary soft binary piecewise
operations in great detail [14-22]. On the other hand, Akbulut [23] and Demirci [24] altered the form of the
existing extended soft set operations in the literature by taking the complement of the image set in the first
and second rows, and defining the complementary extended difference, lambda and union, plus and theta,
respectively, and giving their algebraic properties and relations with other soft set operations. For more on
soft equality, please see [25-32] and for other applications of soft sets to algebraic structures, see the
following [32-46].

Analyzing the characteristics of designated operations on sets as well as the sets themselves is a crucial
component of algebraic structures, which is to categorize mathematical structures. This analysis is important
within the context of algebra. There are two main kinds of soft set collections to be aware of when thinking
about soft sets as algebraic structures: collections with a fixed set of parameters and collections with
changing parameter sets. Depending on the extra actions performed, these collections exhibit different
behaviors. Concepts related to soft set operations are just as essential as the operations of classical set
theory, which form the basis of soft sets.

In this study, a novel soft set operation named "complementary extended gamma" is introduced and its
properties are thoroughly examined, with the goal of advancing the theory of soft sets. In addition, an
analysis is conducted to investigate the relationship between different kinds of soft set operations and the
complemented extended gamma operation in order to clarify them. This topic is significant within the
framework because knowledge of the algebraic structures of soft sets in relation to novel operations is
necessary to comprehend their applications.

2. PRELIMINARIES

Definition 2.1. Let U be the universal set, E be the parameter set, P(U) be the power set of U, and let D <
E. A pair (F, D) is called a soft set on U. Here, F is a function given by F: D — P(U) [1].
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The notation of the soft set (F,D) is also shown as Fp, however, we prefer to use the notation of (F,D) as is
used by Molodtsov [1] and Maji et al. [2].

The set of all soft sets over U is denoted by Sg(U). Let K be a fixed subset of E, then the set of all soft sets
over U with the fixed parameter set K is denoted by Sg(U). In other words, in the collection Sk(U), only
soft sets with the parameter set K are included, while in the collection Sg(U), soft sets over U with any
parameter set can be included. Clearly, the set Sx(U) is a subset of the set Sg(U).

Definition 2.2. Let (F,D) be a soft set over U. If F(X)=0 for all XeD, then the soft set (F,D) is called a null
soft set with respect to D, denoted by @p. Similarly, let (F,E) be a soft set over U. If F(e)=0 for all X€E,
then the soft set (F,E) is called a null soft set with respect to E, denoted by @g [4].

A soft set can be defined as F: @ — P(U), where U is a universal set. Such a soft set is called an empty soft
set and is denoted as @y. Thus, @y is the only soft set with an empty parameter set [6].

Definition 2.3. Let (F,D) be a soft set over U. If F(X)=U for all XeD, then the soft set (F,K) is called a
relative whole soft set with respect to D, denoted by Up. Similarly, let (F,E) be a soft set over U. If F(e)=U
for all N€E, then the soft set (F,E) is called a whole soft set with respect to E, denoted by Ug [4].
Definition 2.4. Let (F,D) and (G,Y) be soft sets over U. If DEY and F(X) C€G(X) for all NeD, then (F,D)
is said to be a soft subset of (G,Y), denoted by (F,D)S(G,Y). If (G,Y) is a soft subset of (F,D), then (F,D)
is said to be a soft superset of (G,Y), denoted by (F,D)3(G,Y). If (F,.D)E(G,Y) and (G,Y)E(F,D), then
(F,D) and (G,Y) are called soft equal sets [3].

Definition 2.5. Let (F,D) be a soft set over U. The soft complement of (F,D), denoted by (F,D)" =(F',D), is
defined as follows: for all XeED, F'(X)=U-F(X) [4].

Cagman [11] introduced two new complements as a novel concept in set theory, termed as the inclusive
complement and exclusive complement. For ease of representation, we denote these binary operations as +
and 0, respectively. For two sets D and Y, these binary operations are defined as D+Y=D'UY, D6Y=D'NY".
Sezgin et al. [12] examined the relations between these two operations and also defined three new binary
operations and analyzed their relations with each other. Let D and Y be two sets D*Y=D'UY', DyY=D'NY,
and DAY=DUY".

As a summary for soft set operations, we can categorize all types of soft set operations as follows: Let "®"
be used to represent the set operations (i.e., here ®@ can be N, U,\, A, +,0, *, A,y), then all type of soft set
operations are defined as follows:

Definition 2.6. Let (F, D), (G, Y) € Sg(U). The restricted ® operation of (F,D) and (G,Y) is the soft set
(H,P), denoted to be (F,D)®x(G,Y) = (H,P), where P=D N Y # @ and for all XeP, H(X) = F(X)®G(X).
Here, if P=DNY=0, then (F, D) ®r(G,Y)=0y [4,5,6,13]
Definition 2.7. Let (F, D), (G,Y) € Sg(U). The extended ® operation (F, D) and (G, Y) is the soft set (H, P),
denoted by (F, D) ®:(G, Y) =(H, P), where P=DUY and for all X € P,
F(X), NeD-Y
H(R) = G(X), NeY-D
FR)®G(X), XeDnyY
[2,4,6,7,8,13]
Definition 2.8. Let (F,D), (G,Y) € Sg(U). The complementary extended ® operation (F,D) and (G,Y) is

%k
the soft set (H, P), denoted by (F, D) ® (G,Y)=(H, P), where P=DU Y and forall X € P,
€

F'(R), NeED-Y
HR®) ={ G'&), NeY—D
FIN)®GR), XeEDNY
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[23,24]
Definition 2.9. Let (F,D), (G,Y) € Sg(U). The soft binary piecewise ® of (F,D) and (G,Y) is the soft set
(H,D), denoted by (F,D) ®(G, Y) = (H,D), where for all X € D,
_ F(X), NeD-Y

HE) = {F(N)@G(N), NeDnY
[9,10,47,48]
Definition 2.10. Let (F,D), (G, Y) € Sg(U). The complementary soft binary piecewise ® of (F,D) and

*

(G,Y) is the soft set (H,D), denoted by (F,D) ~ (G,Y) = (H, D), where for all X € D,

( F(X), NeED-Y
HE®) = {F(N)@G(N), NeEDNY
[14-22].

Definition 2.11. Let (S, *) be an algebraic structure. An element s €S is called idempotent if s*=s. If s’>=s
for all s€S, then the algebraic structure (S,*) is said to be idempotent. An idempotent semigroup is called a
band, an idempotent and commutative semigroup is called a semilattice, an idempotent and commutative
monoid is called a bounded semilattice [49].

In a monoid, although the identity element is unique, a semigroup/groupoid can have one or more left
identities, however, if it has more than one left identity, it does not have a right identity element, thus it
does not have an identity element. Similarly, a semigroup/groupoid can have one or more right identities,
however, if it has more than one right identity, it does not have a left identity element, thus it does not have
an identity element [50].

Similarly, in a group, although each element has a unique inverse, in a monoid, an element can have one or
more left inverses, however, if an element has more than one left inverse, it does not have a right inverse,
thus it does not have an inverse. Similarly, in a monoid, an element can have one or more right inverses,
however, if an element has more than one right inverse, it does not have a left inverse, thus it does not have
an inverse [50]. We refer to [51] for the potential future graph applications and network analysis with respect
to soft sets.

3. COMPLEMENTARY EXTENDED GAMMA OPERATION

In this section, a new soft set operation called the complementary extended gamma operation of soft sets is
introduced with its example, and its full algebraic properties are analyzed.
Definition 3.1. Let (F, Z), (G,C) be soft sets over U. The complementary extended gamma operation (y) of

%k
(F,Z) and (G, C) is the soft set (H, K), denoted by (F,Z) v (G,C) =(H,K), where for all ReK=ZUC,
€

F(X), NeZ-C
H®)=1 G (), REC-Z
F(R)YG(R), NezZNC
where F(X)yG(X)=F'(X)NG(X) for all ReZNC.
Example 3.2. Let E={e,,e,,e3,e,} be the parameter set, and Z={e,, e3} and C={e,, e3, e,} be two subsets
of E, and U={hy,h;,h3,h ,hs} be the universal set. Assume that (F,Z)={( e; {h; hs}),(e3,{hy,h;.hs})},
(G,C)={(e;,{h1,hy,hs}),(e3,{hy,h3,h,}),(e4,{h3,hs})}  be two  soft sets over U. Let

