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Abstract
This paper aims to introduce the concepts of Mackey convergence degree for sequences
and separation degree for spaces in (L, M)-fuzzy bornological vector spaces. Additionally,
the paper presents the concept of bornological closure degree for fuzzy sets. Moreover, the
paper discusses various characteristics of these concepts. Furthermore, the paper examines
the degree relationships among a Mackey convergence sequence, a separated space, and
a bornologically closed fuzzy set. Finally, the paper analyzes the properties of functors
ω and ι between M -fuzzifying bornological vector spaces and (L, M)-fuzzy bornological
vector spaces in terms of Mackey convergence degree and separation degree.
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1. Introduction
In order to apply the concept of boundedness to a general topological space, Hu[11]

originally introduced an axiomatic approach to bornology. In recent years, the theory
of general bornological spaces (Hu[12]) has played a key role in research on convergence
structures on hyperspaces ([3,6,15]), optimization theory ([4]), and the study of topologies
on function spaces ([5, 7, 8, 18]). Nowadays, the theory of bornological spaces is being
developed in various directions by many authors.

Zadeh[26] introduced the concept of fuzzy sets, which has since been applied to var-
ious branches of mathematics. In 2011, Abel and Šostak[1] generalized the notion of
axiomatic bornology to the fuzzy case, which is called L-bornology. In the following
years, Paseka et.al.[19] investigated L-bornological vector spaces and demonstrated that
for certain complete lattices. After that, Zhang and Zhang[27] introduced the concept of I-
bornological vector spaces and discussed two methods for constructing new I-bornological
vector spaces. Recently, Jin and Yan[13] proposed L-Mackey convergence and separation
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in L-bornological vector spaces, and discussed an equivalent characterization of separation
in terms of L-Mackey convergence.

Šostak[23] presented an alternative approach to the fuzzification of bornology, known
as (L, ∗)-valued bornology. Unlike L-bornology, each (L, ∗)-valued bornology on a set X
is a mapping from 2X to L, satisfying L-valued analogues of the axioms of bornology.
We refer to this fuzzy bornology as an M-fuzzifying bornology for convenience. Jin and
Yan[14] recently introduced the concept of fuzzifying bornological linear spaces and ana-
lyzed the necessary and sufficient conditions for compatibility between fuzzifying bornolo-
gies and linear structures. In 2023, Liang et.al.[16] introduced the concept of (L, M)-fuzzy
bornological vector spaces and demonstrated that the category of M -fuzzifying bornologi-
cal spaces can be integrated into the category of stratified (L, M)-fuzzy bornological spaces
as a coreflective subcategory.

As we have known, Mackey convergence of sequences and separation of spaces are very
important notions in the theory of bornological vector spaces. The study of their properties
is a recurring theme in the theory of bornological vector spaces. It is natural to see the
equivalent notions of Mackey convergence of sequences and separation of spaces in (L, M)-
fuzzy bornological vector spaces. This article aims to study the Mackey convergence and
separation in the context of (L, M)-bornological vector spaces. This study will contribute
to the development of a more systematic theory of (L, M)-bornological vector spaces and
explore the potential application of the variational principle in this context.

The paper is structured as follows. Section 2 provides necessary concepts and notations.
In section 3, the degrees to which sequences exhibit Mackey convergence and spaces are
separated in (L, M)-fuzzy bornological vector spaces are introduced, along with their
properties. Additionally, we introduce the degree to which a fuzzy set is bornologically
closed and discuss the relationship between separation and bornological closed in (L, M)-
fuzzy bornological vector spaces. Section 4 explores the properties of functors ω and
ι between M -fuzzifying bornological vector spaces and (L, M)-fuzzy bornological vector
spaces on degree of Mackey convergence sequence and degree of separation spaces.

2. Preliminaries
Accoring to the terminology [10], for a and b belonging to a complete lattice L, we say

that a is wedge below b [10], denoted as a�b, if for any subset S ⊆ L, the relation b ≤
∨

S
always implies the existence of c ∈ S satisfying a ≤ c. A complete lattice L is called
completely distributive if for any a ∈ L, it holds that b =

∨
{a ∈ L : a � b} [20]. For any

b ∈ L, define β(b) = {a ∈ L : a � b}. It is easy to see that for all b ∈ L, β(b) =
⋃

a�b
β(a).

Hence the wedge below relation in a completely distributive lattice has the interpolation
property, this means a ◁ b ⇒ ∃c ∈ L such that a ◁ c ◁ b. Moreover we can see that a ◁

∨
i∈I

bi

such that a ◁ bi for some i ∈ I. Some properties of the map β can be found in [17].
Throughout this paper, L and M always denote completely distributive lattices with

an order-reversing involution denoted as α 7→ α′. The smallest and greatest elements of
this lattice are denoted as ⊥L and >L respectively.

Let X be a non-empty set. Each element in LX is referred to as an L-fuzzy subset
of X. We use λ to denote an L-fuzzy subset that takes the constant value λ on X. A
element λ in L is called prime if the condition λ ≥ α ∧ β implies that λ ≥ α or λ ≥ β,
where α, β ∈ L. The set of all prime elements in L is denoted by Pr(L). A element λ
in L is called co-prime if the condition λ ≤ α ∨ β implies that λ ≤ α or λ ≤ β, where
α, β ∈ L. The set of all nonzero co-prime elements in L is denoted by J(L). The set
of all nonzero co-prime elements in LX is denoted by J(LX). It is easy to verify that
J(LX) = {xλ|x ∈ X, λ ∈ J(L)}, where xλ represents an L-fuzzy point on X.
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In the following, let X be a vector space over the field K (R or C), and θ denotes the
zero element in X.

Definition 2.1 ([2]). Let X be a linear space over R. Consider a fuzzy subset N of
X × R, where N satisfies the condition ∀x, u ∈ X, c ∈ R:

(N1) N(x, t) = 0 for all t ≤ 0;
(N2) x = θ if and only if N(x, t) = 1 for all t > 0;
(N3) If c 6= 0 then N(cx, t) = N(x, t

|c|) for all t ∈ R;

(N4) N(x + u, s + t) ≥ N(x, s) ∧ N(u, t), ∀s, t ∈ R;
(N5) N(x, ·) is a nondecreasing function of R and lim

t→∞
N(x, t) = 1.

Then N is called a fuzzy norm on X and (X, N) called a fuzzy normed space.

Definition 2.2 ([25]). Let f : X → Y ba a mapping. The L-fuzzification of f , denoted
by f→, is defined

f→(A)(y) =


∨

f(x)=y
A(x), y ∈ f(X)

0, otherwise
, ∀A ∈ LX .

The L-fuzzification of f is also called Zadeh’s type function induced by f and L, it is
an order-homomorphism from LX to LY , and

f←(B)(x) = B(f(x)), ∀B ∈ LY , x ∈ X.

Lemma 2.3 ([25]). Suppose that f : X → Y, A ∈ LX , B ∈ LY , then we have
(1) A ≤ f←(f→(A));
(2) B ≥ f→(f←(B)):
(3) f→(A) ≤ B iff A ≤ f←(B).

Definition 2.4 ([9]). The addition and scale multiplication operators in LX are defined
as follows, respectively. For A, B ∈ LX and k ∈ K,

(A + B)(x) =
∨

s+t=x
(A(s) ∧ B(t));

(kA)(x) = A(x/k) whenever k 6= 0;

(0A)(x) =


∨

y∈X
A(y), x = θ

0, x 6= θ
.

In particular, for L-fuzzy points, we have xλ + yµ = (x + y)λ∧µ, kxλ = (kx)λ.
For all a ∈ L and U ∈ LX , we use the following natation: U (a) = {x ∈ X : U(x) � a}.

