
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 13 NO: 4 PAGE: 950-968 YEAR: 2024

DOI: 10.17798/bitlisfen.1482747

950

Q Learning Based PSO Algorithm Application for Inverse Kinematics of

7-DOF Robot Manipulator

Murat Erhan ÇİMEN1*

1Sakarya University of Applied Sciences, Faculty of Technology, Department of Electrical and

Electronic Engineering, Sakarya, Türkiye

(ORCID: 0000-0002-1793-485X)

Keywords: Robot

kinematics,

Reinforcement learning,

Q learning, PSO.

 Abstract

Solving inverse kinematics problems is one of the fundamental challenges in

serial robot manipulators. In this study, a learning-based algorithm was

developed to minimize the complexity of solving the inverse kinematics

problem for a 7-degree-of-freedom serial manipulator. The parameters of the

Particle Swarm Optimization algorithm, modified with Q-learning, a

reinforcement learning technique, are updated depending on the states. This

approach aimed to increase the efficiency of the algorithm in finding solutions.

In the simulation studies, two different end positions of the robot, measured in

meters, were used to compare the performance of the proposed algorithm. The

location error of the proposed algorithm was statistically compared, and

meaningful results were obtained regarding the reliability of the outcomes

through Wilcoxon analysis. The simulation results demonstrated that the

reinforcement learning-based particle swarm optimization algorithm can be

effectively used for inverse kinematics solutions in serial robot manipulators.

1. Introduction

Nowadays, robots have entered many different areas

in various sectors and have provided many

conveniences to our lives [1], [2]. Robots, in

particular, have become an important factor in

industrial systems due to reasons such as their

adaptation to different places, their ability to

perform different tasks like humans, and their

widespread use [1], [2], [3], [4]. When looked at the

industry, there are many types of robots, large and

small, fixed, autonomous, serial or parallel [2], [5],

[6], [7]. Sectors and companies using this

technology can become the pioneers of the sector as

they can increase their production capacity and

profit margins. Therefore, issues such as position

control, motion control, acceleration or thrust

controls, and structural designs of robots are

examined by many different researchers [4], [8].

In industry, kinematic equations of robots

must be derived and designs must be made before

robots can be used [9]. Therefore, it can be said that

the derivation of advanced and inverse kinematic

equations in the control of robots is the first stage

[4]. Thanks to these equations, the angle between the

* Corresponding author: muratcimen@subu.edu.tr Received: 12.05.2024, Accepted: 25.09.2024

robot's joints or axes or the distance between the

linear distances can be used to determine the

position and direction of the robot, thanks to

advanced kinematic equations. Or, given the

direction and the positions it needs to go, the angles

or distances between the joints in the robot can be

calculated using inverse kinematic equations [1].

Analytical and iterative methods could be

used to solve the inverse kinematics problem in

robots. Solutions made with analytical methods

become difficult in robots with high degrees of

freedom due to the increase in degrees of freedom

depending on the motors used in the robot [1], [10].

It requires a good background, skill and ability,

especially in deriving and solving the inverse

kinematic equations of robotic arms with higher

degrees of freedom. On the other hand, the inverse

kinematics problem can be solved with iterative

methods. However, since the computation burden is

high, their solutions take time.

Reinforcement learning is one of the

machine learning methods [11], [12], [13].

Reinforcement learning is a type of learning based

on perceiving the environment in which any agent

(individual or person) is located, interacting with it,

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1482747
https://doi.org/10.17798/bitlisfen.1482747
https://orcid.org/0000-0002-1793-485X
mailto:muratcimen@subu.edu.tr

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

951

regulating its behavior according to this interaction,

and taking action in accordance with its goal [13],

[14], [15], [16], [17], [18]. The learning process is

reward-based work. Therefore, the agent adopts the

behavior or action that provides the most reward in

order to achieve his goal. He gets used to the action

that gives the least reward or punishment and learns

to do that action less. For example, while a player

makes moves or follows strategies in which he earns

more points in any game, he is careful not to make

strategies in which he earns fewer points or loses the

game. In terms of reinforcement learning, the player

becomes an agent (individual or person) and learns

the game by interacting with the environment. Then

he makes the moves that will earn him the most

points. Therefore, reinforcement learning can be

applied to many optimization problems in the game

industry, industrial control applications, image

processing applications, path planning or industry.

Optimization is the process of determining

variables to minimize or maximize a certain

objective criterion [19], [20], [21], [22], [23], [24],

[25]. Optimization is encountered in almost every

field, from logistics to finance, from chemistry to

health, from machinery to electrical and electronics,

from health to tourism, from automotive to

construction, from medicine to food and retail, from

education to social sciences [19], [26], [27], [28],

[29]. The reason is that in the problem to be applied,

there is a goal criterion that is desired to be

maximized or minimized, and there are variables

that will ensure this. In addition to classical

optimization methods, there are swarm-based

optimization algorithms inspired by nature. These

algorithms were developed inspired by the behavior

of living creatures in nature and are more successful

in swarm-based global search [19], [24]. These

algorithms can be given as Genetic Algorithm [30],

[31], Particle Swarm Optimization (PSO) [20], [32],

[33], Firefly Optimization (FA) [34], [35], Cuckoo

Search Optimization [36], Gray Wolf Optimization

[37], Flower Pollination Optimization [38], Whale

Optimization Algorithm [35], [39] and many more.