*
(F,2) v (G,C)=(L,ZUC), where for all X eZUC,
€
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F(R), NEZ-C
L®)=1 G (N), ReC-Z
F(XN)NG(R), XezZNC
Here, since ZUC={e;,eq,3,64}, Z-C={e;}, C-Z={e,,e,}, ZNC={e3}, thus
L(e;) =F'(e1)={ hy,h3,hs},L(e;) =G'(ex)={hy,hs},L(es) =G'(e4)={hy,hy, hy},L(e3)=F'(e3)NG(e3)={h;
;hg}N{hyhghy }=ths, h,}. Hence,

*
(F.2) y (G,C)=1{( e1,{hy,hzhye}), (62,1 hyhs}).(es, ths, hy}),(eq, thyhy, byt ).
€
Theorem 3.3. (Algebraic Properties of Operation)

%k
1) The set Sk (U) is closed under y

€

Proof: ltis clear that _ is a binary operation on Sg(U). Indeed,
€

y

Z}j : Se (U)x Sg (U)- Sk (U)

*
((F.2),(G,0)) = (F.2) YE(G,C)Z(L,ZUC)
Similarly,

Z}j : Sz(U)x Sz(U)—- Sz(U)

€

*
((F,2), (G,2)) = (F,Z) ’ (G,2)=(T,ZUZ)=(T,Z)
€
x
That is, when Z is a fixed subset of the set E and (F,Z) and (G,Z) are elements of Sz(U), then so is (F,Z) v
&€

%k
(G,Z). Namely, Sz(U) is closed under v too.
s s %
2)[(F.2) , GO, HR) #(F.2Z), [(GC) , (HR)].
e e e e

*
Proof: Firstly, let’s handle the left hand side (LHS). Let (F,Z) v (G,C)=(T,ZuUC), where for all NeZUC,
€

F (R), ReZ-C
TX)=41 G (), NeC-Z
F(X)NG(R), NeZNC

%k
Let (T,ZUC) v (H,R) = (M,ZUCUR), where for all ReZUCUR,
&
T (R), XE(ZUC)-R
M®)={ H(X), XER-(ZUC)

T (R)NH(R), NXe(ZUC)NR
Thus,
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r F(X), Re(Z-C)-R=ZNC'NR'

G(R), Re(C-Z)-R=Z'NCNR'
F(X)UG'(R), Xe(ZNC)-R=ZNCNR'

M(X)={ H(X) XER-(ZUC)=Z'NC'NR
F(X)NH(R), Re(Z-C)NR=ZNC'NR
G(R)NH(X), Xe(C-Z)NR=Z'NCNR
L(FR)UG'(R))NH(X), XE(ZNC)NR=ZNCNR

%k

Now let’s handle the right hand side (RFS) of the equation, Let (G,C) v (H,R)=(K,CUR). Here, for all
&€
NeCUR,

G (R), XeC-R
K®)={ HX), NeR-C
G'(X)NH(X), NXeCNR
Assume that (F,Z) ? (K,CUR) = (S,ZUCUR), where for all NeZUCUR,
£
F (), XEZ-(CUR)
S(R)=1 K'(N), XE(CUR)-Z
F'(R)NK(R), XeZN(CUR)
Thus,
(F (X), XeZ-(CUR)=ZNC'NR'
G(X), Xe(C-R)-Z=Z'NCNR
H(R), Xe(R-C)-Z=Z'NC'NR
S(X)=1 G(X)UH'(R), Xe(CNR)-Z=Z'NCNR
F'(R)NG(R), XeZN(C-R)=ZNCNR'
F'(R)NH(R), ReZN(R-C)=ZNC'NR
LF'(R)N(G(R)UH'(R)), RXeZN(CNR)=ZNCNR

*
It is seen that M# S. That is, in the set Sg(U), v does not have associative property.

* * * %
NI(F2), G2 ) M) * (D) [(G2) ) (H2)]

%k
Proof : Firstly, let's look at the LHS. Let (F,Z) v (G,2)=(T,ZUZ), where for all X € ZUZ=Z,
&€

F(X), NezZ-Z=¢
T(N)= G(R), NezZ-Z=¢
F(X)NG(R), RNezZNZ=Z

*
Let (T,Z2) v (H,Z) = (M, ZUZ), where for all NEZ,
€

T(R), REZ-Z=0
M®)=1 H(X), REZ-Z=0
T'(R)NH(X), ReZNZ=Z
Thus,
T(R), X €Z2-2=0
M(X)= H (X), REZ-7=0

FR)UG'(X)NH(R), NEZNZ=Z
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*

Now let’s handle RHS. Let (G,Z) v (H,2)=(L, ZUZ), where for all R€Z,
€
G (X)), REZ-Z=0
L®)=§ H({X), NEZ-Z=0
G'(R)NH(XR), RezZNzZ=Z
E S
Let (F,Z) v (L,Z) = (N,ZUZ), where for all XEZ,
€
F (X), REZ-Z=0
N®)={ LX), NEZ-Z=0
F'(R)NL(X), NezZNZ=Z
Hence,
F(X), NEZ-Z=0
N®)={ LX), NEZ-Z=0

F(RNG'R)NH(R)), ReZNZ=Z
b
It is seen that M#N. That is, in the set S,(U), v does not have associative property.

€
* b
H(F2) , GO# (GO , (F2)
€ €
Proof: Firstly, we observe that the parameter set of the soft set on both sides of the equation is ZUC, and
x
thus the first condition of the soft equality is satisfied. Now let us look at the LHS. Let (F,Z) v
€
(G,C)=(H,ZuUC), where for all NeZUC,
F (R), RezZ-C
H®)=1 G (§), REC-Z
F'(R)NG(X), XezZNC
*
Now let’s handle the RHS. Assume that (G,C) v (F,Z2)=(T,CUZ), where for all ReCUZ,
€

G (X), NEC-Z
TX)={ F(), NeZ-C
G'(R)NF(X), NeCNz
* * %k
Thus, it is seen that H#T. Similarly, it is easily seen that (F,Z) v (G,2) # (G,2) v (F,Z). That is, v is
€ €

&
commutative neither in Sg(U) nor in Sy (U).

*
e
*
Proof: Let (F,2) v (F,Z2)=(H,ZuUZ), where for all XeZ,
€
F (X), REZ-Z=0
H®X)={ F(N), REZ-Z=0

F'(R)NF(R), NezZNZ=Z
x
Hence, for all ReZ, H(X)= F’(X)NF(X)=0, and so (H,Z)= @7. That is, Y is not idempotent in Sg(U).

€

®
69, , (F.2)=(F.2)
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%k
Proof: Let @7=(T,Z). Thus, for all XeZ, T(X)=0. Let (T,Z) Y (F,Z) =(H,ZUZ), where for all XeZ,
€
T(R), NEZ-Z=0
H®X)=1{ F(N), REZ-7=0

T'(X)NF(R), NEZNZ=Z

Hence, for all ReZ, H(X)= T’ (X)NF(X)= UNF(X)=F(X) and (H,Z2)=(F,Z). That is, in Sz(U), the left identity

%k
element of v 1s the soft set.
£

%k
7 (F,Z) ye(bz:@z-

%k
Proof: Let @7 =(S,Z). Thus, for all ReZ, S(X)= Q. Let (F,Z) v (S,2)=(H,ZUZ), where for all XeZ,
&

F (X), NEZ-Z=0
H®)={ s'(x), NEZ-Z=0
F'(RX)NS(R), NReZNZ=Z
Hence, for all XeZ, H(X)= F’(X)NS(X)= F’(X)N@=0 and (H,Z)= @. That is, the right absorbing element

%
of v in S, (U) is the soft set @ .
Tk o
8) (F,Z2) D=0y . (F,2)=(F,2).
Ye Ye

Proof: Let 0y= (K, @) and (F,Z) :I: (K, )= (Q,Z U 0) =(Q,Z), where for all XeZ,

F(R), REZ-0=7Z
Q)= K W), REP-Z=0
F'(R)NK(X), ReEZNP=0

Hence, for all XeZ, Q(N)=F'(X) and thus (Q,Z) = (F,Z)" .
%k
Similarly, @ v (F,Z2)= (W, @ U Z)=(W,Z). where for all XeZ,
&

K (R), NED-Z=0
W®)={ F(R), REZ-p=7
K'(R)NF(X), NepPNZ=0
Hence, for all XeZ, W(X)= F'(X) and thus (W,Z) = (F,Z)".
9)U; | (£.2)-0;

*
Proof: Let Uz =(H,Z), where for all XeZ, H(X)=U. Let (H,Z) y (F,Z)=(T,ZUZ), where for all XeZ,
&

H(R), REZ-Z=0
T(X)={ F(X),  RezZ-Z=p
HI(X)NF(X), REZNZ=Z
Here for all XeZ, T(X)=H’(X)NF(X)= @ NF(X)=0, and thus (T,Z)= 0.

