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 Abstract 

Solving inverse kinematics problems is one of the fundamental challenges in 

serial robot manipulators. In this study, a learning-based algorithm was 

developed to minimize the complexity of solving the inverse kinematics 

problem for a 7-degree-of-freedom serial manipulator. The parameters of the 

Particle Swarm Optimization algorithm, modified with Q-learning, a 

reinforcement learning technique, are updated depending on the states. This 

approach aimed to increase the efficiency of the algorithm in finding solutions. 

In the simulation studies, two different end positions of the robot, measured in 

meters, were used to compare the performance of the proposed algorithm. The 

location error of the proposed algorithm was statistically compared, and 

meaningful results were obtained regarding the reliability of the outcomes 

through Wilcoxon analysis. The simulation results demonstrated that the 

reinforcement learning-based particle swarm optimization algorithm can be 

effectively used for inverse kinematics solutions in serial robot manipulators. 

 

1. Introduction 

 

Nowadays, robots have entered many different areas 

in various sectors and have provided many 

conveniences to our lives [1], [2]. Robots, in 

particular, have become an important factor in 

industrial systems due to reasons such as their 

adaptation to different places, their ability to 

perform different tasks like humans, and their 

widespread use [1], [2], [3], [4]. When looked at the 

industry, there are many types of robots, large and 

small, fixed, autonomous, serial or parallel [2], [5], 

[6], [7]. Sectors and companies using this 

technology can become the pioneers of the sector as 

they can increase their production capacity and 

profit margins. Therefore, issues such as position 

control, motion control, acceleration or thrust 

controls, and structural designs of robots are 

examined by many different researchers [4], [8].  

In industry, kinematic equations of robots 

must be derived and designs must be made before 

robots can be used [9]. Therefore, it can be said that 

the derivation of advanced and inverse kinematic 

equations in the control of robots is the first stage 

[4]. Thanks to these equations, the angle between the 
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robot's joints or axes or the distance between the 

linear distances can be used to determine the 

position and direction of the robot, thanks to 

advanced kinematic equations. Or, given the 

direction and the positions it needs to go, the angles 

or distances between the joints in the robot can be 

calculated using inverse kinematic equations [1]. 

Analytical and iterative methods could be 

used to solve the inverse kinematics problem in 

robots. Solutions made with analytical methods 

become difficult in robots with high degrees of 

freedom due to the increase in degrees of freedom 

depending on the motors used in the robot [1], [10]. 

It requires a good background, skill and ability, 

especially in deriving and solving the inverse 

kinematic equations of robotic arms with higher 

degrees of freedom. On the other hand, the inverse 

kinematics problem can be solved with iterative 

methods. However, since the computation burden is 

high, their solutions take time. 

Reinforcement learning is one of the 

machine learning methods [11], [12], [13]. 

Reinforcement learning is a type of learning based 

on perceiving the environment in which any agent 

(individual or person) is located, interacting with it, 
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regulating its behavior according to this interaction, 

and taking action in accordance with its goal [13], 

[14], [15], [16], [17], [18]. The learning process is 

reward-based work. Therefore, the agent adopts the 

behavior or action that provides the most reward in 

order to achieve his goal. He gets used to the action 

that gives the least reward or punishment and learns 

to do that action less. For example, while a player 

makes moves or follows strategies in which he earns 

more points in any game, he is careful not to make 

strategies in which he earns fewer points or loses the 

game. In terms of reinforcement learning, the player 

becomes an agent (individual or person) and learns 

the game by interacting with the environment. Then 

he makes the moves that will earn him the most 

points. Therefore, reinforcement learning can be 

applied to many optimization problems in the game 

industry, industrial control applications, image 

processing applications, path planning or industry. 

Optimization is the process of determining 

variables to minimize or maximize a certain 

objective criterion [19], [20], [21], [22], [23], [24], 

[25]. Optimization is encountered in almost every 

field, from logistics to finance, from chemistry to 

health, from machinery to electrical and electronics, 

from health to tourism, from automotive to 

construction, from medicine to food and retail, from 

education to social sciences [19], [26], [27], [28], 

[29]. The reason is that in the problem to be applied, 

there is a goal criterion that is desired to be 

maximized or minimized, and there are variables 

that will ensure this. In addition to classical 

optimization methods, there are swarm-based 

optimization algorithms inspired by nature. These 

algorithms were developed inspired by the behavior 

of living creatures in nature and are more successful 

in swarm-based global search [19], [24]. These 

algorithms can be given as Genetic Algorithm [30], 

[31], Particle Swarm Optimization (PSO) [20], [32], 

[33], Firefly Optimization (FA) [34], [35], Cuckoo 

Search Optimization [36], Gray Wolf Optimization 

[37], Flower Pollination Optimization [38], Whale 

Optimization Algorithm  [35], [39] and many more. 

For instance, PSO is one of the well-known swarm-

based optimization algorithms inspired by nature. 

PSO was developed by taking inspiration from the 

natural behaviors of fish and birds, such as finding 

food and escaping from predators [20], [32], [33]. In 

PSO, swarm experience and each particle’s (fish or 

bird) speed are repeatedly used to solve optimization 

problem. By this means, algorithm try to find best 

particle in swarm. Overall, PSO is a basic and easy 

to apply any scientific or engineering optimization 

problem. Moreover, setting only a few parameters is 

sufficient. On the contrast, this algorithm suffers 

both complexity with high dimension, is very 

sensitive to particles optimism and particles’ speed 

[3], [33], [40]. Especially, there are many studies to 

improve the performance of PSO algorithm. These 

studies are usually about parameter tuning or control 

of parameters. Parameter tuning is usually 

performed before the optimization process [41], 

[42], [43], [44].  The parameter tuning approach 

produces more efficient and successful results in 

some problems compared to the simple PSO 

method. However, its disadvantage is that some 

adaptation features are lost when the algorithm with 

the adjusted parameters is run. The other method, 

parameter control, adapts the algorithm to the 

specified conditions while the algorithm is running 

and a more dynamic optimization process is 

performed. In general, historical experience [45], 

[46], small test period [47], fuzzy logic [48], [49] 

and reinforcement learning methods [18], [50] are 

used in control-based PSO. However, there's no 

longer a need to manually design rules and fine-tune 

parameters, significantly reducing the burden for 

users. While parameters in Reinforcement Learning 

(RL) are important, experiments have demonstrated 

that a single set of parameters can yield good results 

across various algorithms and test functions. 