For instance, PSO is one of the well-known swarm-

based optimization algorithms inspired by nature.

PSO was developed by taking inspiration from the

natural behaviors of fish and birds, such as finding

food and escaping from predators [20], [32], [33]. In

PSO, swarm experience and each particle’s (fish or

bird) speed are repeatedly used to solve optimization

problem. By this means, algorithm try to find best

particle in swarm. Overall, PSO is a basic and easy

to apply any scientific or engineering optimization

problem. Moreover, setting only a few parameters is

sufficient. On the contrast, this algorithm suffers

both complexity with high dimension, is very

sensitive to particles optimism and particles’ speed

[3], [33], [40]. Especially, there are many studies to

improve the performance of PSO algorithm. These

studies are usually about parameter tuning or control

of parameters. Parameter tuning is usually

performed before the optimization process [41],

[42], [43], [44]. The parameter tuning approach

produces more efficient and successful results in

some problems compared to the simple PSO

method. However, its disadvantage is that some

adaptation features are lost when the algorithm with

the adjusted parameters is run. The other method,

parameter control, adapts the algorithm to the

specified conditions while the algorithm is running

and a more dynamic optimization process is

performed. In general, historical experience [45],

[46], small test period [47], fuzzy logic [48], [49]

and reinforcement learning methods [18], [50] are

used in control-based PSO. However, there's no

longer a need to manually design rules and fine-tune

parameters, significantly reducing the burden for

users. While parameters in Reinforcement Learning

(RL) are important, experiments have demonstrated

that a single set of parameters can yield good results

across various algorithms and test functions.

Consequently, in practice, adjusting RL parameters

is often unnecessary. Additionally, by leveraging

past experiences, the algorithm's applicability

becomes broader, and its effectiveness improves.

For instance, Liu et al. proposed the reinforcement

learning method in the PSO method and applied this

method to some multi-objective problems. In this

adaptive method, the Q table has four states. These

states, which can be adjusted adaptively, are created

from the best particle among the particles used by

the PSO algorithm and the particle in the swarm.

The output of the Q table is determined as the inertia

and correlation coefficients, which are the

parameters of PSO [18]. Xu and Pi similarly tried to

increase the performance of Q learning method by

associating it with PSO [51]. However, unlike [18],

they used different topologies while creating the

states of Q table and added the diversity within the

swarm in addition to the performance of the

algorithm while creating the reward function. Xu

and his colleagues similarly applied the

reinforcement learning method to PSO algorithm.

Unlike [18], they developed the algorithm by

training an artificial intelligence model via deep

deterministic policy (DDP) method. They applied

DDP method and set its inputs as iteration, diversity

and reward value obtained in the previous iteration.

They determined the output as the parameters of

PSO, inertia and correlation coefficients [50].

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

952

In the literature, inverse kinematic problems

were usually solved by conventional methods [52].

It is a much more complicated and time-consuming

solution because of non-linear equations [1]. These

studies are still ongoing. Düzgün proposed new

methods for solving the kinematics of robots in his

doctoral thesis [2]. In addition to these methods,

especially in recent years, artificial intelligence,

fuzzy logic, metaheuristic optimization algorithms

or reinforcement learning methods have been used

to solve this problem. Koker et al. presented the

inverse kinematic solution of a 3-joint robot using

artificial intelligence [53]. Özüdoğru, in his master's

thesis, used constructive artificial neural network to

determine the joint angles and trajectory of

industrial robots according to the target position [1].

Alamdar et al. presented an alternative solution to

the inverse kinematic problem with the found logic-

based ANFIS method [54]. The basic logic of the

studies [53], [1], [54] is to collect data and determine

the joint angles or joint distances of the robot using

machine intelligence according to the collected data.

In the study in [53], constructive neural networks,

which are more successful in training, were used in

[1], unlike the study. This proposed structure was

implemented in real time on an industrial robot and

successful results were obtained. On the other hand,

in [54], they used ANFIS to be an alternative

solution to solving kinematic problems. The

superiority of ANFIS; It can produce successful

results especially in situations containing

uncertainty, as well as other artificial intelligence

models. The reason for this is that it fuzzifies the

fuzzy logic inputs by means of membership

functions and then performs the clarification process

according to the rules. The disadvantage is that

many rules and membership functions need to be

selected appropriately. Segoto et al. have collected

synthetic data consisting of angles, speeds, torque

from an industrial robot and trained it on an artificial

neural network model. Then, they compared the

performance of the trained model with machine

learning logic [8]. Jin et al. have modeled a robot

with six degrees of freedom. They used interpolation

methods to determine joint angles [55]. However,

Dereli transformed the inverse kinematic problem of

a 7-axis robot with more joints into an optimization

problem and then used the Artificial Bee Algorithm

(ABC) algorithm to solve this problem [3]. In

addition to this study, in [7], Quantum based PSO

algorithm was applied to the same problem and

more efficient and successful results were obtained.