10) (F.Z) t U,=(F,Z)" .

%k
Proof: Let Uz =(H,Z), where for all XeZ, H(X)=U. Let (F,Z) v (H,2)=(T,ZuZ), where for all NeZ,
&
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F(X),  Ne€zZ-Z=0
T(X)={ H(R), NeZ-Z=0
F'(X)NH(R), REZNZ=Z
Here for all XeZ, T(X)=F’(X)NH(X)=F’(X)NU=F’(X), and thus (T,Z)= (F,Z)"

*
11) Ug y (F,Z) =0g

%k
Proof: Let Ug =(H,E), where for all XeZ, H(X)=U. Let (H,E) . (F,Z)=(T,EUZ), where for all XeE,
&

H(X), REE-Z=7'
T(R)={ F(N), NEeZ-E=0
H'(X)NF(X), ReEENZ=Z
Here for all XeE, T(X)=H’(X)NF(X)= @ NF(X)=0, and

9, NEE-Z=7'
TX)={ F(X), NEZ-E=0
@, REZNE=Z

Thus, for all XeE, T(X)=0, therefore (T,E)= Q.
%k
12) (F,Z) v (F.Zy=(F,2) .
&

%k
Proof: Let (F,Z)" =(H,Z), where for all XeZ, H(X)=F'(X). Let (F,Z) y (H,Z2)=(T,ZUZ), where for all XeZ,
&

F (R), REZ-Z=0
T(X)={ H(R), NeZ-Z-9
F'(R)NH(R), REZNZ=Z
Here for all ReZ, T(X)= F’(X)NH(X)=F’(X) NF'(X)=F’(X) , and thus (T,Z)= (F,Z)"

*
That is, the right absorbing element of Y in Sz(U) is the soft set (F,Z)".

&

13) (F,Z) :X: (F,Z2)= (F,2).

%k
Proof: Let (F,Z)" =(H,Z), where for all XeZ, H(X)=F'(X). Let (H,Z) y (F,Z)=(T,ZUZ), where for all XeZ,
&

H(X),  ReZ-Z=0
TX)=1 F(N), NEZ-7=0
H'(X)NF(R), REZNZ=Z
Here for all ReZ, T(X)= H’(X)NF(X)=F®X)NF'(X)=F(X) , and thus (T,Z)= (F,Z)

*
That is, the left unit element of y in Sz(U) is the soft set (F,Z2)".
&

14) [(F,Z2) ;};(G,C)]r =(F,Z2) L:(G,C).

*
Proof: Let (F,Z) v (G,C)=(H,ZuUC), where for all XeZUC,
&

F (X), ReZ-C
H®)={ G (X), NEC-Z
F(R)NG(R), XezNnC
Let (H,ZUC)" =(T,ZuUC), where for all XeZUC,
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F(X), NeZ-C
T(R)=1 G(X), NeC-Z
F(X)UG'(X), XezNC
Hence, (T, ZUC) =(F,Z2) L.(G,0).

15) (F.2) | (G Z) U, &(F,Z) = @, and (G, Z)=U,

Proof: Let (F, Z) y (G, Z) = (T,ZUZ), where for all ReZ,
&

F(X), REZ-Z=0
TX)={ G(N), REZ-7=0
F)NGR), ReZNZ=Z
Since (T,Z)= Uz, T(X)=U for all XeZ and thus, F’(X)NG(X)=U for all XeZ. So, F’(X)=G(X)=U forall X €
Z.Thus, (F,Z) = @z ,and (G, Z) = UZ

16) 9, §<F 2), (G0),0c EF2) (G O), O E(F2) |, GO, (F2), (GO E Upc
1 (F.2) (G Z) & (F,Z) and (F, Z) (G 7) E(G,2).

Proof: Let (F 7) (G 7)=(H, Z U Z), where for all XeZ,

F(N), NeZ-7Z=0
H®)={ GN), NEZ-Z=0
F(RN)NGR), NezZNZ=Z

E S ~
Since H(X)=F'(X)NG(X) € F'(X) for all ReZ, (F,Z) v (G,Z2) € (F,Z)". Similarly, HX)=F'(X)NG(X) <
&
%k ~
G(X) for all XeZ. Thus, (F2) | (G.2) E(G.2)
&

~ %k ~ %k

18)1f (F.2) E(G.2), then (6,2) |, (H,0) E (F,2) , (H,0).
& &

~ E S
Proof: Let (F,Z) € (G, Z) then, F(X) € G(X) for all XeZ and so G'(X)SF'(R). Let (G,Z) v (H,C)=(W,ZuU
&
C), where for all Xe ZU C,
G (X), ReZ-C
WR)={ H®), ReC-Z
G'(R)NH(X), RezZNC
(F, Z) (H C) = (L,ZUC). where for all Xe ZUC,
F(X), NEZ-C
LN)={ HX), ReC-Z

F(X)NH(X), XEZNC
Thus, W(X)=G'(X) S G'(X)=L(X) for all ReZ-C, W(X)=H'(X) € H'(X)=L() for all XeC-Z, and W(K)

% ~ %k
=HX)NFX) € HENGER)-L(X) for all REZNC . Thus, (G,2) | (H,0) E (F.2)  (H,0).
& &
%k ~ %k ~
19) If (G, Z) v (H,©) € (F,Z2) v (H, C), then (F,Z)S(G,Z) need not have to be true. That is, the converse
& &
of Theorem 3.3. (18) is not true.
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Proof: Let us give an example to show that the converse of Theorem 3.3. (18) is not true. Let
E={e;,e;,e3,e4e5} be the parameter set, A={e;,e3}, C={eje3 es} be the subset of E, and
U={hy,h,, h3,h,, hs} be the universal set.

Let (FsZ):{(el,f{hZ' hS})a(e37{h17h27h5})}a (GaZ):{(el,'{hZ})a(e3a{hlahz})}a (H,C):{( elaw)a(e&@)a
(es,U)} be soft sets over U.

Let (GZ) | (H C)=(L,ZU C), then (L,ZUC)={(e;,®).(e3, ®).(es, @)} and let (F, Z) _(H,0)=(K.ZUC)

(K,ZUC)={(e1, ?),(e3, D),(es,D)}. Hence, (G,Z) Ys(H' C) € (F,7) Ye(H' C) but (F,Z) is not a soft subset
of (G,2).
20) If (G.2) € (F,C) and (K.Z) € (L, ). then (F.2) (K 7) €(G, C) (LO).
Proof: Let (G,Z)E (F,C) and (K,Z) € (L,C). Hence 7<C and for all RXeZ, G(X)S F(X) and K(R)<
L(R).Let (F,Z) ;i (K,Z) = (W,Z). Thus, for all ReZ,

F(X), N€EZ-Z=0

WR)=9 K (), NEZ-Z=0
FI(X)NK(R), REZNZ=Z
Let (G, C) (L C) = (S,C). Thus, for for all XeC,
G (X), NeC-C=0
SR)={ L(N), ReC-C=0

G'(N)NL(X), ReCNcC=C
Hence sinec for all NEZ G(R)CS F(R) since F'(R)S G'(R) W(R)=F'(R)NK(R) € G'(R)NL(X)=S(X),

(F, Z) (K Z) €(G, C) (L O).
Theorem 3.4. The complementary extended gamma operation has the following distributions over other

soft set operations:

Theorem 3.4.1. The complementary extended gamma operation has the following distributions over
restricted soft set operations:

1) LHS Distributions of the Complementary Extended Gamma Operation on Restricted Soft Set Operations:
1) If ZNCNR=0 then (F, Z) [(G C)Nr(H,R)]=[(F, Z) (G O)]URl(F, Z) (H R)].