Consequently, in practice, adjusting RL parameters 

is often unnecessary. Additionally, by leveraging 

past experiences, the algorithm's applicability 

becomes broader, and its effectiveness improves. 

For instance, Liu et al. proposed the reinforcement 

learning method in the PSO method and applied this 

method to some multi-objective problems. In this 

adaptive method, the Q table has four states. These 

states, which can be adjusted adaptively, are created 

from the best particle among the particles used by 

the PSO algorithm and the particle in the swarm. 

The output of the Q table is determined as the inertia 

and correlation coefficients, which are the 

parameters of PSO [18]. Xu and Pi similarly tried to 

increase the performance of Q learning method by 

associating it with PSO [51]. However, unlike [18], 

they used different topologies while creating the 

states of Q table and added the diversity within the 

swarm in addition to the performance of the 

algorithm while creating the reward function. Xu 

and his colleagues similarly applied the 

reinforcement learning method to PSO algorithm. 

Unlike [18], they developed the algorithm by 

training an artificial intelligence model via deep 

deterministic policy (DDP) method. They applied 

DDP method and set its inputs as iteration, diversity 

and reward value obtained in the previous iteration. 

They determined the output as the parameters of 

PSO, inertia and correlation coefficients [50]. 
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In the literature, inverse kinematic problems 

were usually solved by conventional methods [52]. 

It is a much more complicated and time-consuming 

solution because of non-linear equations [1]. These 

studies are still ongoing. Düzgün proposed new 

methods for solving the kinematics of robots in his 

doctoral thesis [2]. In addition to these methods, 

especially in recent years, artificial intelligence, 

fuzzy logic, metaheuristic optimization algorithms 

or reinforcement learning methods have been used 

to solve this problem. Koker et al. presented the 

inverse kinematic solution of a 3-joint robot using 

artificial intelligence [53]. Özüdoğru, in his master's 

thesis, used constructive artificial neural network to 

determine the joint angles and trajectory of 

industrial robots according to the target position [1]. 

Alamdar et al. presented an alternative solution to 

the inverse kinematic problem with the found logic-

based ANFIS method [54]. The basic logic of the 

studies [53], [1], [54] is to collect data and determine 

the joint angles or joint distances of the robot using 

machine intelligence according to the collected data. 

In the study in [53], constructive neural networks, 

which are more successful in training, were used in 

[1], unlike the study. This proposed structure was 

implemented in real time on an industrial robot and 

successful results were obtained. On the other hand, 

in [54], they used ANFIS to be an alternative 

solution to solving kinematic problems. The 

superiority of ANFIS; It can produce successful 

results especially in situations containing 

uncertainty, as well as other artificial intelligence 

models. The reason for this is that it fuzzifies the 

fuzzy logic inputs by means of membership 

functions and then performs the clarification process 

according to the rules. The disadvantage is that 

many rules and membership functions need to be 

selected appropriately. Segoto et al. have collected 

synthetic data consisting of angles, speeds, torque 

from an industrial robot and trained it on an artificial 

neural network model. Then, they compared the 

performance of the trained model with machine 

learning logic [8]. Jin et al. have modeled a robot 

with six degrees of freedom. They used interpolation 

methods to determine joint angles [55]. However, 

Dereli transformed the inverse kinematic problem of 

a 7-axis robot with more joints into an optimization 

problem and then used the Artificial Bee Algorithm 

(ABC) algorithm to solve this problem [3]. In 

addition to this study, in [7], Quantum based PSO 

algorithm was applied to the same problem and 

more efficient and successful results were obtained. 

Quantum based PSO algorithm is the development 

of particles by affecting the quantum physics. Due 

to this feature, it has produced more successful 

results in finding the global search optimal than PSO 

algorithm. In addition, Quantum based PSO 

algorithm was compared to ABC algorithm in 

solving the inverse kinematic problem of a 7-DOF 

robot. Advantages of Quantum based PSO 

algorithm are the shorter computation time, fewer 

iterations and the number of particles. In the study 

conducted in [56], a similar process was performed 

with PSO for the target position determined by using 

the kinematic equations of a 7-DOF robot. However, 

the difference of this study is that the processing 

time and trajectories of the manipulator were 

optimized. In [57], an optimization study was 

performed to reduce the energy cost of a robot with 

a different objective criterion. Another machine 

learning method used in the control of robots is the 

reinforcement learning method. The advantage of 

reinforcement learning is that the robot is controlled 

by learning the behavior of the robot according to a 

reward function from a model determined by the 

researcher without needing the exact kinematic 

equation of the robot. In this direction, Avery et al. 

in their study, they carried out a study on the 

movement, speed and path planning of a robot with 

the incremental reinforcement learning method [6] 

In their study, Hou and Li proposed a reinforcement 

learning method for a 6-axis robot to grasp objects 

used in daily life that it recognizes in the image, and 

they achieved successful results [58]. 

In this study, a reinforcement learning-

based particle swarm optimization algorithm was 

developed to solve a seven-axis robot inverse 

kinematics problem, and the problem was solved 

with particle swarm optimization and Q learning-

based Particle Swarm optimization algorithm. 

Differences of the proposed model from [18], [51] 

are parameters and golden ratio has been inserted. 

The performance of the proposed reinforcement 

learning based particle swarm optimization 

algorithm was statistically compared with the mean 

value and standard deviation over different swarm 

sizes, iteration numbers and parameters. It has been 

observed that the proposed Q learning based Particle 

Swarm Optimization Algorithm produces 

successful results. Briefly, main contributions of the 

study as follows; 

1. Q learning PSO algorithm (PSO-RL-Q) was 

developed using golden ratio that is used 

while calculating states, 

2. PSO-RL-Q was applied to solve inverse 

kinematics of 7-DOF Robot Manipulator, 

3. Statistical analysis and Wilcoxon test for 

results of proposed PSO-RL-Q were made 

to evaluate the performance. 
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2. Material and Method 

 

2.1. Partical Swarm Optimization 

 

Particle Swarm Optimization, proposed by Kennedy 

and Eberhart in 1995, is an algorithm inspired by the 

behavior of swarm of birds and fish [33]. It is an 

algorithm developed by modeling the behavior of 

each individual in the swarm, such as finding food 

and avoiding predators. Each individual in the 

swarm has a position (𝑥𝑡)  and speed 

(𝑣𝑡) [19], [33], [59], [60]. Each individual interacts 

with other individuals in the swarm and iteratively 

updates its position and speed. This process takes 

place as in Equation 1.  