Quantum based PSO algorithm is the development

of particles by affecting the quantum physics. Due

to this feature, it has produced more successful

results in finding the global search optimal than PSO

algorithm. In addition, Quantum based PSO

algorithm was compared to ABC algorithm in

solving the inverse kinematic problem of a 7-DOF

robot. Advantages of Quantum based PSO

algorithm are the shorter computation time, fewer

iterations and the number of particles. In the study

conducted in [56], a similar process was performed

with PSO for the target position determined by using

the kinematic equations of a 7-DOF robot. However,

the difference of this study is that the processing

time and trajectories of the manipulator were

optimized. In [57], an optimization study was

performed to reduce the energy cost of a robot with

a different objective criterion. Another machine

learning method used in the control of robots is the

reinforcement learning method. The advantage of

reinforcement learning is that the robot is controlled

by learning the behavior of the robot according to a

reward function from a model determined by the

researcher without needing the exact kinematic

equation of the robot. In this direction, Avery et al.

in their study, they carried out a study on the

movement, speed and path planning of a robot with

the incremental reinforcement learning method [6]

In their study, Hou and Li proposed a reinforcement

learning method for a 6-axis robot to grasp objects

used in daily life that it recognizes in the image, and

they achieved successful results [58].

In this study, a reinforcement learning-

based particle swarm optimization algorithm was

developed to solve a seven-axis robot inverse

kinematics problem, and the problem was solved

with particle swarm optimization and Q learning-

based Particle Swarm optimization algorithm.

Differences of the proposed model from [18], [51]

are parameters and golden ratio has been inserted.

The performance of the proposed reinforcement

learning based particle swarm optimization

algorithm was statistically compared with the mean

value and standard deviation over different swarm

sizes, iteration numbers and parameters. It has been

observed that the proposed Q learning based Particle

Swarm Optimization Algorithm produces

successful results. Briefly, main contributions of the

study as follows;

1. Q learning PSO algorithm (PSO-RL-Q) was

developed using golden ratio that is used

while calculating states,

2. PSO-RL-Q was applied to solve inverse

kinematics of 7-DOF Robot Manipulator,

3. Statistical analysis and Wilcoxon test for

results of proposed PSO-RL-Q were made

to evaluate the performance.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

953

2. Material and Method

2.1. Partical Swarm Optimization

Particle Swarm Optimization, proposed by Kennedy

and Eberhart in 1995, is an algorithm inspired by the

behavior of swarm of birds and fish [33]. It is an

algorithm developed by modeling the behavior of

each individual in the swarm, such as finding food

and avoiding predators. Each individual in the

swarm has a position (𝑥𝑡) and speed

(𝑣𝑡) [19], [33], [59], [60]. Each individual interacts

with other individuals in the swarm and iteratively

updates its position and speed. This process takes

place as in Equation 1.

𝑣𝑡+1 = w𝑣𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑡)
+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑡)

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡

(1)

As seen in Equation 1, the speeds of

individuals are affected by 𝑔𝑏𝑒𝑠𝑡, which is in the best

position in the swarm, and 𝑝𝑏𝑒𝑠𝑡, which is in the best

position in the iteration. These effects are weighted

with correlation coefficients (𝑐1, 𝑐2) and random

values between 0-1 in each iteration (𝑟1, 𝑟2). In

addition, the speed (𝑥𝑡) of each individual is

multiplied by a weight factor (𝑤) and reflected in

the next speed. The next location information of the

individuals (𝑥𝑡+1) is also updated by collecting their

current location (𝑥𝑡) and speed (𝑣𝑡)

[19], [33], [59], [60].

2.2. Q Learning

Q learning algorithm, one of the machine learning

methods, dates back to Bellman's studies on optimal

control theory, that is, in the 1950s [11], [61].

Bellman's work, which tried to solve the dynamic

optimization problem to find the control signal in

discrete systems, formed the basis of the Q learning

algorithm in later years. Q learning algorithm

basically requires an agent to interact with the

environment according to its own knowledge and

experience. After this interaction, according to the

data collected from the environment, the agent

learns the environment according to a

reward/punishment value and decides its next move

according to the current situations[12], [62]. As

shown in Figure 1, the Agent generates a movement

signal from the environment according to the

situation. According to this signal, the agent moves

within the environment and moves to the next state.

The next state also produces a reward signal [14].

Figure 1. Environment and Agent Interaction.

Q learning method and State-Action-

Reward-State-Action (SARSA) methods are model-

independent or model-free reinforcement learning

methods [13], [17]. Reinforcement learning also has

a feature that learns mostly from behavior. It

achieves this during the interaction of an agent with

the environment. The determined agent interacts

with the environment in a certain way and produces

an output called reward by evaluating the outputs of

the environment. Depending on the current state of

the agent, its interaction with the environment, and

the reward for the agent's next state, the agent that

learns the environment begins to act in a way that

will earn a higher reward at each step. They can be

preferred especially in applications that are difficult

to model, as they can learn by experiencing the

results of actions rather than using a model [14]. In

particular, reinforcement learning is provided by the

Bellman equation suggested by Richard Bellman

and used by Watkin in reinforcement learning, and

the actions and outcomes depending on the

situations are learned. In this learning method, the

system is learned in terms of situations and action

and reward value rather than a specific model. The

simplest version of the Bellman equation used in Q

learning is given in Equation 2. 𝑠𝑡 used in the

equation is for the instantaneous state at time t, 𝑎𝑡 is

for the instantaneous action at time t, 𝑠𝑡+1 is for the

instantaneous state at time t+1, 𝑅(𝑠𝑡 , 𝑎𝑡) is for the

reward value of 𝑠𝑡 and 𝑎𝑡, 𝑄(𝑠𝑡 , 𝑎𝑡) is for the value

of 𝑠𝑡 and 𝑎𝑡. state of training value, 𝛼 is called the

learning factor, and 𝛾 is called the discount factor.
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) is the value at which the maximum

Q value is produced according to the α action in case

𝑠𝑡+1. By performing this process in each iteration, Q

values are updated [11], [12], [14], [17].