Proof: Cons1der first the LHS Let (G,C)Ngr(H,R)=(M, C()R) where for all NECOR M(R) = G(R) N H(X).
Let (F, Z) (M CNR)=(N,ZU(CNR)), where for all ReZU(CNR),

F'(X), XeZ-(CNR)
N®)={ M'(R), Xe(CNR)-Z
F (R)NM(R), XEZN(CNR)
Thus,
F(R), XeZ-(CNR)=Z-(CNR)
N(X)={ G (R)UH(X), Xe(CNR)-Z=Z'NCNR

F (X)N(GR)NH(KX)), XeZN(CNR)=ZNCNR
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E S E S %k
Now lets handle the RHS i.e. [(F,Z) y (G,O)]UR[(F,Z) y (H,R)]. Let (F.,Z) y (G,0)=(V,ZuC), where, for
€ & €

all XeZUC,
F'(R), NeZ-C
VIR)=1{ G'(N), NEC-Z
F'(R) N G(R), NeZNC
%k
Assume that (F,Z) y (H,R)=(W,ZUR), where for all ReZUR,
€
FI(X), NEZ-R
W(R)={ H'(X), NER-Z
F'(R)NH(X), NEZNR

Let (V,ZUC) Ug(W,ZUR)=(T,(ZUC)N (Z U R))), where, for all ReZU(CNR), T(X)=V(X)NW(X). Hence,

(F (R)UF (X), Xe(Z-C)N(Z-R)=ZNC'NR'

F (R)UH'(X), Re(Z-C)N(R-2)=0

F (R)U(F (X)NH(X)) Re(Z-C)N(ZNR)=ZNC'NR

G (RX)UF (R), RE(C-Z)N(Z-R)=¢

T(X)=<{ G (R)UH (X), Re(C-Z)N(R-Z)=Z'NCNR
G (R)U(F (R)NH(X)), Xe(C-Z)N(ZNR)=0

(F (R)NG(R))UF (X), Xe(ZNC)N(Z-R)=ZNCNR'

(F (R)NG(R))UH (R), Re(ZNCO)N(R-2)=0
L(F'(R)NG(R))U(F (R)NH(R)), Xe(ZNC)N(ZNR)=ZNCNR

Thus,

( F(X), Re(Z-C)N(Z-R)=ZNC'NR'

| F(x) Re(Z-C)N(ZNR)=ZNC'NR
T(N)=4 G (R)UH (N), Xe(C-Z)N(R-Z)=Z'NCNR
| F(R), Xe(ZNC)N(Z-R)=ZNCNR'

\(FR)NGR)U(E (R)NH(X)),

Re(ZNC)N(ZNR)=ZNCNR

Here, when considering Z-(CNR) in the function N, since Z-(CNR)=ZN(CNR)', if an element is in the
complement of (CNR), it is either in C-R, in R-C, orin (C U R)". Thus, if X € Z-(CNR), then X EZNCNR'
or X €eZNC'NR or X eZNC'NR'. Thus, N=T under ZNCNR=0Q.

2) If Z’NCNR=0 then (F,Z):{k [(G,C)UR(H,R)]=[(F,Z):X(< (G,C)]UR[(F,Z)?(< (H,R)].
3) If Z’NCNR=0Q then (F,Z):(X< [(G,C)*r(H,R)]=[(F,2) 2; (G,O)]uRrl(F,2) ;k (H,R)].

* x *
4) If ZNCNR=ZNCNR=0 then (F,Z) y [(G,C) 6r(H,R)]=[(F,2) 0 (G,O)JUR[(F,2) 0 (H,R)]
€ € €
i1) RHS Distribution of Complementary Extended Gamma Operation on Restricted Soft Set Operations

1) If (ZAC)N R=0 if [(F,Z)Ur(G,C)] ;k (H,R)=[(F,Z):(l< (H,R)]nR[(G,C)::< (H,R)].
Proof: Consider first LHS. Let (F,Z)Ug (G,C)=(M,ZNC), where for all XeZN C, M(R)=F(X)UG(X). Let
M,Zn C) :: (H,R) =(N,(ZNC)UR)), where Xe(ZNC)UR,
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M'(X), Re(ZNC)-R
N(X)=<{ H'(X), NeER-(ZNC)
M'(R)NH(R), NeZN(CNR)
Thus,
F'(R)NG'(X), Ne(ZNC)-R=ZNCNR'
N(R)=< H'(N), NeR-(ZNC)=R-(ZNC)

(F'(R)NG'(X)) NH(X), KXEZN(CNR)=ZNCNR

k %k %k
Now consider RHS. i.e. [(F,Z) y (H,R)]NR[(G,C) y (H,R)]. Let (F.,Z) y (H,R)=(V,ZUR), where for all
€ € €

NeZUR,
F'(R), NEZ-R
V(X)=< H'(XN), NER-Z
F'(R)NH(X), NEZNR

%k
Now, let (G,C) y (H,R)=(W, CUR), where for all XReCUR,
t

G'(N), ReC-R
WR)={ H'(N), RER-C
G'(X)NH(X), ReCNR
Let (V,ZUR) Ng(W,CUR)=(T,(ZUR)N (C U R)). Here, for all Re(ZNC)UR, T(X)=V(X)NW(X). . Thus,

F (X)NG (X), Xe(Z-R)N(C-R)=ZNCNR'
F (R)NH (R), Xe(Z-R)N(R-C)=0
F(X)N(G'R)NHE)), Xe(Z-R)N(CNR)=0
H (X)NG (X), Xe(R-Z)N(C-R)=0
T(X)=< H(X)NH (X), Re(R-Z)N(R-C)=Z'NC'NR
H ®)N(G'(R)NH(R)), Xe(R-Z)N(CNR)=Z'NCNR
(F'(R)NH(R))NG (X), Xe(ZNR)N(C-R)=¢
(F'(R)NH(R))NH (X) Xe(ZNR)N(R-C)=ZNC'NR
L(F'(X)NH(R))N(G'(R) NH(R)), Xe(ZNC)N(ZNR)=ZNCNR
Thus,
( F(X)NG (), Xe(Z-R)N(C-R)=ZNCNR'
RTNCS Re(R-Z)N(R-C)=Z'NC'NR
T(N)={ 0, Xe(R-Z)N(CNR)=Z'NCNR
| @, Xe(ZNR)N(R-C)=ZNC'NR
\(F‘(N)mH(x))m(G'(x)nH(x)), Xe(ZNC)N(ZNR)=ZNCNR

Here, if we consider R-(ZNC) in the function N, since R-(ZNC)=RN(ZNC)', if an element is in the
complement of (ZNC), it is either in Z-C, in C-Z, or in (ZU C). Thus, if X € R —(ZNC), then X ERNZNC'
or X eERNZ'NC or X eERNZ'NC'. Hence, N=T is satisfied under the condition Z'NCNR=ZNC'NR= @. The
condition Z'NCNR=ZNC'NR=@ implies that (ZAC)N R=Q is obvious

2) If ZNCNR'=(ZAC)N R=0, then [ (F,Z)Nx(G,C)] i(H,R)Z[(F,Z) i (H,R)]UR[(G,C) ;ks (H,R)].

3) If ZNCNR'=(ZAC)N R=9, then [(F,Z)0r(G,C)] :Z(H,R)z[(F,Z) ;i(H,R)] UR[(G,C) Fi(H,R)].
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x x *
4) If ZNCNR'=(ZAC)N R=0, then [(F,Z)*g (G,C)] y (H,R)=[(F,Z) n (H,R)] NR[(G,C) N (H,R)].
€ € €
Theorem 3.4.2. The following distributions of the complementary extended gamma operation over

extended soft set operations hold:

1)LHS Distributions of the Complementary Extended Gamma Operation on Extended Soft Set Operations

b x *
DIf ZNCNR'=(ZAC)NR=@, then (F,Z) y [(G,C)*<(H,R)]=[(F,Z) 0 (G,O)]U[(F,2) 0 (H,R)].
€ € €
Proof: Consider first LHS. Let (G,C)*, (H,R)=(M,CUR), where for all X € CUR,
G(X), XeC-R
M(R)=<1 H(X), XeR-C
G'(X)UH'(X), ReCNR

%k
Let (F,Z) y (M,CUR)=(N,ZU(CUR)), where for all Xe ZUCUR,
€

F'(N), NEZ-(C UR)
N(R)={ M'(Y), Xe(CUR)-Z
F (R)NM(X), ReZN(CUR)
Thus,
r F(R), XeZ-(C U R)=ZNC'NR'
G (X), Xe(C-R)-Z=Z'NCNR'
H(R), Xe(R-C)-Z=Z' NC'NR
N®)={ GR)NH(X), Xe(CNR)-Z=Z'NCNR
F (R)NG(X), XeZN(C-R)=ZNCNR
F (RX)NH(X), XeZN(R-C)=ZNC NR
(F (R)N(G'(R)UH'(R)), XeZN(CNR)=ZNCNR

%k %k %k
Now consider the RHS, i.e. [(F,Z) 0 (G,O)]U,[(F,2) 0 (H,R)]. Let (F,Z) 0 (G,0)=(V,ZUC), where for
€ € €
all NeZUC,
F'(X), NeZ-C
V(R)=<{ G'(N), NeC-Z
F(RX)NG'(R), RezNnC

%k
Let (F,2) 0 (H,R)=(W,ZUR), where for all ReZUR,
&€
F'(X), NeZ-R
W(R)=< H'(X), NER-Z
F(X)NH'(X), NeZNR
Let (V,ZUC) U (W,ZUR)=(T,(ZUC)UR), where for all ReZUCUR,