 

𝑣𝑡+1 = w𝑣𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑡)
+  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑡) 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡                                                                                                     

(1) 

 

As seen in Equation 1, the speeds of 

individuals are affected by 𝑔𝑏𝑒𝑠𝑡, which is in the best 

position in the swarm, and 𝑝𝑏𝑒𝑠𝑡, which is in the best 

position in the iteration. These effects are weighted 

with correlation coefficients (𝑐1, 𝑐2) and random 

values between 0-1 in each iteration (𝑟1, 𝑟2). In 

addition, the speed (𝑥𝑡) of each individual is 

multiplied by a weight factor (𝑤) and reflected in 

the next speed. The next location information of the 

individuals (𝑥𝑡+1) is also updated by collecting their 

current location (𝑥𝑡) and speed (𝑣𝑡) 

[19], [33], [59], [60]. 
 

2.2. Q Learning 

 

Q learning algorithm, one of the machine learning 

methods, dates back to Bellman's studies on optimal 

control theory, that is, in the 1950s [11], [61]. 

Bellman's work, which tried to solve the dynamic 

optimization problem to find the control signal in 

discrete systems, formed the basis of the Q learning 

algorithm in later years. Q learning algorithm 

basically requires an agent to interact with the 

environment according to its own knowledge and 

experience. After this interaction, according to the 

data collected from the environment, the agent 

learns the environment according to a 

reward/punishment value and decides its next move 

according to the current situations[12], [62]. As 

shown in Figure 1, the Agent generates a movement 

signal from the environment according to the 

situation. According to this signal, the agent moves 

within the environment and moves to the next state. 

The next state also produces a reward signal [14]. 

 

Figure 1. Environment and Agent Interaction. 

 

Q learning method and State-Action-

Reward-State-Action (SARSA) methods are model- 

independent or model-free reinforcement learning 

methods [13], [17]. Reinforcement learning also has 

a feature that learns mostly from behavior. It 

achieves this during the interaction of an agent with 

the environment. The determined agent interacts 

with the environment in a certain way and produces 

an output called reward by evaluating the outputs of 

the environment. Depending on the current state of 

the agent, its interaction with the environment, and 

the reward for the agent's next state, the agent that 

learns the environment begins to act in a way that 

will earn a higher reward at each step. They can be 

preferred especially in applications that are difficult 

to model, as they can learn by experiencing the 

results of actions rather than using a model [14]. In 

particular, reinforcement learning is provided by the 

Bellman equation suggested by Richard Bellman 

and used by Watkin in reinforcement learning, and 

the actions and outcomes depending on the 

situations are learned. In this learning method, the 

system is learned in terms of situations and action 

and reward value rather than a specific model. The 

simplest version of the Bellman equation used in Q 

learning is given in Equation 2. 𝑠𝑡 used in the 

equation is for the instantaneous state at time t, 𝑎𝑡 is 

for the instantaneous action at time t, 𝑠𝑡+1 is for the 

instantaneous state at time t+1, 𝑅(𝑠𝑡 , 𝑎𝑡) is for the 

reward value of 𝑠𝑡 and 𝑎𝑡, 𝑄(𝑠𝑡 , 𝑎𝑡) is for the value 

of 𝑠𝑡 and 𝑎𝑡. state of training value, 𝛼 is called the 

learning factor, and 𝛾 is called the discount factor. 
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) is the value at which the maximum 

Q value is produced according to the α action in case 

𝑠𝑡+1. By performing this process in each iteration, Q 

values are updated [11], [12], [14], [17]. 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑅(𝑠𝑡 , 𝑎𝑡) +

𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]  

(2) 

 

Additionally, the epsilon greedy method is 

applied to determine Q values. This method allows 

the Agent to visit all possible states during learning.  
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Algorithm 1. Q learning Pseudocode 

1: Input: 
2: State (𝑠) 
3: Action (𝑎𝑡) 
4: Learning rate (𝛼) 
5: Discount factor (𝛾) 
6: Reward 𝑅(𝑠𝑡, 𝑎𝑡) 
7: Updated table 𝑄(𝑠𝑡, 𝑎𝑡) 
8: Output: 
9: Selected action according to updating table 𝑄(𝑠𝑡, 𝑎𝑡) 
10: For iter=1, Max_iteration do 
11:  Initialise state 𝑠𝑡 
12:  For t=1, Max_iteration do 
13:   Choose 𝑎𝑡 with 𝜖 greedy probability 
14:   Execute 𝑎𝑡 and observe state 𝑠𝑡+1 and reward 𝑟𝑡 
15:   

Update table 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] 

16:  End for 
17: End for 

Thus, the q values that will maximize the 

reward by learning the environment better are 

determined. The pseudo code of the Q learning 

algorithm is given in Figure 1. This method is an 

off policy and the learning agent learns the value 

function based on the current action derived from 

the policy currently in use. The pseudocode of the 

Q learning algorithm is given in Algorithm 1. 

 

2.3. Kinematic Model of the Robot 

 

The homogeneous transformation matrix is 

expressed by Equation 3. Transformation matrices 

of the serial robot manipulator are obtained by the 

David Hartembert method (DH) [4], [9]. The DH 

parameters listed in Table 1 represent the 

connection length (𝑙𝑖), connection angle (𝛼𝑖), 

connection offset (𝑑𝑖) and joint angles (𝜃𝑖). 

Transformation matrices of adjacent link 

coordinate frames are obtained according to the 

DH parameters of the robotic manipulator given in 

Figure 2 and Equation 1. Equation 5 is obtained by 

multiplying the six transformation matrices in 

Equation 4. Lengths are in meters and angles are in 

degrees [3]. 