Then we have U =
∧

a∈L
(a ∨ χU(a)).

Definition 2.5 ([9, 21]). Let X be a vector space over K. An L-fuzzy set A of LX is
called balanced if tA ≤ A for each t with |t| ≤ 1.

Definition 2.6 ([23,24]). An M -fuzzifying bornology on a set X is a mapping B : 2X → M
which satisfies:

(MB1) B({x}) = >M , ∀x ∈ X,
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(MB2) For each A, B ∈ 2X , A ⊆ B ⇒ B(A) ≥ B(B),

(MB3) B(A ∪ B) ≥ B(A) ∧ B(B), ∀A, B ∈ 2X .
The pair (X,B) is called an M -fuzzifying bornological space. B(A) can be interpreted

as the degree of boundedness of A.
Let (X,BX) and (Y,BY ) be two M -fuzzifying bornological spaces. A mapping f : X →

Y is called M -fuzzifying bounded provided that BX(A) ≤ BY (f(A)) for all A ∈ 2X .

Definition 2.7 ([14]). An M -fuzzifying bornological vector space is a triple (X,K,B),
where X is a vector space over K, and (X,B) is an M -fuzzifying bornological space such
that:

f : X × X → X, (x, y) 7→ x + y is bounded,
g : K × X → X, (k, x) 7→ kx is bounded,

where X × X and K × X are equipped with the corresponding product M -fuzzifying
bornologies B × B and BK × B (here BK is a M -fuzzifying bornology determined by the
crisp bornology on K), respectively.

Theorem 2.8 ([14, 22]). Let X be a vector space over K, and (X,B) be an M -fuzzifying
bornological space. Then (X,K,B) is an M -fuzzifying bornological vector space (B is a
linear M -fuzzifying bornology) if and only if B satisfies the following conditions: ∀A, B ∈
2X ,

(MB4) B(A) ∧ B(B) ≤ B(A + B),
(MB5) B(A) ≤ B(λA), ∀λ ∈ K,
(MB6) B(A) ≤ B(

⋃
|α|≤1

αA).

Definition 2.9 ([14]). Let (X,B) be an M -fuzzifying bornological space and {xn}n∈N be
a sequence in X. The degree to which xn is converge bornologically to x is

Borc(xn, x) =
∨

B∈Bal(X)
sn→0

{B(B) : ∀n ∈ N, xn − x ∈ snB},

where Bal(X) means the family of all balanced sets on X.

Theorem 2.10 ([14]). Suppose that {(Xi,Bi)}i∈I is a family of M -fuzzifying bornological
vector spaces, X =

∏
i∈I

Xi and pi : X → Xi is a linear mapping. Define B : 2X → M by

B(A) =
∧

i∈I
{Bi(Ai) : pi(A) = Ai}. Then B is a linear M -fuzzifying bornology, which is

called the product of {Bi}i∈I , denoted by B =
∏
i∈I

Bi.

Theorem 2.11 ([14]). Let (X,BX) be an M -fuzzifying bornological vector space and f :
X → Y be a linear mapping. Define BY : 2Y → M as follows:

BY (C) =
∨

C⊆f(A)
BX(A).

Then (X,BY ) be an M -fuzzifying bornology, denote by BY = BX/f .

Definition 2.12 ([13, 24]). An L-bornological space is a pair (X,B), where X is a set,
and B (an L-bornology on X) is a subfamily of LX (the elements of which are called
bounded L-sets), which satisfy the following axioms:
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(B1) for every x ∈ X,
∨

B∈B
B(x) = >L;

(B2) given B ∈ B and D ∈ LX such that D ≤ B, it follows that D ∈ B;
(B3) if S ⊆ B is finite, then

∨
S ∈ B.

Given L-bornological spaces (X1,B1) and (X2,B2), a map f : X1 → X2 is called
L-bounded provided that f→(B1) ∈ B2 for every B1 ∈ B1.

Definition 2.13 ([13]). An L-bornological vector space is a tuple (X, +, ∗,B), where
(X, +, ∗) is a vector space over K, and (X,B) is an L-bornological space such that:

f : X × X → X, (x, y) 7→ x + y is bounded,
g : K × X → X, (k, x) 7→ kx is bounded,

where X × X and K × X are equipped with the corresponding product L-bornology
B × B and BK × B (here BK is an L-bornology determined by the crisp bornology on
K), respectively.

Theorem 2.14 ([13]). Let (X,B) be an L-bornological space. Then (X,B) is an L-
bornological vector space (B is an L-vector bornology) if and only if B satisfies the fol-
lowing conditions:

(B4) U, V ∈ B ⇒ U + V ∈ B;
(B5) ∀t ∈ K, U ∈ B ⇒ tU ∈ B;
(B6) U ∈ B ⇒

∨
|t|≤1

tU ∈ B.

Definition 2.15 ([13]). Let (X,B) be an L-bornological vector space, then (X,B) is
separated if and only if suppM = {θ} for all fuzzy vector subspace M ∈ B, where suppM
is the support set of M .

Theorem 2.16 ([13]). Let (X,B) be an L-bornological vector space. Then (X, ια(B)) is
a crisp bornological vector space, where ια(B) = {A(α) : A ∈ B} and α ∈ Pr(L).

Lemma 2.17 ([13]). Let (X,B) be an L-bornological vector space and M ∈ B. Then M

is a fuzzy vector subspace of X if and only if M (α) is a bounded vector subspace of X for
any α ∈ Pr(L).

Theorem 2.18 ([13]). Let (X,B) be an L-bornological vector space, then (X,B) is sep-
arated if and only if (X, ια(B)) is separated for any α ∈ Pr(L).

Definition 2.19 ([16,24]). An M -valued L-fuzzy bornology, or an (L, M)-fuzzy bornology
for short on a set X is a mapping B : LX → M which satisfies:

(LMB1) B(x>L
) = >M ,

(LMB2) For each A, B ∈ LX , A ≤ B ⇒ B(A) ≥ B(B),

(LMB3) B(A ∨ B) ≥ B(A) ∧ B(B), ∀A, B ∈ LX .
The pair (X, B) is called an (L, M)-fuzzy bornological space. B(A) can be interpreted

as the degree of boundedness of A.

Let (X, BX) and (Y, BY ) be two (L, M)-fuzzy bornological spaces. A mapping f : X →
Y is called (L, M)-fuzzy bounded provided that BX(A) ≤ BY (f→(A)) for all A ∈ LX .
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Theorem 2.20 ([16]). Let (X, B) be an (L, M)-fuzzy bornological space. Then ∀a ∈
Pr(L), B(a) = {A ∈ LX : B(A) � a} is an L-bornology on X.

Definition 2.21 ([16]). An (L, M)-fuzzy bornological vector space is a triple (X,K, B),
where X is a vector space over K, and (X, B) is an (L, M)-fuzzy bornological space such
that:

f : X × X → X, (x, y) 7→ x + y is (L, M)-fuzzy bounded;
g : K × X → X, (k, x) 7→ kx is (L, M)-fuzzy bounded,

where X × X and K × X are equipped with the corresponding product (L, M)-fuzzy
bornologies B × B and BK × B ( here BK is a (L, M)-fuzzy bornology determined by
the crisp bornology on K), respectively.

Theorem 2.22 ([16]). Let X be a vector space over K, and (X, B) be an (L, M)-fuzzy
bornological space. Then (X,K, B) is an (L, M)-fuzzy bornological vector space if and only
if B satisfies the following conditions: ∀A, B ∈ LX ,

(LMB4) B(A) ∧ B(B) ≤ B(A + B),
(LMB5) B(A) ≤ B(λA), ∀λ ∈ K,
(LMB6) B(A) ≤ B(

∨
|α|≤1

αA).