V(R), NXE(ZUC)-(ZUR)
T(R)={ W), XE(ZUR)-(ZUC)
VR)UW(X), ReZUC)N(ZUR)
Thus,
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F(X), Xe(Z-C)-(ZUR)=0
G (N), Xe(C-2)-(ZUR)=Z NCNR
F (R)NG'(R), Xe(ZNC)-(ZUR)=¢
F(R), Xe(Z-R)-(ZUC)=0
H (X), Xe(R-Z)-(ZuC)=Z'NC'NR
F (R)NH'(R), Xe(ZNR)-(ZUC)=0
F (X)UF'(R), Xe(Z-C)N(Z-R)=ZNC'NR
T(R)=+ F"(N)UH'gx), Re(Z-C)N(R-2)=0
F (RX)U(F (R)NH'(R)), Re(Z-C)N(ZNR)=ZNC'NR
G (R)UF'(X), Re(C-2)N(Z-R)=0
G (R)UH (X), Re(C-Z)N(R-Z)=Z NCNR
G (R)U(F (R)NH'(X)), Xe(C-Z)N(ZNR)=0
(F (R)NG'(R))UF'(X), Re(ZNC)N(Z-R)=ZNCNR
(F (R)NG'(X))UH (R), Xe(ZNC)N(R-2)=0
L(F‘(x) NG'(X))U(F (X)NH'(R)), Xe(ZNC)N(ZNR)=ZNCNR
Hence,
(G (R), Xe(C-Z)-(ZUR)=Z NCNR
H (R), Xe(R-Z)-(ZuC)=ZNC'NR
F(R), Re(Z-C)N(Z-R)=ZNC'NR
T(R)= F (R), Re(Z-C)N(ZNR)=ZNC'NR
G (R)UH (R), Xe(C-Z)N(R-Z)=Z NCNR
F (R), Re(ZNC)N(Z-R)=ZNCNR
(F (R)NG'(RX))U(F (R)NH'(X)), Xe(ZNC)N(ZNR)=ZNCNR

\
It is seen that N=T is satisfied under the condition Z'NCNR=ZNC'NR=ZNCNR'=Q. It is obvious that the
condition Z'NCNR=ZNC'NR=0Q is equal to (ZAC)NR= Q.

2) If Z’NCNR=0, then (F,Z);k [(G,C)ng(H,R)]z[(F,Z)j (G,C)]ns[(F,Z)::< (H,R)].
3) If ZNCNR'=(ZAC)N R=0, then (F,Z)j [(G,C)ug(H,R)]z[(F,Z):(k (G,C)]Ue[(F,Z);k (H,R)].
4) If ZNCNR'=(ZAC)NR=0, then (F,Z);k [(G,C)GS(H,R)]=[(F,Z)3< (G,C)]ﬂg[(F,Z);< (H,R)].

i1) RHS Distributions of Complementary Extended Gamma Operation over Extended Soft Set Operations

* * *
DIf (ZAC) N R = @, then [(F,Z) U, (G,C)] v, ER=IEZ) | (HRIN[(G.C) | (HR)].
&€ &€ &€
Proof: Consider first the LHS. Let (F,Z)U. (G,C)=(M,ZUC), where for all ReZUC,

F(X), REZ-C
M®X)={ G(X), REC-Z
F(X)UG(X),  ReZNC

k
Let (M,ZUC) y (H,R)=(N,(ZUC)UR), where for all NeZUCUR,
o
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M'(R), NXe(ZUC)-R
N(N)—{ H'(X), NER-(ZUC)
M'(R)NH(X), Xe(ZUC)NR
Thus,
F'(X), Xe(Z-C)-R=ZNC'NR'
G'(N), Re(C-Z)-R=Z'NCNR'
F'(X)NG'(X), Xe(ZNC)-R=ZNCNR'
N(X)=< HN), NER-(ZUC)=Z'NC'NR
F'(R)NH(X), Re(Z-C)NR=ZNC'NR
G (R)NH(R), XE(C-Z)NR=Z'NCNR
\(F'(R)NG' (X)) NH(X), Ne(ZNC)NR=ZNCNR
Now consider the RHS, i.e. [(F,Z) j (H,R)]N[(G,C) j (H,R)]. Let (F,Z) ;k (H,R)=(V,ZUR), where for all
XeZUR, ) ) )
F'(X), X€EZ-R
V(R)=< H'(X), NER-Z
F'(R)NH(X), NEZNR
Let (G,C) j (H,R)=(W,CUR), where for all NeCUR,
t
G'(X), XeC-R
WR)={ H'(X), NER-C
{G’(N)HH(N), XeCNR

Let (V,ZUR) N, (W,CUR)=(T,ZUCUR), where for all ReZUCUR,

V(X), NE(ZUR)-(CUR)
T(N)—{ W(R), XE(C U R)-(ZUR)

V®)NW(R), Ne(ZUR)N(CUR)
Thus,
F (R), X€e(Z-R)-(CUR)=ZNC'NR
H (R), Xe(R-Z)-(C UR)=0
F (R)NH(R), Xe(ZNR)-(C U R)=¢
G (N), Xe(C-R)-(ZUR)=Z' NCNR’
H (X), Xe(R-C)-(ZUR)=0
G'(R)NH(R), Xe(CNR)-(ZUR)=0
F (X)NG (X), Re(Z-R)N(C-R)=ZNCNR
T(R)={ FXNH ), RE(Z-R)N(R-C)=0
F (R)N(G'(R)NH(R)), Re(Z-R)N(CNR)=0
H®)NG (X), Xe(R-Z)N(C-R)=0
H (R)NH (R), Xe(R-Z)N(R-C)=ZNC'NR
H (RX)N(G'(R)NH(X)) RE(R-Z)N(CNR)=Z'NCNR
(F (R)NH(R)NG'(R), XE(ZNR)N(C-R)=0
(F (R)NH(R))NH'(X) Xe(ZNR)N(R-C)=ZNC'NR

Thus,

L(F (R) NH(K))N(G'(R)NH(R))

Xe(ZNR)N(CNR)=ZNCNR
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F(R), Xe(Z-R)-(C UR)=ZNC NR
G (R), Xe(C-R)-(ZUR)=Z NCNR
F (X)NG (X), Xe(Z-R)N(C-R)=ZNCNR
TMX)={ H(©X), Xe(R-Z)N(R-C)=ZNC NR
1) Xe(R-Z)N(CNR)=Z'NCNR
1) Xe(ZNR)N(R-C)=ZNC'NR
L(F () NH(X))N(G'(R)NH(X))

Xe(ZNR)N(CNR)=ZNCNR
Hence, under the condition Z'NCNR=ZNC'NR=@, N=T is satisfied. It is obvious that the condition
Z'NCNR=ZNC'NR=0 is equivalent to the condition (ZAC)nR=¢.

2)If (ZAC)N R=0, then [(F,Z) N, (G, C)] _(HR)- [(F 7) (H,R)]U (GO S (. R)]
3) If (ZAC)N R=ZNCNR’=@, then [(F,Z)GE(G,C)] (H R) [(F.2) (H R)]Ug[(G C) (H R)].
4) If (ZAC)N R=ZNCNR’=Q, then [(F,Z)* (G, C)] _(HR[(F.2) | (H,R)]ng[(G,C) A (HR)]

Theorem 3.4.3. The following distributions of the complementary extended gamma operation over
complementary extended operations hold:

1) LHS Distributions of Complementary Extended Gamma Operations over Complementary Extended Soft
Set Operations

1) If (ZAC)n R= ZNCNR’=9, then (F, Z) 1Go (H R)]=[(F, Z) (G, C)]

[, Z) , (HR)].