 

 

Figure 2. 7-DOF Robot 
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𝑇(𝑐𝑜𝑠(𝜃𝑖)) = [

𝑐𝑜𝑠(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖)
0
0

−𝑐𝑜𝑠(𝛼𝑖)𝑠𝑖𝑛(𝜃𝑖)

𝑐𝑜𝑠(𝛼𝑖)𝑐𝑜𝑠(𝜃𝑖)

𝑠𝑖𝑛(𝛼𝑖)
0

𝑠𝑖𝑛(𝛼𝑖)𝑠𝑖𝑛(𝜃𝑖)

−𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖)

𝑐𝑜𝑠(𝛼𝑖)
0

𝑙𝑖𝑐𝑜𝑠(𝜃𝑖)

𝑙𝑖𝑠𝑖𝑛(𝜃𝑖)

𝑑𝑖

1

]𝑖
𝑖−1             (3) 

𝑇 = [

𝑐𝑜𝑠(𝜃1)

𝑠𝑖𝑛(𝜃1)
0
0

0
0

−1
0

−𝑠𝑖𝑛(𝜃1)

𝑐𝑜𝑠(𝜃1)
0
0

0
0
𝑙1

1

]0
1 𝑇 =1

2 [

𝑐𝑜𝑠(𝜃2)

𝑠𝑖𝑛(𝜃2)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃2)

−𝑐𝑜𝑠(𝜃2)
0
0

𝑙2𝑐𝑜𝑠(𝜃2)

𝑙2𝑠𝑖𝑛(𝜃2)
0
1

]

𝑇 =2
3 [

𝑐𝑜𝑠(𝜃3)

𝑠𝑖𝑛(𝜃3)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃3)

−𝑐𝑜𝑠(𝜃3)
0
0

𝑙2𝑐𝑜𝑠(𝜃3)

𝑙2𝑠𝑖𝑛(𝜃3)
0
1

] 𝑇 =3
4 [

𝑐𝑜𝑠(𝜃4)

𝑠𝑖𝑛(𝜃4)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃4)

−𝑐𝑜𝑠(𝜃4)
0
0

𝑙4𝑐𝑜𝑠(𝜃4)

𝑙4𝑠𝑖𝑛(𝜃4)
0
1

]

 

𝑇 =4
5 [

𝑐𝑜𝑠(𝜃5)

𝑠𝑖𝑛(𝜃5)
0
0

0
0

−1
0

−𝑠𝑖𝑛(𝜃5)

𝑐𝑜𝑠(𝜃5)
0
0

𝑙5𝑐𝑜𝑠(𝜃5)

𝑙5𝑠𝑖𝑛(𝜃5)
0
1

] 𝑇 =5
6 [

𝑐𝑜𝑠(𝜃6)

𝑠𝑖𝑛(𝜃6)
0
0

−𝑠𝑖𝑛(𝜃6)

𝑐𝑜𝑠(𝜃6)
0
0

0
0
1
0

𝑙6𝑐𝑜𝑠(𝜃6)

𝑙6𝑠𝑖𝑛(𝜃6)
0
1

]

𝑇 =6
7 [

𝑐𝑜𝑠(𝜃7)

𝑠𝑖𝑛(𝜃7)
0
0

−𝑠𝑖𝑛(𝜃7)

𝑐𝑜𝑠(𝜃7)
0
0

0
0
1
0

𝑙7𝑐𝑜𝑠(𝜃7)

𝑙7𝑠𝑖𝑛(𝜃7)

𝑑7

1

]

 

(4) 

𝑇7
0 = 𝑇1

0 (𝜃1) 𝑇1
2 (𝜃2) 𝑇3

4 (𝜃3) 𝑇4
5 (𝜃4) 𝑇5

6 (𝜃5) 𝑇6
7 (𝜃6) = [

𝑛𝑥

𝑛𝑦

𝑛𝑧

0

𝑜𝑥

𝑜𝑦

𝑜𝑧

0

𝑎𝑥

𝑎𝑦

𝑎𝑧

0

𝑃𝑥

𝑃𝑦

𝑃𝑧

1

] (5) 

2.3. Objective Function 

 

In the application of reinforcement learning based 

Particle swarm optimization to inverse kinematics 

equations, each individual (𝑥𝑡) is the joint 

variables (𝜃1
𝑜, 𝜃2

𝑜, 𝜃3
𝑜, 𝜃4

𝑜, 𝜃5
𝑜, 𝜃6

𝑜, 𝜃7
𝑜) of the 7-axis 

serial robot manipulator [3]. In order to provide an 

optimal solution, the end effector reaching the 

target position is achieved through optimal 

adjustments. The robot arm has many destination 

paths from its starting point to its destination. The 

important issue at this point is that the manipulator 

reaches the target with minimum error with the 

fitness function. 

 

𝐸𝑟 = √(𝑃𝑥 − 𝑃𝑥
′)2 + (𝑃𝑦 − 𝑃𝑦

′)
2

+ (𝑃𝑧 − 𝑃𝑧
′)2 

(6) 

 

The positions to be calculated 𝑃𝑥
′, 𝑃𝑦

′, 𝑃𝑧
′ 

given in Equation 6 represent the target position of 

the end effector and 𝐸𝑟 represents the error between 

𝑃 and 𝑃′. The aim of this study is to minimize the 

𝐸𝑟 error value. 

 

2.3. Q Learning Based Particle Swarm 

Optimization 

 

Q learning method is one of the Reinforcement 

Learning algorithms [13], [14]. By integrating Q 

learning into particle swarm optimization, it is 

aimed to update the parameters depending on the 

situation and thus increase the performance of the 

Particle Swarm optimization method. In this 

direction, situations were determined to be used 

within the Q learning method. In order to determine 

these states, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥,  𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 

values to be used in the states are determined. The 

pseudocode for performing this operation is given 

in Algorithm 2. 
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Algorithm 2. Pseudocode for calculation of 𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥 ,  𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥  values 

1: 
𝑓𝑚𝑖𝑛 = 𝑓𝑢𝑛𝑐(𝑥(𝑡)), 𝑓𝑚𝑎𝑥 = 𝑓𝑢𝑛𝑐(𝑥(𝑡)),  𝑣𝑚𝑖𝑛 = ‖𝑣(𝑡)‖, 𝑣𝑚𝑎𝑥 = ‖𝑣(𝑡)‖, 

𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖, 𝑑𝑚𝑎𝑥 = ‖𝑥(𝑡) − 𝑝‖ 

2: For t=1, maximum generation do 
3:  If 𝑓𝑚𝑖𝑛 > 𝑓𝑢𝑛𝑐(𝑥(𝑡)) 

4:   𝑓𝑚𝑖𝑛 > 𝑓𝑢𝑛𝑐(𝑥(𝑡)) 
5:  End If 
6:  𝐈𝐟  𝑓𝑚𝑎𝑥 < 𝑓𝑢𝑛𝑐(𝑥(𝑡)) 
7:   𝑓𝑚𝑎𝑥 = 𝑓𝑢𝑛𝑐(𝑥(𝑡)) 
8:  End If 
9:  𝐈𝐟  𝑣𝑚𝑖𝑛 > ‖𝑣(𝑡)‖ 

10:    𝑣𝑚𝑖𝑛 = ‖𝑣(𝑡)‖ 
11:  End If 
12:  𝐈𝐟  𝑣𝑚𝑎𝑥 < ‖𝑣(𝑡)‖ 
13:    𝑣𝑚𝑎𝑥 = ‖𝑣(𝑡)‖ 
14:  End If 
15:  𝐈𝐟  𝑑𝑚𝑖𝑛 > ‖𝑥(𝑡) − 𝑝‖ 

16:   𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖ 
17:  End If 
18:  𝐈𝐟  𝑑𝑚𝑎𝑥 < ‖𝑥(𝑡) − 𝑝‖ 
19:   𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖ 
20:  End If 
21: End for 

 

Values have been generated by comparing 

the 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥,  𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 produced 

with Psoudecode with the x, d, v variables used in 

PSO, and corresponding states would be created. 