Theorem 2.23 ([16]). Suppose that {(Xi, Bi)}i∈I is a family of (L, M)-fuzzy bornological
spaces, X =

∏
i∈I

Xi and pi : X → Xi is the projection. Define B : LX → M by B(A) =∨
A≤

∏
i∈I

Ai

∧
i∈I

Bi(Ai), ∀A ∈ LX . Then (X, B) is an (L, M)-fuzzy bornological space, which is

called the product space of {(Xi, Bi)}i∈I , denoted by (X,
∏
i∈I

Bi).

Remark 2.24. It is easy to know that B(A) =
∧

i∈I
Bi(pi(A)). Since A(x) ≤

∏
i∈I

(pi(A))(x),

we have B(A) =
∨

A≤
∏
i∈I

Ai

∧
i∈I

Bi(Ai) ≥
∧

i∈I
Bi(pi(A)). On the contrary, for every

∏
i∈I

Ai ≥

A, by (
∏
i∈I

Ai)(x) =
∧

i∈I
Ai(xi), we know that (pi(

∏
i∈I

(Ai)))(xi) =
∨

y∈X
pi(y)=xi

(
∏
j∈I

Aj)(y) =

∨
y∈X

pi(y)=xi

∧
j∈I

Aj(yj) ≤ Ai(xi) for all i ∈ I. It follows that pi(A) ≤ pi(
∏
i∈I

(Ai)) ≤ Ai for all i ∈

I. Then
∧

i∈I
Bi(pi(A)) ≥

∧
i∈I

Bi(Ai). Hence B(A) =
∨

A≤
∏
i∈I

Ai

∧
i∈I

Bi(Ai) ≤
∧

i∈I
Bi(pi(A)).

Theorem 2.25 ([16]). Let (X,B) be an M -fuzzifying bornological vector space. Define a
mapping ω(B) : LX → M by ω(B)(A) =

∧
a∈L

B(A(a)), ∀A ∈ LX . Then (X, ω(B)) is an

(L, M)-fuzzy bornological vector space.

Theorem 2.26 ([16]). Let X be a vector space and φ : 2X → M be a mapping. Define
B : 2X → M by

B(A) =
∧

{DX(A) : φ ≤ DX , (X,K,DX) ∈ ΛX}, ∀A ∈ 2X ,

where ΛX denotes the family of all M -fuzzifying bornological vector spaces on X. Then
(X,K,B) is an M -fuzzifying bornological vector space. In this case, we say φ generates
the M -fuzzifying bornological vector space (X,K,B).
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Theorem 2.27 ([16]). Let (X, B) be an (L, M)-fuzzy bornological space. Define φB :
2X → M as follows:

φB(U) =
∨

a∈L

∨
{B(A) : A ∈ LX , A(a) = U}, ∀U ∈ 2X .

Suppose that ι(B) denotes the M -fuzzifying bornological vector spaces generated by φB.
Then ι ◦ ω = id and ω ◦ ι ≥ id.

Example 2.28. Let (X, N) be a fuzzy normed linear space and let A be a fuzzy set of
X. The value

∧
a∈[0,1)

∨
t>0

∧
x∈A(a)

N(x, t) is called the bounded degree of A and is denoted by

Bd(A). Then (X, Bd) is an (L, M)-fuzzy bornological vector space.
We need to prove (LMB3), (LMB4), (LMB5) and (LMB6).
(LMB3). For each α ∈ [0, 1] with Bd(A) ∧ Bd(B) ≥ α. Then for all a ∈ [0, 1), exists

t1, t2 > 0 such that N(x, t1) ≥ α and N(y, t2) ≥ α for all x ∈ A(a), y ∈ B(a). Thus, for all
z ∈ (A ∨ B)(a), we know z ∈ A(a) or z ∈ B(a), which implies that Bd(A ∨ B) ≥ α.

(LMB4). Let Bd(A) ∧ Bd(B) ≥ α. Then for all a ∈ [0, 1), exists t1, t2 > 0 such
that N(x, t1) > α and N(y, t2) > α for all x ∈ A(a), y ∈ B(a). Since (A + B)(z) =∨
x+y=z

A(x) ∧ B(y) � a, then for all z ∈ (A + B)(a), there exists x and y with x + y = z

such that x ∈ A(a) and y ∈ B(a). We obtain that N(z, t1 + t2) ≥ N(x, t1) ∧ N(y, t2) ≥ α,
which implies that Bd(A + B) ≥ α.

(LMB5). For all λ ∈ K. let Bd(A) ≥ α. Then for all a ∈ [0, 1), exists t > 0 such that
N(x, t) > α for all x ∈ A(a). For each y ∈ (λA)(a), we have y

λ ∈ A(a) and N(y, |λ|t) =
N( y

λ , t) ≥ α with λ 6= 0. If λ = 0, then Bd(0 · A) =
∧

a∈[0,1)

∨
t>0

∧
x∈(0·A)(a)

N(x, t) =∨
t>0

N(θ, t) = 1. Hence Bd(λA) ≥ α for λ ∈ K.

(LMB6). For all λ ∈ K with |λ| ≤ 1. let Bd(A) ≥ α. Then for all a ∈ [0, 1),
exists t > 0 such that N(x, t) > α for all x ∈ A(a). For each y ∈ (

∨
|λ|≤1

λA)(a), we have

(
∨
|λ|≤1

λA)(y) � a. Then exists |λ0| ≤ 1 such that (λ0A)(y) � a, i.e., y
λ0

∈ A(a). It follows

that N(y, |λ0|t) = N( y
λ0

, t) ≥ α. We get Bd(
∨
|λ|≤1

λA) ≥ α.

3. Mackey convergence and separation in (L, M)-fuzzy bornological vector
spaces

In this section, we will introduce the concepts of Mackey convergence degree for se-
quences in LX and separation degree for (L, M)-fuzzy bornological vector spaces. We
will study some interesting properties related to these notions. The relationship between
Mackey convergence and separation in (L, M)-fuzzy bornological vector spaces will be
explored. Additionally, we will define the degree to which an L-fuzzy set is bornologi-
cally closed and confirm the close relationship between bornological closure of a space and
separation in (L, M)-fuzzy bornological vector spaces.

According to the terminology induced by Liu and Luo [17], a sequence {xn
λ(n)}n∈N is

called λ-sequence (λ ∈ J(L)) if λ =
∧

n∈N

∨
m≥n

λ(m). Where xn
λ(n) is defined as follows:

xn
λ(n)(y) =

{
λ(n), y = xn

0, y 6= xn , ∀y ∈ X. And λ(n) ∈ J(L) for every n ∈ N.

Definition 3.1. Let (X, B) be an (L, M)-fuzzy bornological vector space, λ ∈ J(L),
{xn

λ(n)}n∈N be a λ-sequence in LX . For every α ≥ λ, α ∈ J(L), the degree to which xn
λ(n)
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is Mackey convergence (or converges bornologically) to xα is

Mac(xn
λ(n), xα) =

∨
B∈Bal(LX)

sn→0

{B(B) : ∀n ∈ N, (xn − x)λ(n) � snB′},

where Bal(LX) means the family of all balanced L-fuzzy sets in LX .

Remark 3.2. If s < 0, since B is L-balanced, then sB′(x) = |s|B′(−x) = |s|B′(x) for all
x ∈ X. Thus when sn < 0, (xn − x)λ(n) � snB′ in the above definition is equivalent to
(xn − x)λ(n) � |sn|B′. Therefore we can only consider the case sn ≥ 0 in the following.