Proof: Consider first LHS. Let (G,C) n ((H,R)=(M,CUR), where for all NeCUR,
€

all NeZUC,

G'(R), XeC-R
M(R)={ H'(X), XER-C
G(X)NH(X), ReECNR
Let (F, Z) (M CUR)=(N,ZU(CUR)), where for all NeZUCUR,
F'(R), NeZ-(CUR)
N®)={ M'(X), Xe(CUR)-Z
F (R)NM(X), ReZN(CUR)
Thus,
F'(R), XeZ-(C UR)=ZNC'NR'
G(X), Xe(C-R)-Z=Z'NCNR'
H(R), Re(R-C)-Z=Z NC'NR
N(X)={ G'(R)UH'(X), Xe(CNR)-Z=Z'NCNR
F(X)NG'(R), ReZN(C-R)=ZNCNR
F (RX)NH'(N), XeZN(R-C)=ZNB'NR
LF’(N)m(G(x)nH(x)) XeZN(CNR) zmcmR
Now consider the RHS, i.e. [(F, Z) (G C)] [(F Z) (H R)]. Let (F, Z) (G C)=(V,ZuC), where for
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F'(R), NezZ-C

VIR)={ G'(N), NeC-Z

F'(R)NG(X), NeZNC
%k

Let (F,Z) y (H,R)=(W,ZUR), where for all XeZUR,

€

F'(R), NEZ-R

WR)={ H'(X), NER-Z

F(R)NH(X), NeZNR

*
Let (V,ZUC) A (W,ZUR)=(T,(ZUC)UR), where for all NeZUCUCUR
&€

V'(R), NXE(ZUC)-(ZUR)
T(N){ W'(X), NE(ZUR)-(ZUC)

V(R)NW(R), XE(ZUC)N(ZUR)
Thus,
(F(X), Xe(Z-C)-(ZUR)=0
G(R), Re(C-Z2)-(ZUR)=Z' NCNR
F(R)UG'(R), XE(ZNC)-(ZUR)=0
F(R), Xe(Z-R)-(ZUC)=0
H(X), Ne(R-Z)-(ZuC)=Z'NC'NR
F(X)UH'(R), Xe(ZNR)-(ZUC)=¢
F (R)NF (X), Re(Z-C)N(Z-R)=ZNC'NR
F (R)NH (X), Re(Z-C)N(R-2)=¢
T)=3 F (R)N(F (R)NH(R)), Re(Z-C)N(ZNR)=ZNC'NR
G (R)NF (N), Re(C-2)N(Z-R)=p
G (R)NH (N), Xe(C-Z)N(R-Z)=Z NCNR
G (R)N(F (R)NH(X)), Re(C-Z)N(ZNR)=0
(F (R)NG(R))NF (R), Xe(ZNC)N(Z-R)=ZNCNR'
(F (N)NG(X))NH (X), Xe(ZNC)N(R-2)=0
\ (F (R)NG(R)N(F (X)NH(R)), Xe(ZNC)N(ZNR)=ZNCNR
Thus,
[ G(X), Xe(C-Z)-(ZUR)=Z NCNR
H(X), Xe(R-Z)-(ZuC)=ZNC'NR
F(X) Re(Z-C)N(Z-R)=ZNC'NR
T(%)= F"(x)mng), NE(Z—C)ﬂ(ZﬂR)=Z'ﬂC'ﬂR
G (N)NH (X), Re(C-Z)N(R-Z)=Z' NCNR
F (X)NG(R)) Xe(ZNC)N(Z-R)=ZNCNR'
(F (R)NG(R)N(F (R)NH(R)), Xe(ZNC)N(ZNR)=ZNCNR
\

N=T is satisfied under the condition Z'NCNR=ZNC'NR=ZNCNR'=@. It is obvious that the condition
Z'NCNR=ZNC'NR=0 is equivalent to (ZAC)NR=0.

%k

U

2) If (ZAC)N R=ZNCNR’=0, then (F,Z) :Z [(G,C) :i(H,R)]Z[(F,Z) :Z(G,C)] 1F2) :Z(H,R)].
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3) If Z’NCNR=ZNCNR=0, then (F, Z) lGo), (H R)] [(F, Z)e (G,0)] [(F Z)e (H,R)].

4) If Z2NCNR=0, then (F, Z) [(G C)e (H,R)]=[(F, Z) 0, (G,O)] [(F Z) 0, (H,R)].
i1) RHS Distributions of Complementary Extended Gamma Operatlon over Complementary Extended

Operations
1) If (ZAC)N R=ZNCNR’=Q, then [(F 7) 0, (G C)] (H R)=[(F,Z2) N, (H R)] (G O) N, (H R)].

Proof: Consider first LHS. Let (F,Z) 0 (G,C)=(M,ZUC), where for all NGZUC,
&€

F(R), REZ-C
M(R)={ G'(N), NeEC-Z
F(R)NG'(X), ReZNC

Let (M, ZUC) (H R)=(N,(ZUC)UR), where for all ReZUCUR,

M'(R), Ne(ZuC)-R

N(X)=<{ H'(X), XeR-(ZUC)

M'(X)NH(X), Re(ZUC)NR

Hence,

F(X), Re(Z-C)-R=ZNC'NR'
G(X), Re(C-Z2)-R=Z'NCNR'
F(R)UG(R), Re(ZNC)-R=ZNCNR'
N(X)=< H'(X), NeER-(ZUC)=Z'NC'NR
F(R)NH(X), RXe(Z-C)NR=ZNC'NR
G(RX)NH(X), Re(C-Z)NR=Z'NCNR
L(F(R)UG(R))NH(R), Xe(ZNC)NR=ZNCNR

%k %k %k %k
Now consider the RHS, i.e. [(F,Z) n (H,R)] U [(G,0) A (H,R)]. Let (F,Z) A (H,R)=(V,ZUR), where for
€ € € €
all NeZUR ,
F'(R), NeZ-R
V(R)=4{ H'(X), NER-Z
F(RX)NH(R), REZNR

*
Let (G,C) A (H,R)=(W,CUR), where for all NeCUR,
&€
G'(X), XeC-R
W(R)=< H'(X), XeR-C
G(X)NH(X), XeCNR
*
Let (V,ZUR) U (W,CUR)=(T,ZUCUR), where for all ReZUCUR,
€
V'(X), NXE(ZUR)-(CUR)
TR)=< W'(XN), N€E(C U R)-(ZUR)
VRX)UW(X), ReZUR)N(CUR)
Thus,
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(F(X), Xe(Z-R)-(C U R)=ZNC NR
H(X), Re(R-Z)-(C UR)=¢
F'(X)UH'(R), XE(ZNR)-(C U R)=p
G(X), Xe(C-R)-(ZUR)=Z NCNR
H(X), X€E(R-C)-(ZUR)=p
G'(R)UH'(R), Xe(CNR)-(ZUR)=0
F (X)UG (X), Xe(Z-R)N(C-R)=ZNCNR
T(X)={ FUH®), Re(Z-R)N(R-C)=0
F (RX)U(G(X)NH(R)), Xe(Z-R)N(CNR)=p
H (R)UG (X), Xe(R-Z)N(C-R)=0
H (X)UH (R), Xe(R-Z)N(R-C)=ZNC NR
H (R)U(G(R)NH(X)) Xe(R-Z)N(CNR)=Z'NCNR
(F(R)NH(R)UG'(R), Xe(ZNR)N(C-R)=¢
(F(R)NH(R))UH (X) Re(ZNR)N(R-C)=ZNC'NR
L (F(R)NH(R))U(G(R)NH(X)) Xe(ZNR)N(CNR)=ZNCNR
Therefore,
(F(N), Xe(Z-R)-(CUR)=ZNC NZ
G(N), Xe(C-R)-(ZUR)=ZNCNZ
F (X)UG (X), Xe(Z-R)N(C-R)=zNCNZ
T®)=1 H(N), Xe(R-Z)N(R-C)=Z' NC NR
H (R)UG(X), Xe(R-Z)N(CNR)=Z'NCNR
F(R)UH'(X) Xe(ZNR)N(R-C)=ZNC'NR
L(F(R)NH(R))U(G(R)NH(R)) Xe(ZNR)N(CNR)=ZNCNR

It is seen that N=T under the condition Z’NCNR=ZNC'NR=ZNCNR'=@. It is obvious that the condition
Z'NCNR=ZNC'NR=0 is equivalent to the condition (ZAC)NR =0@.

2) If (ZAC)n R=0, then [(F,Z) :i (G,0O)] ;ks (H,R)=[(F,Z2) :Z(H,R)] ;ks[(G,C) :Z(H,R)].
3) If (ZAC)N R=0, then [(F,Z) ;:s(G,C)] :Z (H,R)=[(F,Z2) ;ks(H,R)] (:ks[(G’C) :Z(H,R)].

4) If (ZAC)N R=ZNCNR’=, then [(F,Z)f(G,C)];k(H,R)=[(F,Z);]k (H,R)] f: [(G,0) rf (H,R)].