This part is inspired by golden section search. The 

golden ratio is a ratio that can be found in the shape 

and structure of countless living and non-living 

entities in nature. The golden ratio is a numerical 

ratio that was discovered by the ancient Egyptian 

and Greek civilizations and has been applied to 

works of art such as sculpture, painting, and 

architecture for centuries. The value of the golden 

ratio is ∅ =
1+√5

2
≅ 1.61803. As seen in Figure 3, 

there is a large piece |AC| (L) and a small piece |BC| 

(S) between points A and B. As seen in Figure 3 

and in Equality 7, the ratio of the large piece to the 

small piece is a situation where it is equal to a fixed 

value ratio. When Equation 7 is arranged and 

Equation 8 is obtained, the ratio of the small piece 

|BC| to |AC| is calculated as 0.61803. In this study, 

the value ∅ − 1 = 0.61803 was used from this 

value. 

L S

A BC

 

Figure 3. Golden ratio 

∅ =
𝑳

𝑺
=

|𝑨𝑪|

|𝑩𝑪|
≅

1 + √5

2
≅ 1.61803 (7) 

1

∅
=

𝑆

𝐿
=

2

1 + √5
= ∅ − 1 ≅ 0.61803 (8) 

 

When environment and nature are 

observed, the golden ratio is encountered in many 

places. One of the first places where the golden 

ratio is used in architecture is seen in Figure 4 and 

Figure 5. Or, as a few examples from nature itself, 

the proportions of snail shells, plants and human 

limbs are also places that contain the golden ratio, 

as seen in Figure 6 [63]. 

The golden ratio, known for centuries, is a 

method that has been applied to optimization 

problems before [64]. The golden ratio is aimed to 

be developed as a new and highly efficient method 

by adding it to the Q learning algorithm used with 

PSO. Therefore, in this study, the state assignment 

was carried out by comparing the objective value, 

speed and distance to the local best position of the 

particles or individuals used in the states produced 

for the swarm element, with the golden ratio. For 

example, according to the objective criterion to be 

produced for the herd element at index t, the value 

of 𝑠𝑡𝑎𝑡𝑒1 is calculated using Equation 9. The ε 

value used in the equation was chosen as a small 

value of 10−3 so that the expression does not 

become infinite. 
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Figure 4. Pyramids in Egypt 

     

Figure 5. Parthenon in Athens, Greece 

      

Figure 6. Snail shell, plant and human 

 

Then, 𝑠𝑡𝑎𝑡𝑒2 for the speeds of the particles 

was created as in Equation 10. Additionally, the 

situation obtained according to the distance of the 

particles to the best position is given in Equation 

11. 

 

𝑠𝑡𝑎𝑡𝑒1(t)

= {
1

𝑓(𝑥𝑡) − 𝑓𝑚𝑖𝑛

 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 + 𝜀
< ∅ − 1 

0 𝑒𝑙𝑠𝑒

 
(9) 

 
𝑠𝑡𝑎𝑡𝑒2(t)

= {1
‖𝑣(𝑡)‖ − 𝑣𝑚𝑖𝑛

 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 + 𝜀
< ∅ − 1 

0 𝑒𝑙𝑠𝑒

 

(10) 

𝑠𝑡𝑎𝑡𝑒3(t)

= {1
‖𝑑(𝑡)‖ − 𝑑𝑚𝑖𝑛

 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 + 𝜀
< ∅ − 1 

0 𝑒𝑙𝑠𝑒

 
(11) 

 

The parameters of the PSO algorithm will 

be updated according to 𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2 and 𝑠𝑡𝑎𝑡𝑒3 

used to create the states of the Q learning 

algorithm. Algorithm 3 is given to better express 

this process. The main working logic of the 

algorithm is that while PSO is running, it creates 

actions using the Q learning table and tries to find 

the optimum point by updating the parameters of 

the PSO algorithm according to the situations.  
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Algorithm 3. PSO-RL-Q learning Psoude Code 

1: Initialize population and reset Q table, determine 𝑓 
2: For t= 1,maximum generation do 
3:  𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥,  𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 calculate 
4:  𝑠𝑡𝑎𝑡𝑒1 = [], 𝑠𝑡𝑎𝑡𝑒2 = [], 𝑠𝑡𝑎𝑡𝑒3 = [] ve 𝑠𝑡𝑎𝑡𝑒𝑠 = [] 
5:  For i= 1, population size do 
6:   𝑠𝑡𝑎𝑡𝑒1(i), 𝑠𝑡𝑎𝑡𝑒2(i), 𝑠𝑡𝑎𝑡𝑒3(i) calculate 

   𝑠𝑡𝑎𝑡𝑒𝑠(𝑖) = [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3] 
7:   If rand()>0.5 
8:                         Action(i)=rand_int(0-2) 
9:   Else 

10:    
Specify 𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = arg (

𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡 , 𝑎), 𝑄(𝑠𝑡 , 𝑎)) 

11:   If End 

12: 

  Specify 𝑤, 𝑐1 and 𝑐2 with respect to Action(i)  

𝜔 = {
0.05  
0.50 
0.95  

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

, 𝑐1 = {
0.95   
0.50
2.00

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

, 

𝑐2 = {
0.95   
0.50
2.00

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

 

13:   𝑣𝑖,𝑑(𝑡 + 1) = 𝑤𝑣𝑖,𝑑(𝑡) + 𝑐1𝑟1 (𝑝𝑖(𝑡) − 𝑥𝑖,𝑑(𝑡)) + 𝑐2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖,𝑑(𝑡)) 
14:   𝑥𝑖,𝑑(𝑡 + 1) = 𝑥𝑖,𝑑(𝑡) + 𝑣𝑖,𝑑(𝑡) 
15:  End For 
16:  𝑅𝑒𝑤𝑎𝑟𝑑 = [ ], 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 = [ ] 
17:  For t=1, population size do 
18:    𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥,  𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 update 
19:   𝑅𝑒𝑤𝑎𝑟𝑑 (i)=− 𝑓(𝑥𝑡) 