Example 3.3. Let X = l∞ be the space of sequences, ||x|| = supn∈N{|xn|}, ||x||0 =
supn∈N{ |xn|

n } for all x = (x1, x2, · · · , xn, · · · ). Then the mapping N : X × R → [0, 1] is
defined by

N(x, t) =


0, t ≤ ||x||0,
1
2 , ||x||0 < t ≤ ||x||,
1, t > ||x||.

Then (X, N) is a fuzzy normed vector space. For any fuzzy set A of X, define Bd(A)
as Example 2.28. Take yn = (0, 0, · · · , n, 0, · · · ) = nen, n ∈ N. Put U = {yn}n∈N,
A =

∨
a∈[0,1)

(a ∧ χU ). It is easy to check Bd(A) =
∧

a∈[0,1)
Bd(A(a)) = Bd(U) = 1

2 . Since

[en
λ(n)

b−→ (0, 0, · · · , 0, · · · )>] =
∨

B∈Bal(LX)
sn→0

{B(B) : ∀n ∈ N, en
λ(n) � snB′}, for all B ∈

Bal(LX) and sn → 0 satisfying snB(en) = B( 1
sn

en) � (λ(n))′, let V = { 1
sn

en}n∈N.
Similarly, we can get Bd(V ) = 1

2 . Thus we have 1
sn

en ∈ B(λ(n))′ , which implies that
Bd(B) =

∧
a∈[0,1)

Bd(B(a)) ≤ Bd(V ) = 1
2 . It follows that Mac(en

λ(n), (0, 0, · · · , 0, · · · )>) ≤

1
2 . On the other hand, it is easy to know that A ∈ Bal(LX) and yn ∈ A(λ(n))′ , i.e.,
en

λ(n) �
1
nA′. So we have Mac(en

λ(n), (0, 0, · · · , 0, · · · )>) ≥ Bd(A) = 1
2 . Hence

Mac(en
λ(n), (0, 0, · · · , 0, · · · )>) = 1

2 .

In the following, we will study some properties of Mackey convergence in (L, M)-fuzzy
bornological vector spaces at first.

Theorem 3.4. Let (X, B) be an (L, M)-fuzzy bornological vector space and α ∈ J(L),
{xn

λ(n)}n∈N be a α-sequence in LX . For any λ ∈ J(L), λ ≥ α, tn, t ∈ K with tn → t. The
following inequality holds.

Mac(xn
λ(n), xλ) ≤ Mac(tnxn

λ(n), txλ).

Proof. For each a ∈ M with a ◁ Mac(xn
λ(n), xλ), there exist B ∈ Bal(LX) and sn → 0

satisfying (xn − x)λ(n) � snB′ for all n ∈ N such that B(B) ≥ a. Since tn → t, there
exists k0 > 0 such that |tn| < k0 for all n ∈ N. Thus

(tnxn − tx)λ(n) = (tnxn − tnx + tnx − tx)λ(n) � max{|tn|sn, tn − t}(B + χ{x})′.

From |tn|B′ ≥ k0B′, it implies (tnxn − tnx + tnx − tx)λ(n) � max{k0sn, tn − t}(B +
χ{x})′. Since B(χ{x}) = >M , we have B(B + χ{x}) ≥ B(B) ∧ B(χ{x}) ≥ a. Therefore
Mac(tnxn

λ(n), txλ) ≥ a. The proof is completed. □
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Theorem 3.5. Let (X, B) be an (L, M)-fuzzy bornological vector space, α ∈ J(L), {xn
λ(n)}n∈N

and {yn
λ(n)}n∈N be α-sequences in LX . Then for all λ ≥ α, λ ∈ J(L),

Mac(xn
λ(n), xλ) ∧ Mac(yn

λ(n), yλ) ≤ Mac(xn
λ(n) + yn

λ(n), xλ + yλ).

Proof. For every a ∈ M such that a � Mac(xn
λ(n), xλ) ∧ Mac(yn

λ(n), yλ), there exist
B1, B2 ∈ Bal(LX) and sequences sn, tn → 0 such that (xn − x)λ(n) � snB′1 and (yn −
y)λ(n) � tnB′2 for all n ∈ N, satisfying B(B1)∧B(B2) ≥ a. Since λ(n) ∈ M(L), we obtain
λ(n) � snB′1(xn −x)∨ tnB′2(yn −y). Thus, λ(n) � max{sn, tn}(B1 +B2)′(xn −x+yn −y),
which implies (xn − x + yn − y)λ(n) � max{sn, tn}(B1 + B2). Since B(B1 + B2) ≥
B(B1) ∧ B(B2) ≥ a, we conclude that Mac(xnλ(n) + yn

λ(n), xλ + yλ) ≥ a. By considering
the arbitrary choice of a, it follows that Mac(xn

λ(n), xλ) ∧ Mac(yn
λ(n), yλ) ≤ Mac(xn

λ(n) +
yn

λ(n), xλ + yλ).
□

Theorem 3.6. Let (X, B) be an (L, M)-fuzzy bornological vector space, α ∈ J(L),
{xn

λ(n)}n∈N be α-sequence in LX and a linear mapping f : X → Y be (L, M)-fuzzy bounded.
Then for every λ ∈ J(L), λ ≥ α, Mac(xn

λ(n), xλ) ≤ Mac(f(xn)λ(n), f(x)λ).

Proof. For every a ∈ M such that a � Mac(xn
λ(n), xλ), there exists B ∈ Bal(LX) and

sn → 0 such that (xn − x)λ(n) � snB′ for all n ∈ N. Moreover, B(B) ≥ a. Since
f←(f→(B)) ≥ B, it follows that f←((f→(B))′) = (f←(f→(B)))′ ≤ B′. This implies
that (xn − x)λ(n) � snf←((f→(B))′). As f is linear, it follows that (f(xn) − f(x))λ(n) �
sn(f→(B))′. Considering the boundedness of f , we obtain BY (f→(B)) ≥ BX(B) ≥ a.
Therefore Mac(f(xn)λ(n), f(x)λ) ≥ a. □

In classical bornological vector space theory, separability is a significant property that
is closely associated with Mackey convergence. The separation of a space is sufficient
to guarantee the uniqueness of the Mackey convergence limit. Exploring how to draw
this conclusion in the fuzzy context is an intriguing and relevant topic. In the following
section, we will investigate the relationship between separation and Mackey convergence
in (L, M)-fuzzy bornological vector spaces.

Definition 3.7. Let (X, B) be an (L, M)-fuzzy bornological vector space. The degree
to which (X, B) is separated is defined as follows:

T (X, B) =
∧

E(⊥) 6={θ}
E∈Svec(LX)

(B(E))′,

where Svec(LX) means the family of all fuzzy vector subspaces in LX .

Theorem 3.8. Let (X, B) be an (L, M)-fuzzy bornological vector space. Then T (X, B) =∨
{ν ∈ J(M) : (X, B(ν′ )) is a separated L-bornological vector space}.