Theorem 3.4.4. The following distributions of the complementary extended gamma operation over soft
binary piecewise operations hold:

1) LHS Distributions of the Complementary Extended Gamma Operation on Soft Binary Pievewise
Operations

* ~ * ~ E S

1) If (ZAC) NR= @, then (F.Z) _ [(G.C) y HR)=[(F.Z)  (G.O)] 4 [(F.2)  (HR)].
Ye rl Ye n Ye

Proof : Consider first the LHS. Let (G,C) n (H,R)=(M,C). Hence for all Xe C,
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C( G(R), XeC-R
M(N)_{G(N)HH(N), XeCNR

%k
Let (F,Z) y (M,C)=(N,ZuUC), where for all NeZUC,
€

F'(R), XezZ-C
NX)={ M'(X), ReC-Z
{F'(N)HM(N), RezZNC
Thus,
( F(), NeZ-C
| G(N), Xe(C-R)-Z=Z'NCNR'
N(X)={ G (X)UH (R), Xe(CNR)-Z=Z'NCNR
| F(R)NG(R), XeZN(C-R)=ZNCNR'
\F’(x)m(G(x)mH(x)), XeZN(CNR)=ZNCNR
Now consider the rhs, i.e. [(F,Z) :Z (G,C)];[(F,Z) ;Z (H,R)]. Let (F,Z) :Z (G,0)=(V,ZUC), where for all
NeZUC,
{ F'(R), RezZ-C
VR)={ G'(N), NEC-Z
F(R)NG(R), NezZNC

%k
Let (F,Z) y (H,R)=(W,ZUR), where for all XeZUR,
€

F'(R), NEZ-R
WER)={ H(X), NER-Z
F(X)NH(X), REZNR
Let (V.ZUC) , (W,ZUR)=(T,(ZUC)), where for all XeZUC,

T (N)={ V(R), NE(ZUC)-(ZUR)
VR)NW(R), REZUC)N(ZUR)
Thus,

(F(R), X€e(Z-C)-(ZUR)=0
G (R), Xe(C-2)-(ZUR)=Z'NCNR'
F (R)NG(R), Xe(ZNC)-(ZUR)=0
F (R)NF (X), Xe(Z-C)N(Z-R)=ZNC'NR'
F (R)NH (X), Re(Z-C)N(R-2)=¢
(%)= F:(N)H(F'(N)HH(N)), Xe(Z-C)N(ZNR)=ZNC'NR
G (N)NF (R), Xe(C-2)N(Z-R)=0
G (X)NH (R), Xe(C-Z)N(R-Z)=Z'NCNR
G (RN)N(F (R)NH(R)), Re(C-Z)N(ZNR)=0
(F(R)NG(R))NF (R), Xe(ZNC)N(Z-R)=ZNCNR'
(F (R)NG(X))NH (X), Re(ZNC)N(R-2)=0
L(F (R)NGR))N(F (X)NH(R)), Re(ZNC)N(ZNR)=ZNCNR

Therefore,



(G (N),
F (),
F (R)NH(X),
G (\)NH (X),
F(R)NG(X),
L\(F (R)NGER)N(F (R)NH(K)),

T(N)=A
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RE(C-Z)-(ZUR)=Z'NCNR’
RE(Z-C)N(Z-R)=ZNC'NR!
RE(Z-C)N(ZNR)=ZNC'NR
Re(C-Z)N(R-Z)=Z'NCNR
RE(ZNC)N(Z-R)=ZNCNR'
Xe(ZNC)N(ZNR)=ZNCNR

Here, if we consider Z-C in the function N, since Z-C=ZNC" if an element is in the complement of C, it is
either in R-C or (C U R)’. Thus, if X € Z- C, then ReZNC'NR or X €ZNC'NR’. Thus, it is seen that N=T
under the condition Z'NCNR=ZNC'NR=@. It is obvious that the condition Z'NCNR=ZNC'NR=0 is
equivalent to the condition (ZAC) N R=0.

2) If (ZAR)NC= @, then (F,Z)j [(GO) (H,R)]z[(F,Z);k (X [(F,Z)j (H,R)].
3) If (ZAC)NR=ZNCNR’=0, then (F,Z);k [(G,C), (HR)=[(F.Z) ;k GO, [(F.2) ;k (H,R)].
4) If (ZAC)NR=ZNC’NR=0, then (F,Z)j [(G,C)g(H,R)]=[(F,Z);< (X@) N [(F,Z);< (HR)].

i1) RHS Distributions of the Complementary Extended Gamma Operation over Soft Binary Piecewise
Operations

~ %k * ~ *
1) If (ZAC)NR=ZNC’NR=0Q, then [(F,.Z)g (G,O)] y (H,R) =[(F.,Z2) n (H,R)]U[(G,C) A (H,R)].
€ € €
Proof: Consider first LHS. Let (F,Z) 0 (G,C)=(M,Z), where for all XeZ,

F(R), ReZ-C
M(N):{F'(N)HG'(N), REZNC
Let (M,Z) :X; (H,R)=(N,ZUR), where for all NeZUR,
) M(X). NEZ-R
N(X)={ H'(X), RER-Z
M (R)NH(X), NEZNR
Thus,
(F(X), XE(Z-C)-R=ZNC'NR'
| F(R)UG), Xe(ZNC)-R=ZNCNR'
N(X)=4 H'(N), NER-Z
| F'(R)NH(R), X€E(Z-C)NR=ZNC'NR
(F(R)UG(R))NH(R), XE(ZNC)NR=ZNCNR

b ~ x x
Now consider the RHS, that is, [(F,Z) A (H,R)]U[(G,C) n (H,R)]. Let (F,Z) n (H,R) = (V,ZUR), where
€ € €
for all XeZUR,

F'(X), XEZ-R

VR)={ H'(X), NER-Z

F(R)NH(X), NeEZNR
*

Now let (G,C) A (H,R)=(W,CUR), where for all NeCUR,

€

G'(RX), XeC-R

WR)=< H'(X), NeR-C

G(RX)NH(X), NeCNR
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Let (V.ZUR) | (W,CUR)=(T,(ZUR)), where for all XEZUR,

T (N):{ V(R), NXE(ZUR)-(CUR)
VR)UW(X), KRe(ZUR)N(CUR)
Thus,,

(F(R), Xe(Z-R)-(CUR)=ZNC'NR!
H (X), Xe(R-Z)-(CUR)=0
F(R)NH(R), XE(ZNR)-(CUR)=0
F (X)UG (R), Xe(Z-R)N(C-R)=ZNCNR'

F (RX)UH (R), Xe(Z-R)N(R-C)=0

F (X)U(GR)NH(KX)), RE(Z-R)N(CNR)=0

TE)=1 g'xyua ). RE(R-Z)N(C-R)=0
H (X)UH (X), Xe(R-Z)N(R-C)=Z'NC'NR

H (R)U(G(R)NH(R)) Re(R-Z)N(CNR)=Z'NCNR
(F(R)NH(X))UG (X), RE(ZNR)N(C-R)=0
(F(R)NH(X) )UH (X) Re(ZNR)N(R-C)=ZNC'NR

L (F'(R)NHEX) )U(GR)NH(R)), Re(ZNR)N(CNR)=ZNCNR

Hence

( F(R), Xe(Z-R)-(CUR)=ZNC'NR'

F (X)UG (X), Xe(Z-R)N(C-R)=ZNCNR'

)= H"(x), Xe(R-Z)N(R-C)=Z'NC'NR
H (R)UG(X), Re(R-Z)N(CNR)=Z'NCNR

F(X)UH (X), Xe(ZNR)N(R-C)=ZNC'NR
L(F'(R)NHX) )U(G'(R)NH(X)), Xe(ZNR)N(CNR)=ZNCNR

Under the condition Z'NCNR=ZNC'NR=ZNCNR'=Q, it can be seen that N=T. It is obvious that the
condition Z'NCNR=ZNC’NR=0 is equivalent to the condition (ZAC)NR=0.

2) If (ZAC)NR=0, then [(F,Z), (G.C)] ;k (H,R)=[(F.,Z) j (HR)][(G.O) j (H,R)].
3)If (ZAC)NR=0 , then [(F.Z) . (G,C)] ;i (H,R) =[(F.Z) :Z (HR)] | [(G.0) ;i (H,R)].

4) If (ZAC)NR=ZNCNR’=®, then [(F,Z) , (G,C)] :Z(H,R) =((F,Z) ;‘; (HR)] - [(G.C) :S(H,R)].