20: 
  𝑠𝑡𝑎𝑡𝑒1(i), 𝑠𝑡𝑎𝑡𝑒2(i), 𝑠𝑡𝑎𝑡𝑒3(i) calculate 

𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒𝑠(𝑖) = [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3]  
21:   Apply Equation 2’ and update 𝑄(𝑠𝑡𝑎𝑡𝑒𝑠(𝑖), 𝐴𝑐𝑡𝑖𝑜𝑛(𝑖)) Table  
22:  End For 
23: End For 

 

In this context, when the psoudecode of the 

PSO-RL-Q algorithm is examined, the population 

to be used in PSO is first created. Then, the 

function 𝑓 is determined and initial values are 

assigned to the Q table. In 2nd line, a for loop was 

created to repeat the operations in the algorithm for 

the maximum number of generations. In order to be 

used in calculating the states within the loop, 

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥,  𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 values and 

variables to be used in the algorithm are assigned. 

Then, the states are calculated within the loop. 

After that, the control signal was determined 

depending on the rand() probability. According to 

this process, 𝐴𝑐𝑡𝑖𝑜𝑛s are determined for each 

particle. According to the determined action, the 

parameters (𝜔, 𝑐1, 𝑐2)  to be used in PSO were 

determined and the positions and speeds of each 

individual were updated. Afterwards, variables 

were created for Reward and next_state states. 

These variables are used to determine reward 

values according to the positions of the individuals 

in the swarm, to determine the status of the 

individuals according to their new positions, and to 

update the Q table. Therefore, a loop was created at 

the 17th line to update each individual. In this cycle, 

the negative value of each individual's goal 

criterion value is determined as reward. This is due 

to minimization. Subsequently, the states of each 

individual were calculated according to their x, d, 

v values, and next_states were created. Then, the 

value in the Q Table is updated according to the 

state and action of the relevant individual. 

A Q table must be created to run the 

algorithm. This created Q table depicted the states, 

actions and rewards.  The sample Q table obtained 

after running the algorithm is given in Table 1. This 
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table contains states and actions. The values of the 

states obtained depending on the states and actions 

are given in the table. 

 

3. Results and Discussion 

 

In order to test the performance of the PSO 

algorithm and PSO- RL-Q algorithm in different 

parameters, the inverse kinematics problem of a 7-

axis serial robot manipulator was used. In this 

study, the position of the end effector was chosen 

randomly. In this direction, Dereli et al. used the 

DH method to derive the kinematic equations of 

this robot and used the parameters in Table 2. 

The parameters used to compare the 

performance of the proposed PSO- RL-Q algorithm 

with different criteria such as number of iterations 

and swarm size are given in Table 3. As can be 

seen, while the control parameters 𝜔 , 𝑐1, 𝑐2 for 

PSO_par_1 were 0. 05, 0.95, 0.95, the tests were 

carried out using the iteration numbers as 100, 

1000 and the Swarm size as 50 and 100. Similarly, 

it has been implemented in PSO_par_2, 

PSO_par_3, and PSO-RL-Q algorithm. To test 

performances of algorithms, two different points 

were considered for the final position of the 

manipulator. According to these points, each 

algorithm was run independently 30 times. Then, 

the results obtained were compared statistically. 

Additionally, their statistical reliability was 

compared to test whether there were significant 

results.  

 

Table 1. A Q table results for population size 50 and maximum iteration 1000 for PSO-RL-Q 

𝑆𝑡𝑎𝑡𝑒𝑠 

𝐴𝑐𝑡𝑖𝑜𝑛 = 0 
𝜔 = 0.05  
𝑐1 = 0.50 
𝑐2 = 0.95  

 

𝐴𝑐𝑡𝑖𝑜𝑛 = 1 
𝜔 = 0.50  
𝑐1 = 0.50 
𝑐2 = 0.95  

 

𝐴𝑐𝑡𝑖𝑜𝑛 = 2 
𝜔 = 0.95  
𝑐1 = 2.00 
𝑐2 = 2.00  

 

(0,0,0) −2.2268 × 10−17 −2.0845 × 10−17 −3.7241 × 10−17 

(0,0,1) -1.0336× 10−16 -1.0861× 10−6 -3.2223× 10−7 

(0,1,0) -7.3675× 10−17 -2.7739× 10−6 -4.7972× 10−6 

(0,1,1) -3.1769× 10−11 -1.5064× 10−16 -1.6349× 10−9 

(1,0,0) -0.4615 -0.3071 -0.3664 

(1,0,1) -0.9919 -0.87698 -1.1141 

(1,1,0) -0.2333 -0.33376 -0.3182 

(1,1,1) -1.6299 -2.3279 -2.2797 

 
Table 2. DH parameters of 7-DOF Robot  

𝑖 𝑙𝑖(𝑚) 𝛼𝑖(°) 𝑑𝑖(𝑚) 𝜃𝑖(°)  

1 𝑙1 = 0.5 −90 0 −180 < 𝜃1 < 180 

2 𝑙2 = 0.2 90 0 −90 < 𝜃2 < 30 

3 𝑙3 = 0.25 −90 0 −90 < 𝜃3 < 120 

4 𝑙4 = 0.3 90 0 −90 < 𝜃4 < 90 

5 𝑙5 = 0.2 −90 0 −90 < 𝜃5 < 90 

6 𝑙6 = 0.2 0 0 −90 < 𝜃4 < 60 

7 𝑙7 = 0.2 0 𝑑7 = 0.05 −90 < 𝜃4 < 90 
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Table 3. Parameters of Algorithms 

Method Parameters Iteration 

Numbers 

Swarm Size 

PSO_par_1 𝜔 = 0.05, 𝑐1 = 0.95, 𝑐2 = 0.95    100, 1000 50,100 

PSO_par_2 𝜔 = 0.50, 𝑐1 = 0.50, 𝑐2 = 0.50   100, 1000 50,100 

PSO_par_3 𝜔 = 0.95, 𝑐1 = 2.00, 𝑐2 = 2.00    100, 1000 50,100 

PSO-RL-Q {

𝜔 = 0.05, 𝑐1 = 0.95, 𝑐2 = 0.95   
𝜔 = 0.50, 𝑐1 = 0.50, 𝑐2 = 0.50
𝜔 = 0.95, 𝑐1 = 2.00, 𝑐2 = 2.00

𝑎𝑡 = 0
𝑎𝑡 = 1
𝑎𝑡 = 2

 100, 1000 50, 100 

 
Table 4. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to 

target positions by swarm size 50, iteration number 100. 