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑅(𝑠𝑡 , 𝑎𝑡) +

𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

(2)

Additionally, the epsilon greedy method is

applied to determine Q values. This method allows

the Agent to visit all possible states during learning.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

954

Algorithm 1. Q learning Pseudocode

1: Input:
2: State (𝑠)
3: Action (𝑎𝑡)
4: Learning rate (𝛼)
5: Discount factor (𝛾)
6: Reward 𝑅(𝑠𝑡, 𝑎𝑡)
7: Updated table 𝑄(𝑠𝑡, 𝑎𝑡)
8: Output:
9: Selected action according to updating table 𝑄(𝑠𝑡, 𝑎𝑡)
10: For iter=1, Max_iteration do
11: Initialise state 𝑠𝑡
12: For t=1, Max_iteration do
13: Choose 𝑎𝑡 with 𝜖 greedy probability
14: Execute 𝑎𝑡 and observe state 𝑠𝑡+1 and reward 𝑟𝑡
15:

Update table 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾
𝑚𝑎𝑥

𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]

16: End for
17: End for

Thus, the q values that will maximize the

reward by learning the environment better are

determined. The pseudo code of the Q learning

algorithm is given in Figure 1. This method is an

off policy and the learning agent learns the value

function based on the current action derived from

the policy currently in use. The pseudocode of the

Q learning algorithm is given in Algorithm 1.

2.3. Kinematic Model of the Robot

The homogeneous transformation matrix is

expressed by Equation 3. Transformation matrices

of the serial robot manipulator are obtained by the

David Hartembert method (DH) [4], [9]. The DH

parameters listed in Table 1 represent the

connection length (𝑙𝑖), connection angle (𝛼𝑖),

connection offset (𝑑𝑖) and joint angles (𝜃𝑖).

Transformation matrices of adjacent link

coordinate frames are obtained according to the

DH parameters of the robotic manipulator given in

Figure 2 and Equation 1. Equation 5 is obtained by

multiplying the six transformation matrices in

Equation 4. Lengths are in meters and angles are in

degrees [3].

Figure 2. 7-DOF Robot

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

955

𝑇(𝑐𝑜𝑠(𝜃𝑖)) = [

𝑐𝑜𝑠(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖)
0
0

−𝑐𝑜𝑠(𝛼𝑖)𝑠𝑖𝑛(𝜃𝑖)

𝑐𝑜𝑠(𝛼𝑖)𝑐𝑜𝑠(𝜃𝑖)

𝑠𝑖𝑛(𝛼𝑖)
0

𝑠𝑖𝑛(𝛼𝑖)𝑠𝑖𝑛(𝜃𝑖)

−𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖)

𝑐𝑜𝑠(𝛼𝑖)
0

𝑙𝑖𝑐𝑜𝑠(𝜃𝑖)

𝑙𝑖𝑠𝑖𝑛(𝜃𝑖)

𝑑𝑖

1

]𝑖
𝑖−1 (3)

𝑇 = [

𝑐𝑜𝑠(𝜃1)

𝑠𝑖𝑛(𝜃1)
0
0

0
0

−1
0

−𝑠𝑖𝑛(𝜃1)

𝑐𝑜𝑠(𝜃1)
0
0

0
0
𝑙1

1

]0
1 𝑇 =1

2 [

𝑐𝑜𝑠(𝜃2)

𝑠𝑖𝑛(𝜃2)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃2)

−𝑐𝑜𝑠(𝜃2)
0
0

𝑙2𝑐𝑜𝑠(𝜃2)

𝑙2𝑠𝑖𝑛(𝜃2)
0
1

]

𝑇 =2
3 [

𝑐𝑜𝑠(𝜃3)

𝑠𝑖𝑛(𝜃3)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃3)

−𝑐𝑜𝑠(𝜃3)
0
0

𝑙2𝑐𝑜𝑠(𝜃3)

𝑙2𝑠𝑖𝑛(𝜃3)
0
1

] 𝑇 =3
4 [

𝑐𝑜𝑠(𝜃4)

𝑠𝑖𝑛(𝜃4)
0
0

0
0
1
0

𝑠𝑖𝑛(𝜃4)

−𝑐𝑜𝑠(𝜃4)
0
0

𝑙4𝑐𝑜𝑠(𝜃4)

𝑙4𝑠𝑖𝑛(𝜃4)
0
1

]

𝑇 =4
5 [

𝑐𝑜𝑠(𝜃5)

𝑠𝑖𝑛(𝜃5)
0
0

0
0

−1
0

−𝑠𝑖𝑛(𝜃5)

𝑐𝑜𝑠(𝜃5)
0
0

𝑙5𝑐𝑜𝑠(𝜃5)

𝑙5𝑠𝑖𝑛(𝜃5)
0
1

] 𝑇 =5
6 [

𝑐𝑜𝑠(𝜃6)

𝑠𝑖𝑛(𝜃6)
0
0

−𝑠𝑖𝑛(𝜃6)

𝑐𝑜𝑠(𝜃6)
0
0

0
0
1
0

𝑙6𝑐𝑜𝑠(𝜃6)

𝑙6𝑠𝑖𝑛(𝜃6)
0
1

]