Proof. For all µ ∈ J(M) with µ ◁ T (X, B), clearly, µ ≤ T (X, B). Then for each
E(⊥) 6= {θ} with E ∈ Svec(LX), we have B(E) ≤ µ

′ . It implies that (X, B(µ′ )) is a
separated L-bornological vector space. Thus µ ∈ {ν ∈ J(M) : (X, B(ν′ )) is a separated
L-bornological vector space}. So we obtain T (X, B) ≤

∨
{ν ∈ J(M) : (X, B(ν′ )) is a

separated L-bornological vector space}.
Conversely, if T (X, B) � a =

∨
{µ ∈ J(M) : µ ∈ β(a)}, then there exists µ ∈

J(M)(with µ ≤ a) such taht T (X, B) � µ. Consequently, there exists E(⊥) 6= {θ}
with E ∈ Svec(LX) such that B(E) � µ′. This implies that (X, B(µ′)) is not a sepa-
rated L-bornological vector space. This deduces that a 6≤

∨
{ν ∈ J(M) : (X, B(ν′ )) is
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a separated L-bornological vector space}. Otherwise, if a ≤
∨

{ν ∈ J(M) : (X, B(ν′ ))
is a separated L-bornological vector space}, then for the aforementioned µ, there exists
ν ∈ J(M) with µ ≤ ν such that (X, B(ν′ )) is a separated L-bornological vector space. For
the above E(⊥) 6= {θ} with E ∈ Svec(LX), we have B(E) � µ′. It follows that B(E) � ν ′,
i.e., (X, B(ν′ )) is not a separated L-bornological vector space. This leads to a contradic-
tion. Therefore T (X, B) ≥

∨
{ν ∈ J(M) : (X, B(ν′ )) is a separated L-bornological vector

space}. The proof is completed. □

Theorem 3.9. Let (X, B) be an (L, M)-fuzzy bornological vector space and the linear
mappings fi :

∏
i∈I

Xi → Xi be (L, M)-fuzzy bounded for all i ∈ I, where X =
∏
i∈I

Xi.

(1) If for every x ∈ X with x 6= θ, there exists j ∈ I such that fj(x) 6= θj. Then∧
i∈I

T (Xi, Bi) ≤ T (X, B).

(2) If there exists x0 ∈
∏
i∈I

Xi with x0 6= θ such that fi(x0) = θi for all i ∈ I. Then∧
i∈I

T (Xi, Bi) ∧ T (X, B) =⊥M

Proof. (1) By the Definition 3.7, it suffices to prove the following:∨
E(⊥) 6={θ}

E∈Svec(LX)

B(E) ≤
∨
i∈I

∨
F

(⊥)
i 6={θi}

Fi∈Svec(LXi )

Bi(Fi).

For each a ∈ M with a �
∨

E(⊥) 6=θ E∈Svec(LX)
B(E), there exists an E(⊥) 6= θ with E ∈

Svec(LX) such that B(E) ≥ a. For all x ∈ E(⊥) with x 6= θ, there exists an i ∈ I such that
fi(x) 6= θi. Let Fi = f→i (E). It is evident that f→i (E) ∈ Svec(LXi). Since f→i (E)(fi(x)) ≥
E(x), it follows that f→i (E)(fi(x)) � ⊥L. Consequently, F

(⊥)
i 6= θi. According to the

boundedness of fi, we have Bi(Fi) ≥ B(E) ≥ a. Hence,
∨

i∈I

∨
F

(⊥)
i 6=θi

Fi∈Svec(LXi )

Bi(Fi) ≥ a.

(2) If
∧

i∈I
T (Xi, Bi) ∧ T (X, B) 6=⊥M , then

∧
i∈I

T (Xi, Bi) 6=⊥M and T (X, B) 6=⊥M . For

each E(⊥) 6= θ with E(⊥) ∈ Svec(LX), we have B(E) 6=⊥M , which implies B(E) =∧
i∈I

Bi(f→i (E)) 6= >M . There exists an i ∈ I such that Bi(f→i (E)) 6= >M . Take E =

span{x0}>L
(where span{x0} is a space spanned by x0, i.e., U = hx0, for h ∈ K). Then,

there exists an i ∈ I such that Bi(f→i (E)) = Bi((fi(span{x0}))>L
) = Bi((θi)>L

) 6= >M .
This contradicts ∀i ∈ I, Bi((θi)>L

) = >M . □

The above theorem we investigate how the property of an (L, M)-fuzzy bornology being
separated behaves with respect to the fundamental constructions described.

Theorem 3.10. Let (X, B) be an (L, M)-fuzzy bornological vector space, X1 be a subspace
of X and B1(A1) =

∨
A∩X1=A1

B(A) for all A1 ∈ LX1. Then T (X, B) ≤ T (X1, B1).

Proof. First, we prove (X1, B1) is an (L, M)-fuzzy bornological vector space. It only
need to prove (LMB4) and (LMB5).

(LMB4). For each α ∈ M with a ◁ B1(A1) ∧ B1(B1), then exist A, B ∈ LX with
A ∩ X1 = A1 and B ∩ X1 = B1 such that B(A) ∧ B(B) ≥ a. Obviously, (A + B) ∩ X1 =
(A ∩ X1) + (B ∩ X1) = A1 + B1. Since B(A + B) ≥ B(A) ∧ B(B) ≥ a, it follows that
B1(A1 + B1) ≥ a. Thus B1(A1) ∧ B1(B1) ≤ B1(A1 + B1).
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(LMB5). For all λ ∈ K, A1 ∈ LX1 , clearly,

B1(A1) =
∨

A∩X1=A1

B(A) ≤
∨

A∩X1=A1

B(λA)

≤
∨

(λA)∩X1=λA1

B(λA) = B1(λA1).

Hence (X1, B1) is an (L, M)-fuzzy bornological vector space. For each ν ∈ Pr(M) with
ν ≥ T (X1, B1), since

T (X1, B1) =
∧

C
(⊥)
1 6={θ}

C1∈Svec(LX1 )

(B1(C1))′,

there exists C
(⊥)
1 6= {θ} with C1 ∈ Svec(LX1) such that (B1(C1))′ ≤ ν, i.e., ν ′ ≤

B1(C1) =
∨

C∩X1=C1

B(C). Then there exists C ∈ LX with C ∩ X1 = C1 Let D(x) ={
C(x), x ∈ X1
⊥L, x 6∈ X1

. It is easy to find D ∈ Svce(LX) and D(⊥) 6= {θ}. In addition,

B(D) ≥ B(C) ≥ ν ′. So T (X, B) ≤ ν. By the arbitrariness of ν, we have T (X, B) ≤
T (X1, B1). □

Theorem 3.11. Let (X, B) be an (L, M)-fuzzy bornological vector space. Then∧
{xn

λ(n)}⊆LX ,λ≥α,λ,α∈J(L)
α=

∧
n∈N

∨
m≥n

λ(m),x 6=y

(
Mac(xn

λ(n), xλ) ∧ Mac(xn
λ(n), yλ)

)′

≤ T (X, B).

Proof. The above result is equivalent to∨
E(⊥) 6={θ}

E∈Svec(LX)

B(E) ≤
∨

x6=y

∨
{xn

λ(n)}⊆LX ,λ≥α,λ,α∈J(L)
α=

∧
n∈N

∨
m≥n

λ(m)

∨
B1,B2∈Bal(LX)

sn,tn→0

{
B(B1) ∧ B(B2) : ∀n ∈

N, (xn − x)λ(n) � snB′1, (xn − y)λ(n) � tnB′2

}
.

For each a ∈ M with a �
∨

E(⊥) 6={θ}
E∈Svec(LX)

B(E). Then there exists E(⊥) 6= {θ} with E ∈

Svec(LX) such that B(E) ≥ a. Fixed x ∈ E(⊥), x 6= θ, there exists µ ∈ Pr(L) such that
x ∈ E(µ), i.e., xµ′ � E′. Let xn

λ(n) = xµ′ and sn = 1
n , it is clear θ>L

∈ Bal(LX) and
(xn − x)λ(n) � (snθ>L

)′ for all n ∈ N, we have B(θ>L
) = >M . On the other hand, let

B2 = E, then xn
λ(n) = xµ′ � E

′ = 1
nE

′ = B
′
2, which implies that B(θ>L

) ∧ B(B2) ≥ a.
Then the inequality is established. □

Theorem 3.12. Let (X, B) be an (L, M)-fuzzy bornological vector space, α ∈ J(L),
{xn

λ(n)}n∈N be α-sequence in LX and L be a chain. Then for all λ ∈ J(L), λ ≥ α and
x 6= y, the following equality holds:

Mac(xn
λ(n), xλ) ∧ Mac(xn

λ(n), yλ) ∧ T (X, B) =⊥M .