Theorem 3.4.5. The following distributions of the complementary extended gamma operation over the
complementary soft binary piecewise operations exist:

1) LHS Distribution of the Complementary Extended Gamma Operation on Complementary Soft Binary
Piecewise Operations

DIf (ZAC)NR=ZNCNR’=@, then (F,Z):(X< [(G,O)~(H,R)]=[(F,2) ;k (G,O)] ~ [(F,Z2) ;k (H,R)].
€ n € n €

*

Proof: Consider first LHS. Let (G,C)~ (H,R)=(M,C), where for all Xe C,

G'(X), NeC-R

N
M(N):{G(N)DH(N), NECNR
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x
Let (F,Z) y (M,C)=(N,ZuUC), where for all XeZUC,
€

F'(X), ReZ-C
N(N)—{ M'(X), REC-Z
F (R)NM(R), XeZNC
Thus,
( FI(X), NEZ-C
| G(N), X€e(C-R)-Z=Z'NCNR'
N(;z):{ G (X)UH (R), NE(CNR)-Z=Z'NCNR
| F(R)NG'(R), XeZN(C-R)=ZNCNR'
F (R)N(G(R)NH(R)), XeZN(CNR)=ZNCNR
*
Now consider RHS, i.e. [(F,Z):{k (G,C)]~[(F,Z);k (H,R)]. Let (F,Z):(k (G,C)=(V,ZUC), where for all
€ € €
NeZUC, "
F'(X), XeZ-C
VIR)=1 G'(N), ReC-Z
F(X)NG(R),  RezNC

x
Let (F,Z) y (H,R)=(W,ZUR), where for all ReZUR,
€

F'(R), NEZ-R
WEX)={ H(X), NER-Z
F(RX)NH(R), NEZNR

*

Let (V,ZUC) ~ (W,ZUR)=(T,(ZUC)), where for all NeZUC,
N

T(X)= { V'(R), Xe(ZUC)-(ZUR)
VR)NW(R), REZUC)N(ZUR)
Thus,
( F(N), RE(Z-C)-(ZUR)=0
G(X), Xe(C-2)-(ZUR)=Z'NCNR'
F(R)UG'(X), XE(ZNC)-(ZUR)=0
F (R)NF (X), Re(Z-C)N(Z-R)=ZNC'NR'
F (R)NH (X), Xe(Z-C)N(R-Z)=0
F (R)N(F (R)NH(R)), Re(Z-C)N(ZNR)=ZNC'NR
T=1 6 x)nF ). RE(C-Z)N(Z-R)=0
G (X)NH (R), Xe(C-Z)N(R-Z)=Z'NCNR
G (RM)N(F (R)NH(X)), Re(C-Z)N(ZNR)=0
(F (R)NG(R))NF (R), Xe(ZNC)N(Z-R)=ZNCNR'
(F (R)NG(R))NH (R), Re(ZNC)N(R-2)=0
L(F (N)NG(R)N(F (R)NH(X)), Xe(ZNC)N(ZNR)=ZNCNR

Hence,
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( G(R), Xe(C-Z)-(ZUR)=Z'NCNR!'
F (N), Xe(Z-C)N(Z-R)=ZNC'NR'
)= F'('N)HH(?'(), Re(Z-C)N(ZNR)=ZNC'NR
G (R)NH (R), Xe(C-Z)N(R-Z)=Z'NCNR
F (R)NG(X), Xe(ZNC)N(Z-R)=ZNCNR'
L(F (\)NG(R)N(F (R)NH(X)), Re(ZNC)N(ZNR)=ZNCNR

Here, if we consider Z-C in the function N, since Z-C=ZNC’, if an element in the complement of C it is

either in R-C or (C U R)". Thus, if X € Z — C, then 8 €ZNC'NR or X €ZNC'NR'. Hence, it is seen that N=T

under the condition Z'NCNR=ZNC'NR=ZNCNR'=@. It is obvious that the condition Z’NCNR=ZNC'NR=0

is equivalent to the condition (ZAC)NR=@.
*

2) If (ZAR)NC=0, then (F,Z):X(< [(G,O) ~ (H,R)]=[(F,Z):X(< (G,O)] ~ [(F,Z):X(< (H,R)].
&€ U] € U] &€

*

3)If (ZAR)NC= @, then (F,Z) ;ks [(G,O)~ (HR)]=[(F,Z2) ;ks (G,O)] ~ [(F,2) ;ks (H,R)].

* U
4)If (ZAC)NR=0Q, then (F,Z);X(< [(G,C); (H,R)]=[(F,2) ;k (G,O)] ~ [(F,2) : (H,R)].
€ &€ N €

i1) RHS Distributions of Complementary Extended Gamma Operation over Complementary Soft Binary

Piecewise Operations
* *

1) If (ZAC)NR=ZNCNR’=0, then [(F,Z)~ (G,C)] ;k (H,R) =[(F.,Z) :‘: (H,R)]~[(G,C) ;k (H,R)].
e € € U €

*

Proof: Consider first LHS. Let (F,Z)~ (G,C)=(M,Z), where for all XeZ,
0

( F(R), ReZ-C
M(N)_{F'(N)DG'(N), ReZNC

%k
Let (M,Z2) y (H,R)=(N,ZUR), where for all NeZUR,
€

M'(R), REZ-R
N(R)={ H'(X), RER-Z
M (R)NH(R), NeZNR
Thus,

(F(R), X€E(Z-C)-R=ZNC'NR'
| F(R)UG(R), Xe(ZNC)-R=ZNCNR'
N(R)={ H'(X), NER-Z
| F(R)NH(R), Xe(Z-C)NR=ZNC'NR
(F(R)UG(R))NH(R), XE(ZNC)NR=ZNCNR

b * x
Now consider the RHS, that is, [(F,Z) A (H,R)]~[(G,0) n (H,R)]. Let (F,Z) n (H,R)= (V,ZUR), where
€ U € €
for all ReZUR,
F'(X), NeZ-R
V(R)=< H'(X), NER-Z
F(R)NH(X), NeZNR

*
Now let (G,C) A (H,R)=(W,CUR), where for all NeCUR,
&€
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G'(X), XEC-R
WR)={ H'(N), NER-C
G(X)NH(X),  XeCNR
Let (V,ZUR) ~ (W,CUR)=(T,(ZUR)), where for all XeZUR,
V)
T(X)= { V'(R), NXE(ZUR)-(CUR)
VR)UW(X), KXe(ZUR)N(CUR)
Thus,
F(R), X€E(Z-R)-(CUR)=ZNC'NR'
H(X), Re(R-Z)-(CUR)=0
F'(X)UH'(R), Xe(ZNR)-(CUR)=0
F (X)UG (X), Xe(Z-R)N(C-R)=ZNCNR'
F (X)UH (X), Re(Z-R)N(R-C)=0
F (X)U(GR)NH(KX)), RE(Z-R)N(CNR)=0
T(R)=1 H'(X)UG (X), Xe(R-Z)N(C-R)=0
H (X)UH (X), Xe(R-Z)N(R-C)=Z'NC'NR
H (R)U(GR)NH(X)) Re(R-Z)N(CNR)=Z'NCNR
(F(R)NH(X))UG (X), Xe(ZNR)N(C-R)=¢
(F(R)NH(X))UH (X) Re(ZNR)N(R-C)=ZNC'NR
L (FRONHEX))U(GER)NH(R)), Xe(ZNR)N(CNR)=ZNCNR
Therefore,
(F(X), Xe(Z-R)-(CUR)=ZNC'NR'
F (X)UG (R), Xe(Z-R)N(C-R)=ZNCNR'
-~ H:(N), Xe(R-Z)N(R-C)=Z'NC'NR
H (X)UG(X), Xe(R-Z)N(CNR)=Z'NCNR
F(R)UH (R), Xe(ZNR)N(R-C)=ZNC'NR
L(FR)NHEX))U(GER)NH(R)), Xe(ZNR)N(CNR)=ZNCNR

Under the condition Z'NCNR=ZNC'NR= ZNCNR'=@, N=T is satisfied. It is obvious that the condition

Z'NCNR=ZNC'NR= @ is equivalent to (ZAC)NR= Q.
*
x

2) If (ZAC)NR=ZNCNR’=9, then [(F.2)~ (G.O)] , (HR)=[(F.2) , (HR)I~(G.C)

V)
3)1

*

*

x x

(H,R)].
N £

*

f (ZAC)NR=0, then [(F,Z)~ (G,C)] j (H,R) =[(F,Z) ;k (H,R)]~[(G,C) ;k (H,R)].

N
*

*

V)
*

*

4) If (ZAC)NR=ZNCNR’=Q, then [(F,Z)~ (G,C)] Ys(H,R) =[(F,Z) ;X:s (H,R)]~[(G,C) ns(H,R)].

*

N

4. CONCLUSION

Soft set operations play a central role in soft set theory, offering a soft structure for addressing uncertainty
in data analysis and decision-making. This study investigates the algebraic features of a new soft set
operation called complementary extended gamma operation. We also study the distribution of
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complementary extended gamma over several more soft set operations. Our hope is that this work will
provide a foundation for further research on soft set operations. In order to determine what algebraic
structures emerge in the collection of soft sets together with complementary extended gamma operations of
soft sets, more research may look at different types of complementary extended soft set operations, as well

as their distributions and properties.
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