𝑇 =6
7 [

𝑐𝑜𝑠(𝜃7)

𝑠𝑖𝑛(𝜃7)
0
0

−𝑠𝑖𝑛(𝜃7)

𝑐𝑜𝑠(𝜃7)
0
0

0
0
1
0

𝑙7𝑐𝑜𝑠(𝜃7)

𝑙7𝑠𝑖𝑛(𝜃7)

𝑑7

1

]

(4)

𝑇7
0 = 𝑇1

0 (𝜃1) 𝑇1
2 (𝜃2) 𝑇3

4 (𝜃3) 𝑇4
5 (𝜃4) 𝑇5

6 (𝜃5) 𝑇6
7 (𝜃6) = [

𝑛𝑥

𝑛𝑦

𝑛𝑧

0

𝑜𝑥

𝑜𝑦

𝑜𝑧

0

𝑎𝑥

𝑎𝑦

𝑎𝑧

0

𝑃𝑥

𝑃𝑦

𝑃𝑧

1

] (5)

2.3. Objective Function

In the application of reinforcement learning based

Particle swarm optimization to inverse kinematics

equations, each individual (𝑥𝑡) is the joint

variables (𝜃1
𝑜, 𝜃2

𝑜, 𝜃3
𝑜, 𝜃4

𝑜, 𝜃5
𝑜, 𝜃6

𝑜, 𝜃7
𝑜) of the 7-axis

serial robot manipulator [3]. In order to provide an

optimal solution, the end effector reaching the

target position is achieved through optimal

adjustments. The robot arm has many destination

paths from its starting point to its destination. The

important issue at this point is that the manipulator

reaches the target with minimum error with the

fitness function.

𝐸𝑟 = √(𝑃𝑥 − 𝑃𝑥
′)2 + (𝑃𝑦 − 𝑃𝑦

′)
2

+ (𝑃𝑧 − 𝑃𝑧
′)2

(6)

The positions to be calculated 𝑃𝑥
′, 𝑃𝑦

′, 𝑃𝑧
′

given in Equation 6 represent the target position of

the end effector and 𝐸𝑟 represents the error between

𝑃 and 𝑃′. The aim of this study is to minimize the

𝐸𝑟 error value.

2.3. Q Learning Based Particle Swarm

Optimization

Q learning method is one of the Reinforcement

Learning algorithms [13], [14]. By integrating Q

learning into particle swarm optimization, it is

aimed to update the parameters depending on the

situation and thus increase the performance of the

Particle Swarm optimization method. In this

direction, situations were determined to be used

within the Q learning method. In order to determine

these states, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥

values to be used in the states are determined. The

pseudocode for performing this operation is given

in Algorithm 2.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

956

Algorithm 2. Pseudocode for calculation of 𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥 , 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 values

1:
𝑓𝑚𝑖𝑛 = 𝑓𝑢𝑛𝑐(𝑥(𝑡)), 𝑓𝑚𝑎𝑥 = 𝑓𝑢𝑛𝑐(𝑥(𝑡)), 𝑣𝑚𝑖𝑛 = ‖𝑣(𝑡)‖, 𝑣𝑚𝑎𝑥 = ‖𝑣(𝑡)‖,

𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖, 𝑑𝑚𝑎𝑥 = ‖𝑥(𝑡) − 𝑝‖

2: For t=1, maximum generation do
3: If 𝑓𝑚𝑖𝑛 > 𝑓𝑢𝑛𝑐(𝑥(𝑡))

4: 𝑓𝑚𝑖𝑛 > 𝑓𝑢𝑛𝑐(𝑥(𝑡))
5: End If
6: 𝐈𝐟 𝑓𝑚𝑎𝑥 < 𝑓𝑢𝑛𝑐(𝑥(𝑡))
7: 𝑓𝑚𝑎𝑥 = 𝑓𝑢𝑛𝑐(𝑥(𝑡))
8: End If
9: 𝐈𝐟 𝑣𝑚𝑖𝑛 > ‖𝑣(𝑡)‖

10: 𝑣𝑚𝑖𝑛 = ‖𝑣(𝑡)‖
11: End If
12: 𝐈𝐟 𝑣𝑚𝑎𝑥 < ‖𝑣(𝑡)‖
13: 𝑣𝑚𝑎𝑥 = ‖𝑣(𝑡)‖
14: End If
15: 𝐈𝐟 𝑑𝑚𝑖𝑛 > ‖𝑥(𝑡) − 𝑝‖

16: 𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖
17: End If
18: 𝐈𝐟 𝑑𝑚𝑎𝑥 < ‖𝑥(𝑡) − 𝑝‖
19: 𝑑𝑚𝑖𝑛 = ‖𝑥(𝑡) − 𝑝‖
20: End If
21: End for

Values have been generated by comparing

the 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 produced

with Psoudecode with the x, d, v variables used in

PSO, and corresponding states would be created.

This part is inspired by golden section search. The

golden ratio is a ratio that can be found in the shape

and structure of countless living and non-living

entities in nature. The golden ratio is a numerical

ratio that was discovered by the ancient Egyptian

and Greek civilizations and has been applied to

works of art such as sculpture, painting, and

architecture for centuries. The value of the golden

ratio is ∅ =
1+√5

2
≅ 1.61803. As seen in Figure 3,

there is a large piece |AC| (L) and a small piece |BC|

(S) between points A and B. As seen in Figure 3

and in Equality 7, the ratio of the large piece to the

small piece is a situation where it is equal to a fixed

value ratio. When Equation 7 is arranged and

Equation 8 is obtained, the ratio of the small piece

|BC| to |AC| is calculated as 0.61803. In this study,

the value ∅ − 1 = 0.61803 was used from this

value.