Proof. It needs to prove that if T (X, B) = >M , the equality
Mac(xn

λ(n), xλ) ∧ Mac(xn
λ(n), yλ) =⊥M holds.

If Mac(xn
λ(n), xλ) ∧ Mac(xn

λ(n), yλ) 6=⊥M , there exists a ∈ J(M) such that a ◁

Mac(xn
λ(n), xλ) ∧ Mac(xn

λ(n), yλ). Furthermore, there exist B1, B2 ∈ Bal(LX) and



12 Y. Shen, C.H. Yan

sn, tn → 0 with (xn − x)λ(n) � snB′1 and (xn − y)λ(n) � tnB′2 for all n ∈ N such that
B(B1) ∧ B(B2) ≥ a. Hence, we have λ(n) � snB′1(xn − x) ∨ tnB′2(xn − y). Thus,
λ(n) � max{sn, tn}(B1 + B2)′(y − x), i.e., (y − x)λ(n) � max{sn, tn}(B1 + B2)′. Since
λ ≥ α =

∧
n∈N

∨
m≥n

λ(m), for all µ ∈ J(L) with λ ◁ µ, there exists n0 ∈ N such that

λ(m) ≤ µ for each m ≥ n. Given that max{sn, tn} → 0, there is n1 ≥ n0 such that
(B1 + B2) ≥ max{sn, tn}(B1 + B2) whenever n ≥ n1. Thus, y − x ∈ (B1 + B2)(µ′ )

and max{sn, tn}(B1 + B2)(y − x) 6≤ µ
′ for all n ≥ n1. Denote U = span{y − x}

(span{y − x} is a space spanned by y − x, i.e., U = h(y − x), for h ∈ K), we claim that
U ⊆ (B1 +B2)(µ′ ). Indeed, for all k ∈ K, if |k| ≤ 1, since B1 +B2 is L-balance set, then we
have (B1+B2)(k(y−x)) = 1

k (B1+B2)(y−x) ≥ (B1+B2)(y−x) and (B1+B2)(y−x) � µ
′ ,

hence k(y−x) ∈ (B1+B2)(µ′ ). If |k| > 1, then exists n2 ≥ n1 such that max{sn2 , tn2} < | 1
k |.

We get (B1 + B2)(k(y − x)) = 1
k (B1 + B2)(y − x) ≥ max{sn2 , tn2}(B1 + B2)(y − x) and

max{sn2 , tn2}(B1 + B2)(y − x) � µ
′ , hence k(y − x) ∈ (B1 + B2)(µ′ ). So, the inclu-

sion relation U ⊆ (B1 + B2)(µ′ ) holds. Since L is a chain, we have A = µ
′ ∧ χU ≤∨

µ′∈J(L)
µ

′ ∧ χ(B1+B2)(µ
′ ) = B1 + B2. It is clear that A ∈ Svec(LX). Since T (X, B) = >M ,

we have B(A) = ⊥M . This implies that B(B1 + B2) ≤ B(A) = ⊥M . However,
B(B1 + B2) ≥ B(B1) ∧ B(B2) ≥ a 6= ⊥M . This leads to a contradiction. □

The relationship between bornological closure of a space and its separation is widely
recognized in mathematical research. In the following, we will explore this relationship in
the fuzzy cases.

Definition 3.13. Let (X, B) be an (L, M)-fuzzy bornological vector space. Then the
degree to which A is bornologically closed is defined as follows:

BC(A) =
∧

xn
λ(n)≤A

xβ�A,β=
∧

n∈N

∨
m≥n

λ(m)

∧
B∈Bal(LX)

sn→0

{(B(B))′ : ∀n ∈ N, (xn − x)λ(n) � snB′}.

Theorem 3.14. Let (X, B) be an (L, M)-fuzzy bornological vector space and L be a
chain. Then BC(θ>L

) = T (X, B).

Proof. For each a ∈ M with a ≤ T (X, B), and for all E(⊥) 6= {θ} with E(⊥) ∈ Svec(LX),
we have B(E)′ ≥ a. For each xn

λ(n) ≤ θ>, xβ � {θ>L
}, B ∈ Bal(LX), sn → 0 with

(xn − x)λ(n) � snB′, we know λ(n) � snB′(xn − x) = snB′(−x) and B(−x) ≥ snB(−x) �
(λ(n))′. Since β =

∧
n∈N

∨
m≥n

λ(m), then x 6= θ and for each µ ∈ J(L) with β ◁ µ, there

exists n0 ∈ N, for each m ≥ n such that λ(m) ≤ µ. Then we get B(−x) � µ′, i.e.,
−x ∈ B(µ′). It follows that span{x} ⊆ B(µ′). Take A = µ′ ∧ χspan{x}. We obtain
A(⊥) = span{x}, A ∈ Svec(LX). From the fact L is a chain, we have A = µ′ ∧ χspan{x} ≤
µ′ ∧ χB(µ′) ≤

∨
µ′∈J(L)

µ′ ∧ χB(µ′) = B. It follows that (B(B))′ ≥ (B(A))′ ≥ a. So,

T (X, B) ≤ BC(θ>L
).

In addition, let

a =
∨

x 6=y

∨
{xn

λ(n)}⊆LX ,λ≥α,λ,α∈J(L)
α=

∧
n∈N

∨
m≥n

λ(m)

∨
B1,B2∈Bal(LX)

sn,tn→0

{
B(B1) ∧ B(B2) : ∀n ∈ N,

(xn − x)λ(n) � snB′1, (xn − y)λ(n) � tnB′2

}
.
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Then for each γ ∈ β(a), there exist ν-sequence {xn
λ(n)} ⊆ LX , x 6= y, sn, tn → 0,

λ ∈ J(L), λ ≥ ν, and L-fuzzy set A, B ∈ Bal(LX) with (xn − x)λ(n) � snA′, (xn − y)λ(n) �
tnB′ for all n ∈ N such that B(A) ≥ γ, B(B) ≥ γ. Clearly, {xn − xn}λ(n) ⊆ {θ>L

},
ν =

∧
n∈N

∨
m≥n

λ(m) and (x − y)ν 6≤ θ>L
. Moreover,

(x − y)λ(n) = (xn − xn + x − y)λ(n) = (xn − y − (xn − x))λ(n) 6≤ max{sn, tn}(A + B)′ .

Since B(A + B) ≥ B(A) ∧ B(B) ≥ γ. Thus (BC(θ>))′ ≥ γ. It follows that a ≤
BC(θ>L

)′ . So

BC(θ>L
) ≤

∧
{xn

λ(n)}⊆LX ,λ≥α,λ,α∈J(L)
α=

∧
n∈N

∨
m≥n

λ(m),x 6=y

(
Mac(xn

λ(n), xλ) ∧ Mac(xn
λ(n), yλ)

)′

≤ T (X, B).

The proof is completed. □

Theorem 3.15. Let (X, B) be an (L, M)-fuzzy bornological vector space and E be a
subspace of X. If BX/E is a quotient (L, M)-fuzzy bornological vector space on X/E and
L is a chain, then BC(χE) = T (X/E, BX/E).