Position Method 𝜃1
𝑜 𝜃2

𝑜 𝜃3
𝑜 𝜃4

𝑜 𝜃5
𝑜 𝜃6

𝑜 

[-25.00 

100.00 

50.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

-39.9982 

-0.07114 

-73.2728 

-16.0189 

-40.3681 

35.5679 

-90.0 

-10.2971 

54.3798 

3.5509 

13.9466 

-1.4765 

18.5928 

-78.1808 

-20.2021 

-33.4392 

7.3264 

-21.9988 

12.5424 

72.7653 

45.6443 

51.0210 

-15.0000 

22.1168 

[-30.00 

20.00 

80.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

-77.7382 

-30.6456 

-17.6197 

9.8517 

-23.6192 

14.0067 

-90.0 

-31.9813 

68.1264 

-90.0 

-90.0 

-85.8088 

32.7416 

89.9859 

90.0 

69.2948 

110.5017 

-52.3304 

119.9999 

-78.6991 

56.5476 

39.1834 

69.9999 

-12.5035 

 

The joint angles obtained for the inverse 

kinematic analysis results in the case of swarm size 

50, iteration number 100, according to the 

determined target positions [-25.00 100.00 50.00] 

and [-30.00 20.00 80.00] are listed in Table 4. In 

general, it has been observed that some algorithms 

produce joint angles at different angles. The reason 

for this is that Equation 6 can be minimized, at 

different angles of joint if the robot has many joints 

of robot. 

At Table 5, 𝑃𝑥, 𝑃𝑦 and 𝑃𝑧 positions 

produced by the algorithms for 2 different 

locations, location errors of the algorithms and 

processing times are given. Although the proposed 

PSO-RL-Q method produced the lowest error in 

terms of position error, it showed lower 

performance than other methods in terms of 

computation time. In addition, the best values 

produced by the algorithms according to the 

iterations are shown in Figure 7. The best results of 

these algorithms, which contain random 

parameters, were close during iterations. However, 

when the iteration continued, the dynamics of these 

algorithms differentiated the results. The part 

where this will be noticed best is the part where 

statistical analysis will be performed. In for that, 

the minimum and maximum mean and standard 

deviation values produced by the algorithms as a 

result of 30 different simulation studies where the 

number of swarm is 50 and the iteration is 100 are 

given in Table 6. The results are written with the 

best values in bold. However, when examined in 

terms of mean value, the proposed PSO-RL-Q 

algorithm produced more successful results than 

others.  
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Table 5. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to 

target positions by swarm size 50, iteration number 100. 

Target 

Position 

(cm) 

Method 𝑃𝑥 

(cm) 

𝑃𝑦 

(cm) 

𝑃𝑧 

(cm) 

Position Error Computation 

Time (sec) 

[-25.00 

100.00 

50.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

-24.99 

-25.00 

-24.05 

-24.99 

99.99 

100.00 

99.92 

100.00 

50.00 

49.99 

50.82 

49.99 

9.4954× 10−5 

2.2551× 10−14 

1.2634× 10−2 

8.0251× 𝟏𝟎−𝟏𝟔 

1.40824 

1.87351 

1.33919 

4.51963 

[-30.00 

20.00 

80.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

-29.48 

-30.00 

-29.97 

-30.00 

31.23 

29.99 

29.82 

30.00 

79.25 

80.00 

79.92 

80.00 

1.5306× 10−2 

3.7180× 10−15 

1.9437× 10−3 

1.7554× 𝟏𝟎−𝟏𝟓 

1.11302 

1.13652 

1.05694 

3.70225 

 

 
Figure 7. Objective values along the iterations for Swarm Size 50, iteration number 100 

 

For statistical reliability, the Wilxocon test 

was applied to the trials. The results obtained are 

given for different locations in Table 7 and Table 

8. From the pairwise comparison of the results, it is 

seen that, since the significance value is lower than 

0.05, there is a significant difference in the results 

except for PSO_par_1/PSO_par_1, 

PSO_par_2/PSO_par_2, PSO_par_4/PSO_par_4 

and PSO-RL-Q/PSO_par_3 results. 

It has been observed that the PSO 

algorithm is successful in solving the inverse 

kinematics problem of the 7-DOF robot. At the 

same time, it has been observed that changing the 

parameters of PSO or adding reinforcement 

learning into PSO increases the performance of the 

algorithm. However, when the number of iterations 

and swarm sizes of the algorithms are increased, 

the processing time becomes longer because the 
search takes longer and with more particles. At the 

same time, the potential to find its global minimum 

is higher. For this case, only for the [-25.00 100.00 

50.00] position, the algorithms were applied to the 

solution of the inverse kinematic problem with the 

swarm size being 100 and the number of iterations 

being 1000, and the results were analyzed. The 

results obtained according to the iterations are 

depicted in Figure 4. As can be seen from these 

results, since the number of swarms and the 

number of iterations are high, all algorithms 

converge to the same result, which is the global 

result.  
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Table 6. Statistical results for swarm size 50, iteration number 100. 

Target 

Position 

(cm) 

Method Minimum Max Mean Standard deviation 

[-25.00 

100.00 

50.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

9.4954× 10−5 

2.2484× 10−14 

1.2634× 10−2 

7.8504× 𝟏𝟎−𝟏𝟕 

0.2327 

0.0332 

0.1744 

1.2567× 𝟏𝟎−𝟕 

4.8891× 10−2 

8.7174× 10−3 

3.5619× 10−2 

2.2654× 𝟏𝟎−𝟖 

3.0914× 10−2 

3.2777× 10−3 

4.4413× 10−3 

4.7879× 10−9 

[-30.00 

20.00 

80.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

1.5306× 10−2 

3.8298× 10−15 

1.9437× 10−3 

0.0 

0.3715 

9.5388× 𝟏𝟎−𝟐 

0.1011 

0.1162 

9.5057× 10−2 

2.3801× 10−2 

2.4124× 10−2 

2.1863× 𝟏𝟎−𝟐 

1.7430× 10−1 

1.0253× 10−2 

2.3077× 10−2 

1.1943× 10−2 

 

Table 7. Wilxocon test results for [-25.00 100.00 50.00], swarm size 50, iteration number 100. 