L S

A BC

Figure 3. Golden ratio

∅ =
𝑳

𝑺
=

|𝑨𝑪|

|𝑩𝑪|
≅

1 + √5

2
≅ 1.61803 (7)

1

∅
=

𝑆

𝐿
=

2

1 + √5
= ∅ − 1 ≅ 0.61803 (8)

When environment and nature are

observed, the golden ratio is encountered in many

places. One of the first places where the golden

ratio is used in architecture is seen in Figure 4 and

Figure 5. Or, as a few examples from nature itself,

the proportions of snail shells, plants and human

limbs are also places that contain the golden ratio,

as seen in Figure 6 [63].

The golden ratio, known for centuries, is a

method that has been applied to optimization

problems before [64]. The golden ratio is aimed to

be developed as a new and highly efficient method

by adding it to the Q learning algorithm used with

PSO. Therefore, in this study, the state assignment

was carried out by comparing the objective value,

speed and distance to the local best position of the

particles or individuals used in the states produced

for the swarm element, with the golden ratio. For

example, according to the objective criterion to be

produced for the herd element at index t, the value

of 𝑠𝑡𝑎𝑡𝑒1 is calculated using Equation 9. The ε

value used in the equation was chosen as a small

value of 10−3 so that the expression does not

become infinite.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

957

Figure 4. Pyramids in Egypt

Figure 5. Parthenon in Athens, Greece

Figure 6. Snail shell, plant and human

Then, 𝑠𝑡𝑎𝑡𝑒2 for the speeds of the particles

was created as in Equation 10. Additionally, the

situation obtained according to the distance of the

particles to the best position is given in Equation

11.

𝑠𝑡𝑎𝑡𝑒1(t)

= {
1

𝑓(𝑥𝑡) − 𝑓𝑚𝑖𝑛

 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 + 𝜀
< ∅ − 1

0 𝑒𝑙𝑠𝑒

(9)

𝑠𝑡𝑎𝑡𝑒2(t)

= {1
‖𝑣(𝑡)‖ − 𝑣𝑚𝑖𝑛

 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 + 𝜀
< ∅ − 1

0 𝑒𝑙𝑠𝑒

(10)

𝑠𝑡𝑎𝑡𝑒3(t)

= {1
‖𝑑(𝑡)‖ − 𝑑𝑚𝑖𝑛

 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 + 𝜀
< ∅ − 1

0 𝑒𝑙𝑠𝑒

(11)

The parameters of the PSO algorithm will

be updated according to 𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2 and 𝑠𝑡𝑎𝑡𝑒3

used to create the states of the Q learning

algorithm. Algorithm 3 is given to better express

this process. The main working logic of the

algorithm is that while PSO is running, it creates

actions using the Q learning table and tries to find

the optimum point by updating the parameters of

the PSO algorithm according to the situations.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

958

Algorithm 3. PSO-RL-Q learning Psoude Code

1: Initialize population and reset Q table, determine 𝑓
2: For t= 1,maximum generation do
3: 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 calculate
4: 𝑠𝑡𝑎𝑡𝑒1 = [], 𝑠𝑡𝑎𝑡𝑒2 = [], 𝑠𝑡𝑎𝑡𝑒3 = [] ve 𝑠𝑡𝑎𝑡𝑒𝑠 = []
5: For i= 1, population size do
6: 𝑠𝑡𝑎𝑡𝑒1(i), 𝑠𝑡𝑎𝑡𝑒2(i), 𝑠𝑡𝑎𝑡𝑒3(i) calculate

 𝑠𝑡𝑎𝑡𝑒𝑠(𝑖) = [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3]
7: If rand()>0.5
8: Action(i)=rand_int(0-2)
9: Else

10:
Specify 𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = arg (

𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡 , 𝑎), 𝑄(𝑠𝑡 , 𝑎))

11: If End

12:

 Specify 𝑤, 𝑐1 and 𝑐2 with respect to Action(i)

𝜔 = {
0.05
0.50
0.95

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

, 𝑐1 = {
0.95
0.50
2.00

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

,

𝑐2 = {
0.95
0.50
2.00

𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 0
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 1
𝐴𝑐𝑡𝑖𝑜𝑛(𝑖) = 2

13: 𝑣𝑖,𝑑(𝑡 + 1) = 𝑤𝑣𝑖,𝑑(𝑡) + 𝑐1𝑟1 (𝑝𝑖(𝑡) − 𝑥𝑖,𝑑(𝑡)) + 𝑐2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖,𝑑(𝑡))
14: 𝑥𝑖,𝑑(𝑡 + 1) = 𝑥𝑖,𝑑(𝑡) + 𝑣𝑖,𝑑(𝑡)
15: End For
16: 𝑅𝑒𝑤𝑎𝑟𝑑 = [], 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 = []
17: For t=1, population size do
18: 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 update
19: 𝑅𝑒𝑤𝑎𝑟𝑑 (i)=− 𝑓(𝑥𝑡)

20:
 𝑠𝑡𝑎𝑡𝑒1(i), 𝑠𝑡𝑎𝑡𝑒2(i), 𝑠𝑡𝑎𝑡𝑒3(i) calculate

𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒𝑠(𝑖) = [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3]
21: Apply Equation 2’ and update 𝑄(𝑠𝑡𝑎𝑡𝑒𝑠(𝑖), 𝐴𝑐𝑡𝑖𝑜𝑛(𝑖)) Table
22: End For
23: End For

In this context, when the psoudecode of the

PSO-RL-Q algorithm is examined, the population

to be used in PSO is first created. Then, the

function 𝑓 is determined and initial values are

assigned to the Q table. In 2nd line, a for loop was

created to repeat the operations in the algorithm for

the maximum number of generations. In order to be

used in calculating the states within the loop,

𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 values and

variables to be used in the algorithm are assigned.