Proof. By Definition 3.13 and Theorem 3.14, it follows that

T (X/E, BX/E) = BC(θ̂>L
)

=
∧

x̂n
λ(n)≤θ̂>L

x̂µ�θ̂>L

∧
B∈Bal(LX/E)

sn→0

{(BX/E(B))′ : ∀n ∈ N, ̂(xn − x)λ(n) � snB′,

µ =
∧

n∈N

∨
m≥n

λ(m)}

and
BC(χE) =

∧
xn

λ(n)≤χE

xµ�χE

∧
C∈Bal(LX)

tn→0

{(B(C))′ : ∀n ∈ N, (xn − x)λ(n) � tnC ′,

µ =
∧

n∈N

∨
m≥n

λ(m)}.

For each a ◁ (BC(θ>L
))′ , there exist x̂n

λ(n) ≤ θ̂>L
, x̂µ � θ̂>L

and B̂ ∈ Bal(LX/E),

sn → 0 with ̂(xn − x)λ(n) � snB̂′ such that BX/E(B̂) ≥ a. Since f : X → X/E with
E 7→ θ̂, then E = f−1(θ̂), we know f(xµ) � θ̂> ⇔ xµ � χE , which implies that xn

λ(n) ≤

χE , xµ � χE . Clearly, f←(B̂) ∈ Bal(LX) and λ(n) � snB̂′ ̂(xn − x) = snB̂′f(xn −
x) = sn(f←(B̂))′(xn − x), i.e., (xn − x)λ(n) � sn(f←(B̂))′. In addition, B(f←(B̂)) =
BX/E(B̂) ≥ a. So, a ≤ (BC(χE))′ . It follows that BC(χE) ≤ BC(θ>L

).
Conversely, suppose a◁(BC(χE))′ , there exist xn

λ(n) ≤ χE , xµ � χE and C ∈ Bal(LX), tn

→ 0 with (xn − x)λ(n) � tnC ′ for all n ∈ N such that B(C) ≥ a, which implies
that x̂n

λ(n) ≤ θ̂>, x̂µ � θ̂> and f→(C) ∈ Bal(LX/E) with ̂(xn − x)λ(n) � tn(f→(C))′.
It follows that BX/E(f→(C)) ≥ B(C) ≥ a. Thus we have (BC(θ>L

))′ ≥ a. Hence
BC(χE) ≥ BC(θ>L

). This completes the proof. □
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4. Some further properties of the functors ω and ι

As described by Liang and Shi in their work [16], two functors ω and ι were introduced
to establish connections between the category of M -fuzzifying bornological vector spaces
(MFBV) and the category of (L, M)-fuzzy bornological vector spaces ((L, M)-FBV).
Their research demonstrated that MFBV can be embedded in (L, M)-FBV as a reflective
subcategory. This section aims to further investigate the properties of the functors ω and
ι. The paper provides proof that the functor ω preserves the product and quotient spaces.
Moreover, it delves into relationships between Mackey convergence and separation, which
are relevant to both functors ω and ι.

Theorem 4.1. Consider a family (Xi,Bi)i∈I of M -fuzzifying bornological vector spaces,
and let X =

∏
i∈I

Xi. If we assume that ω(B) is a mapping defined by Theorem 2.25, we

have ω(
∏
i∈I

Bi) =
∏
i∈I

ω(Bi).

Proof. Let pi : X → Xi be a projection. For all A ∈ LX , we know that

ω(
∏
i∈I

Bi)(A) =
∧

a∈L
(

∏
i∈I

Bi)(A(a)) =
∧

a∈L

∧
i∈I

Bi(p→i (A(a)))

and∏
i∈I

(ω(Bi))(A) =
∨

A≤
∏
i∈I

Ai

∧
i∈I

ω(Bi)(Ai)

=
∧
i∈I

ω(Bi)(p→i (A)) =
∧
i∈I

∧
a∈L

Bi((p→i (A))(a))

=
∧

a∈L

∧
i∈I

Bi(p→i (A(a))).

Hence ω(
∏
i∈I

Bi) =
∏
i∈I

ω(Bi). □

Theorem 4.2. Let (X, BX) be an (L, M)-fuzzy bornological vector space and f : X → Y
be a linear mapping. Define BY : LY → M by

BY (C) =
∨

C≤f→(A)
BX(A).

Then (X, BY ) is an (L, M)-fuzzy bornological vector space, denoted by BY = BX/f .

Proof. Our first task is to establish that BY fulfills conditions (LMB1)-(LMB6). It can
be readily observed that (LMB1), (LMB2), and (LMB5) are satisfied.

(LMB3) For all a ◁ BY (U) ∧ BY (V ), there exist A, B ∈ LX such that U ≤ f→(A), V ≤
f→(B) and BX(A) ≥ a and BX(B) ≥ a. Thus, we have U ∨ V ≤ f→(A ∨ B) and
BX(A ∨ B) ≥ BX(A) ∧ BX(B) ≥ a. It is clear that BY (U ∨ V ) ≥ a and BY (U ∨ V ) ≥
BY (U) ∧ BY (V ).

(LMB4) For each a◁BY (U)∧BY (V ), there exist A, B ∈ LX such that U ≤ f→(A), V ≤
f→(B) and BX(A) ≥ a, BX(B) ≥ a. Thus U + V ≤ f→(A) + f→(B) = f→(A + B)
and BX(A + B) ≥ BX(A) ∧ BX(B) ≥ a. It is obvious that BY (U + V ) ≥ a and
BY (U + V ) ≥ BY (U) ∧ BY (V ).

(LMB6) For each a◁BY (U), there exists A ∈ LX with U ≤ f→(A) such that BX(A) ≥
a. It is clear that (

∨
|t|≤1

tU) ≤ f→(
∨
|t|≤1

tA) and BX(
∨
|t|≤1

tA) ≥ BX(A) ≥ a. Hence, we

have BY (
∨
|t|≤1

tU) ≥ BY (U).

Therefore (X, BY ) is an (L, M)-fuzzy bornological vector space. □
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Theorem 4.3. Consider (X,B) as an M -fuzzifying bornological space with f : X → Y
as a linear mapping. If ω(B) is a mapping defined by Theorem 2.25, we have ω(B/f) =
ω(B)/f.

Proof. For all A ∈ LX , we have ω(B/f)(A) =
∧

a∈L
(B/f)(A(a)) =

∧
a∈L

∨
A(a)⊆f→(U)

B(U)

and
(ω(B)/f)(A) =

∨
A≤f→(V )

ω(B)(V ) =
∨

A≤f→(V )

∧
a∈L

B(V (a)).

For each µ ∈ L with µ ◁ ω(B/f)(A), then for all a ∈ L, there exists U ⊆ X with
A(a) ⊆ f→(U) such that B(U) ≥ µ. Put V =

∨
a∈L

a ∧ χU . Then we have

f→(V ) =
∨

a∈L
f→(a ∧ χU ) =

∨
a∈L

(a ∧ χf→(U)) ≥
∨

a∈L
(a ∧ χA(a)) = A.

For all x ∈ V (a), we have (
∨

ν∈L
ν ∧χU )(x) � a, which implies that x ∈ U , thus V (a) ⊆ U .

It follows that B(V (a)) ≥ B(U) ≥ µ. Hence (ω(B)/f)(A) ≥ µ. By the arbitrariness of µ,
we have ω(B/f)(A) ≤ (ω(B)/f)(A).