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q 

PSO_par_1 1.00 9.01× 10−10 8.58× 10−33 9.03× 10−10 

PSO_par_2 9.01× 10−10 1.00 1.30× 10−25 0.0775 

PSO_par_3 8.58× 10−33 1.30× 10−25 1.00 2.58× 10−28 

PSO-RL-Q 9.03× 10−10 0.0775 2.58× 10−28 1.00 

 

Table 8. Wilxocon test results for [-30.00 20.00 80.00], swarm size 50, iteration number 100. 

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q 

PSO_par_1 1.00 2.57× 10−26 3.92× 10−13 1.39× 10−28 

PSO_par_2 2.57× 10−26 1.00 7.14× 10−24 0.0227 

PSO_par_3 3.92× 10−13 7.14× 10−24 1.00 6.92× 10−26 

PSO-RL-Q 1.39× 10−28 0.0227 6.92× 10−26 1.00 

 
Figure 8. Objective values along the iterations for [-

25.00 100.00 50.00] Position ve Swarm Size 100, 

iteration number 1000. 

Furthermore, for a numerical comparison 

of the results obtained, the positions reached, 

position errors and processing times are 

demonstrated at Table 9. As can be seen, as the 

processing load increases, processing times vary 

between 9 and 14 seconds. Sürü sayısı ve iterasyon 

sayısı arttığında, all algorithms found the same 

global optimal solution within 30 different trials. 

However, the calculation times have changed due 

to differences in calculations and operations. 

Although the results are the same, as can be seen, 

the PSO_par_1 algorithm produced the best result, 

while the PSO-RL-Q algorithm was the slowest. As 

a result, it is more correct to choose the faster 



M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024 

963 

method among the methods that show the same 

performance. 

Statistical analysis results are 

demonstrated at Table 10. Since the results of 30 

independent experiments reached the desired 

global value, the minimum, maximum, average 

value and standard deviation values were obtained 

as 0. The reason why all the results are 0 in Table 

10, is because when the swarm numbers and 

iteration numbers of the algorithms were increased, 

all algorithms found the same global optimal 

solution within 30 different trials. Therefore, when 

the optimal solution was one, the error function, the 

mean value, minimum value, maximum value and 

standard deviation of the error function were found 

to be 0. 

 

 

Table 9. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to 

target positions by swarm size 100, iteration number 1000. 

Target 

Position 

(cm) 

Method 𝑃𝑥 

(cm) 

𝑃𝑦 

(cm) 

𝑃𝑧 

(cm) 

Position Error Computation 

Time (sec) 

[-25.00 

100.00 

50.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

-25.00 

-25.00 

-25.00 

-25.00 

100.00 

100.00 

100.00 

100.00 

50.00 

50.00 

50.00 

50.00 

0.0 

0.0 

0.0 

0.0 

9.47613 

11.7058 

12.7068 

13.2338 

 

Table 10. Statistical results for swarm size 100, iteration number 1000. 

Target 

Position 

(cm) 

Method Minimum Max Mean 
Standard 

deviation 

[-25.00 

100.00 

50.00] 

PSO_par_1 

PSO_par_2 

PSO_par_3 

PSO-RL-Q 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

In addition, the Wilxocon test was 

performed to test whether there was a significant 

difference in the results. To perform this test, the 

results obtained by the algorithms in 30 different 

experiments were used. The algorithms always 

found the same error value with a high number of 

iterations and a high number of swarm. Therefore, 

there was no difference in the results obtained 

when high number of iterations and swarm sizes 

was used in the algorithms. The results obtained 

when the Wilxocon test is applied for the reliability 

of this statistical result are given in Table 11. In the 

results given in Table 11, it was seen that there was 

no significant difference in the results since all 

values were greater than 0.05. The reason why all 

the results are 1.00 in Table 11, is because when 

the swarm numbers and iteration numbers. 

As the results are examined, changing the 

parameters of the PSO algorithm affects the 

performance of the algorithm, and the solution 

performance of the algorithm can be increased 

when a reinforcement learning-based method is 

added, as in this study. Ultimately, 7-DOF robot 

used in industry was turned into an inverse 

kinematic problem with optimization using 

advanced kinematic equations with DH to 

determine its angles and distances using 

optimization algorithms. So that, PSO-RL-Q 

algorithm distinctly showed successful results in 

finding the joint angles and distances of the robot 

within short iteration number than plain PSO 

algorithm. 
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Table 11. Wilxocon test results for [-25.00 100.00 50.00], swarm size 100, iteration number 100. 

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q 

PSO_par_1 1.00 1.00 1.00 1.00 

PSO_par_2 1.00 1.00 1.00 1.00 

PSO_par_3 1.00 1.00 1.00 1.00 

PSO-RL-Q 1.00 1.00 1.00 1.00 

 

4. Conclusion and Suggestions 

 

In this study, a new optimization method was 

applied to find the joint angles of a 7-axis robot at 

the desired position. In this direction, first the 

kinematic equation of the robot was obtained, and 

then the PSO-based PSO_par_1, PSO_par_2, 

PSO_par_3 and reinforcement learning-based 

proposed PSO-RL-Q optimization method using 

golden section have been used to find the 

manipulator angle and distances. In order to 

compare the performances of the algorithms, 30 

independent studies have been carried out and the 

results were compared statistically. Statistically, it 

has been observed that the proposed PSO-RL-Q 

algorithm produces more successful results than 

standard PSO algorithms when the number of 

iterations is 100 and swarm size is 50. From the 

results, while the swarm size of the algorithms is 

50 and the number of iterations is 100, the PSO-

RL-Q algorithm performed the best result by 

producing 2.2654× 10−8 mean value for the 

position [-25.00 100.00 50.00]. Also, it produced 

more successful results than other algorithms by 

producing a mean value of 2.1863× 10−2  for the 

position [-30.00 20.00 80.00]. In addition, the test 

results obtained were subjected to the Wilxocon 

test and it was observed that there was a significant 

difference in the results when the number of 

iterations was 50 and iteration number are 100. 

Since reinforcement learning works on a reward 

basis, it appears to be a method that can be easily 

applied to many different algorithms. In future 

studies, it is planned to apply these proposed 

methods and their variations to different 

optimization problems and systems. 

 

Statement of Research and Publication Ethics 
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