Then, the states are calculated within the loop.

After that, the control signal was determined

depending on the rand() probability. According to

this process, 𝐴𝑐𝑡𝑖𝑜𝑛s are determined for each

particle. According to the determined action, the

parameters (𝜔, 𝑐1, 𝑐2) to be used in PSO were

determined and the positions and speeds of each

individual were updated. Afterwards, variables

were created for Reward and next_state states.

These variables are used to determine reward

values according to the positions of the individuals

in the swarm, to determine the status of the

individuals according to their new positions, and to

update the Q table. Therefore, a loop was created at

the 17th line to update each individual. In this cycle,

the negative value of each individual's goal

criterion value is determined as reward. This is due

to minimization. Subsequently, the states of each

individual were calculated according to their x, d,

v values, and next_states were created. Then, the

value in the Q Table is updated according to the

state and action of the relevant individual.

A Q table must be created to run the

algorithm. This created Q table depicted the states,

actions and rewards. The sample Q table obtained

after running the algorithm is given in Table 1. This

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

959

table contains states and actions. The values of the

states obtained depending on the states and actions

are given in the table.

3. Results and Discussion

In order to test the performance of the PSO

algorithm and PSO- RL-Q algorithm in different

parameters, the inverse kinematics problem of a 7-

axis serial robot manipulator was used. In this

study, the position of the end effector was chosen

randomly. In this direction, Dereli et al. used the

DH method to derive the kinematic equations of

this robot and used the parameters in Table 2.

The parameters used to compare the

performance of the proposed PSO- RL-Q algorithm

with different criteria such as number of iterations

and swarm size are given in Table 3. As can be

seen, while the control parameters 𝜔 , 𝑐1, 𝑐2 for

PSO_par_1 were 0. 05, 0.95, 0.95, the tests were

carried out using the iteration numbers as 100,

1000 and the Swarm size as 50 and 100. Similarly,

it has been implemented in PSO_par_2,

PSO_par_3, and PSO-RL-Q algorithm. To test

performances of algorithms, two different points

were considered for the final position of the

manipulator. According to these points, each

algorithm was run independently 30 times. Then,

the results obtained were compared statistically.

Additionally, their statistical reliability was

compared to test whether there were significant

results.

Table 1. A Q table results for population size 50 and maximum iteration 1000 for PSO-RL-Q

𝑆𝑡𝑎𝑡𝑒𝑠

𝐴𝑐𝑡𝑖𝑜𝑛 = 0
𝜔 = 0.05
𝑐1 = 0.50
𝑐2 = 0.95

𝐴𝑐𝑡𝑖𝑜𝑛 = 1
𝜔 = 0.50
𝑐1 = 0.50
𝑐2 = 0.95

𝐴𝑐𝑡𝑖𝑜𝑛 = 2
𝜔 = 0.95
𝑐1 = 2.00
𝑐2 = 2.00

(0,0,0) −2.2268 × 10−17 −2.0845 × 10−17 −3.7241 × 10−17

(0,0,1) -1.0336× 10−16 -1.0861× 10−6 -3.2223× 10−7

(0,1,0) -7.3675× 10−17 -2.7739× 10−6 -4.7972× 10−6

(0,1,1) -3.1769× 10−11 -1.5064× 10−16 -1.6349× 10−9

(1,0,0) -0.4615 -0.3071 -0.3664

(1,0,1) -0.9919 -0.87698 -1.1141

(1,1,0) -0.2333 -0.33376 -0.3182

(1,1,1) -1.6299 -2.3279 -2.2797

Table 2. DH parameters of 7-DOF Robot

𝑖 𝑙𝑖(𝑚) 𝛼𝑖(°) 𝑑𝑖(𝑚) 𝜃𝑖(°)

1 𝑙1 = 0.5 −90 0 −180 < 𝜃1 < 180

2 𝑙2 = 0.2 90 0 −90 < 𝜃2 < 30

3 𝑙3 = 0.25 −90 0 −90 < 𝜃3 < 120

4 𝑙4 = 0.3 90 0 −90 < 𝜃4 < 90

5 𝑙5 = 0.2 −90 0 −90 < 𝜃5 < 90

6 𝑙6 = 0.2 0 0 −90 < 𝜃4 < 60

7 𝑙7 = 0.2 0 𝑑7 = 0.05 −90 < 𝜃4 < 90

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

960

Table 3. Parameters of Algorithms

Method Parameters Iteration

Numbers

Swarm Size

PSO_par_1 𝜔 = 0.05, 𝑐1 = 0.95, 𝑐2 = 0.95 100, 1000 50,100

PSO_par_2 𝜔 = 0.50, 𝑐1 = 0.50, 𝑐2 = 0.50 100, 1000 50,100

PSO_par_3 𝜔 = 0.95, 𝑐1 = 2.00, 𝑐2 = 2.00 100, 1000 50,100

PSO-RL-Q {

𝜔 = 0.05, 𝑐1 = 0.95, 𝑐2 = 0.95
𝜔 = 0.50, 𝑐1 = 0.50, 𝑐2 = 0.50
𝜔 = 0.95, 𝑐1 = 2.00, 𝑐2 = 2.00

𝑎𝑡 = 0
𝑎𝑡 = 1
𝑎𝑡 = 2

 100, 1000 50, 100

Table 4. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to

target positions by swarm size 50, iteration number 100.