On the contrary, let µ◁ (ω(B)/f)(A), there exists V1 with A ≤ f→(V1), for all a ∈ L such
that B(V (a)

1 ) ≥ µ. Since f→(V (a)
1 ) = (f→(V1))(a) for all a ∈ L, we have A(a) ⊆ f→(V (a)

1 ).
It implies that ω(B/f)(A) =

∧
a∈L

∨
A(a)⊆f→(U)

B(U) ≥
∧

a∈L
B(V (a)

1 ) ≥ µ. It follows that

(ω(B)/f)(A) ≤ ω(B/f)(A). This completes the proof. □

Theorem 4.4. Let (X,B) be an M -fuzzifying bornological space, {xn}n∈N be a sequence
in X and ω(B) be a mapping defined by Theorem 2.25. Then Mac(xn

>, x>) = Borc(xn, x).

Proof. It is known that
Mac(xn

>, x>) =
∨

B∈Bal(LX)
sn→0

{ω(B)(B) : ∀n ∈ N, (xn − x)>(n) � snB′}. For any µ ◁

Mac(xn
>, x>), there exist sn → 0, B ∈ Bal(LX) with (xn − x)> � snB′ such that

ω(B)(B) ≥ µ. It follows that xn − x ∈ snB(⊥) and B(⊥) ∈ Bal(X). In addition, µ ≤
ω(B)(B) =

∧
a∈L

B(B(a)) ≤ B(B(⊥)). Thus µ ≤ Borc(xn, x).

On the other hand, for every ν ◁ Borc(xn, x), there exist tn → 0, B ∈ Bal(X) with
(xn − x) ∈ tnB such that B(B) ≥ ν. Clearly, χB ∈ Bal(LX), (xn − x)> � tn(χB)′
and ω(B)(χB) =

∧
a∈L

B((χB)(a)) = B((χB)(⊥)) ≥ ν. Then Mac(xn
>, x>) ≥ ν. Hence

Borc(xn, x) ≤ Mac(xn
>, x>). □

Theorem 4.5. Let (X,B) be an M -fuzzifying bornological space and ω(B) be a mapping
defined by Theorem 2.25. Then T (X,B) = T (X, ω(B)).

Proof. It is known that T (X,B) =
∧

E 6={θ}
E∈Svec(X)

(B(E))′ and

T (X, ω(B)) =
∧

F (⊥) 6={θ}
F∈Svec(LX)

(ω(B)(F ))′ =
∧

F (⊥) 6={θ}
F∈Svec(LX)

∨
a∈L

(B(F (a)))′.

First, we prove that B(M (⊥)) =
∧

a∈L
B(M (a)). It is easy to know B(M (⊥)) ≥

∧
a∈L

B(M (a)).

From M (a) ⊆ M (⊥), we have B(M (⊥)) ≤
∧

a∈L
B(M (a)). For each a ≤ T (X,B) and any
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E 6= {θ} with E ∈ Svec(X), we have (B(E))′ ≥ a. Then for each F (⊥) 6= {θ} with
F ∈ Svec(LX), we have

∨
a∈L

(B(F (a)))′ = (B(F (⊥)))′ ≥ a. Hence T (X, ω(B)) ≥ a.

On the contrary, for any a � T (X, ω(B)), it deduces that
∨

a∈L
(B(E(a)))′ ≥ a for all

E(⊥) 6= {θ} with E ∈ Svec(LX). For each F 6= {θ} with F ∈ Svec(X), take E1 = χF . It
follows that B(F )′ = B(E(⊥)

1 )′ =
∨

µ∈L
(B(E(µ)

1 ))′ ≥ a. Hence T (X,B) = T (X, ω(B)). □

Theorem 4.6. Let (X, B) be an (L, M)-fuzzy bornological vector space and ι(B) be a
mapping defined by Theorem 2.27. Then T (X, B) = T (X, ι(B)).

Proof. It is known that T (X, B) =
∧

E(⊥) 6={θ}
E∈Svec(LX)

(B(E))′

and

T (X, ι(B)) =
∧

F 6={θ}
F∈Svec(X)

(ι(B)(F ))′

=
∧

F 6={θ}
F∈Svec(X)

∨
{(DX(F ))′ : φB ≤ DX , (X,K,DX) ∈ ΛX}

=
∧

F 6={θ}
F∈Svec(X)

(φB(F ))′

=
∧

F 6={θ}
F∈Svec(X)

∧
µ∈L

∧
{(B(A))′ : A(µ) = F}.

For each a ≤ T (X, B) and for all F 6= {θ}, F ∈ Svec(X), let A = χF , it follows
that A(µ) = F for all µ ∈ L \ {>} and A ∈ Svec(LX), A(⊥) = F 6= {θ}. Then we have
(B(A))′ ≥ a. Thus a ≤ T (X, ι(B)). So T (X, B) ≤ T (X, ι(B)). Moreover, for each
ν ◁ (T (X, B))′ , there exists E ∈ Svec(LX) with E(⊥) 6= {θ} such that B(E) ≥ ν. Then
φB(E(⊥)) =

∨
µ∈L

∨
{B(A) : A ∈ LX , A(µ) = E(⊥)} ≥ B(E) ≥ ν. Hence

(T (X, ι(B)))′ =
∨

F 6={θ}
F∈Svec(X)

φB(F ) ≥ φB(E(⊥)) ≥ ν.

It follows that T (X, ι(B)) ≤ T (X, B). This completes the proof. □

5. Conclusions and future work
Based on the research by Liang and Shi [16], this paper introduces the concepts of the

degree of Mackey convergence for sequences and the degree of separation for spaces in
(L, M)-fuzzy bornological vector spaces. Additionally, it presents the notion of bornolog-
ical closure degree for fuzzy sets. The paper discusses several properties associated with
these concepts, including the relationships among the degree of Mackey convergence for
sequences, the degree of separation for spaces, and the degree of bornological closure for
fuzzy sets. Furthermore, the paper explores the properties of the functors ω and ι defined
by Liang and Shi [16], demonstrating that the functor ω preserves product and quotient
spaces. The paper concludes by discussing the properties of the functors ω and ι in relation
to Mackey convergence sequences and separation spaces.
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A potential direction for future research is to establish a more comprehensive and sys-
tematic theory of (L, M)-bornological vector spaces. Additionally, studying the connec-
tions between the category of (L, M)-fuzzy topological vector spaces and the category of
(L, M)-fuzzy bornological vector spaces would be beneficial.
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[18] S. Özçaǧ, Bornologies and bitopological function spaces, Filomat, 27(7), 1345–1349,

2013.



18 Y. Shen, C.H. Yan

[19] J. Paseka, S. Solovyov and M. Stehlík, On the category of lattice-valued bornological
vector spaces, Journal of Mathematical Analysis and Applications, 419, 138–155,
2014.

[20] G. N. Raney, A subdirect-union representation for completely distributive complete
lattices, Proceeding of American Math Society, 4, 518–522, 1953.

[21] M. Saheli, Fuzzy topology generated by fuzzy norm, Iranian Journal of Fuzzy Systems,
13(4), 113–123, 2016.

[22] Y. Shen and C.H. Yan, Fuzzifying bornologies induced by fuzzy pseudo-norms, Fuzzy
Sets and Systems, 467, 108436, 2023.

[23] A. Šostak and I. Uljane, L-valued bornologies on powersets, Fuzzy Sets and Systems,
294, 93–104, 2016.

[24] A. Šostak and I. Uljane, Bornological structures on many-valued sets, Rad Hrvat.
Akad. Znan. Umjet. Mat. Znan., 21, 143–168, 2017.

[25] G.J. Wang, Order-homomorphisms on Fuzzes, Fuzzy Sets and Systems, 12, 281–288,
1984.

[26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, 238–353, 1965.
[27] H. Zhang and H. Zhang, The construction of I-bornological vector spaces, Journal of

Mathematical Research and Applications, 36(2), 223–232, 2016.