Position Method 𝜃1
𝑜 𝜃2

𝑜 𝜃3
𝑜 𝜃4

𝑜 𝜃5
𝑜 𝜃6

𝑜

[-25.00

100.00

50.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

-39.9982

-0.07114

-73.2728

-16.0189

-40.3681

35.5679

-90.0

-10.2971

54.3798

3.5509

13.9466

-1.4765

18.5928

-78.1808

-20.2021

-33.4392

7.3264

-21.9988

12.5424

72.7653

45.6443

51.0210

-15.0000

22.1168

[-30.00

20.00

80.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

-77.7382

-30.6456

-17.6197

9.8517

-23.6192

14.0067

-90.0

-31.9813

68.1264

-90.0

-90.0

-85.8088

32.7416

89.9859

90.0

69.2948

110.5017

-52.3304

119.9999

-78.6991

56.5476

39.1834

69.9999

-12.5035

The joint angles obtained for the inverse

kinematic analysis results in the case of swarm size

50, iteration number 100, according to the

determined target positions [-25.00 100.00 50.00]

and [-30.00 20.00 80.00] are listed in Table 4. In

general, it has been observed that some algorithms

produce joint angles at different angles. The reason

for this is that Equation 6 can be minimized, at

different angles of joint if the robot has many joints

of robot.

At Table 5, 𝑃𝑥, 𝑃𝑦 and 𝑃𝑧 positions

produced by the algorithms for 2 different

locations, location errors of the algorithms and

processing times are given. Although the proposed

PSO-RL-Q method produced the lowest error in

terms of position error, it showed lower

performance than other methods in terms of

computation time. In addition, the best values

produced by the algorithms according to the

iterations are shown in Figure 7. The best results of

these algorithms, which contain random

parameters, were close during iterations. However,

when the iteration continued, the dynamics of these

algorithms differentiated the results. The part

where this will be noticed best is the part where

statistical analysis will be performed. In for that,

the minimum and maximum mean and standard

deviation values produced by the algorithms as a

result of 30 different simulation studies where the

number of swarm is 50 and the iteration is 100 are

given in Table 6. The results are written with the

best values in bold. However, when examined in

terms of mean value, the proposed PSO-RL-Q

algorithm produced more successful results than

others.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

961

Table 5. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to

target positions by swarm size 50, iteration number 100.

Target

Position

(cm)

Method 𝑃𝑥

(cm)

𝑃𝑦

(cm)

𝑃𝑧

(cm)

Position Error Computation

Time (sec)

[-25.00

100.00

50.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

-24.99

-25.00

-24.05

-24.99

99.99

100.00

99.92

100.00

50.00

49.99

50.82

49.99

9.4954× 10−5

2.2551× 10−14

1.2634× 10−2

8.0251× 𝟏𝟎−𝟏𝟔

1.40824

1.87351

1.33919

4.51963

[-30.00

20.00

80.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

-29.48

-30.00

-29.97

-30.00

31.23

29.99

29.82

30.00

79.25

80.00

79.92

80.00

1.5306× 10−2

3.7180× 10−15

1.9437× 10−3

1.7554× 𝟏𝟎−𝟏𝟓

1.11302

1.13652

1.05694

3.70225

Figure 7. Objective values along the iterations for Swarm Size 50, iteration number 100

For statistical reliability, the Wilxocon test

was applied to the trials. The results obtained are

given for different locations in Table 7 and Table

8. From the pairwise comparison of the results, it is

seen that, since the significance value is lower than

0.05, there is a significant difference in the results

except for PSO_par_1/PSO_par_1,

PSO_par_2/PSO_par_2, PSO_par_4/PSO_par_4

and PSO-RL-Q/PSO_par_3 results.

It has been observed that the PSO

algorithm is successful in solving the inverse

kinematics problem of the 7-DOF robot. At the

same time, it has been observed that changing the

parameters of PSO or adding reinforcement

learning into PSO increases the performance of the

algorithm. However, when the number of iterations

and swarm sizes of the algorithms are increased,

the processing time becomes longer because the
search takes longer and with more particles. At the

same time, the potential to find its global minimum

is higher. For this case, only for the [-25.00 100.00

50.00] position, the algorithms were applied to the

solution of the inverse kinematic problem with the

swarm size being 100 and the number of iterations

being 1000, and the results were analyzed. The

results obtained according to the iterations are

depicted in Figure 4. As can be seen from these

results, since the number of swarms and the

number of iterations are high, all algorithms

converge to the same result, which is the global

result.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

962

Table 6. Statistical results for swarm size 50, iteration number 100.

Target

Position

(cm)

Method Minimum Max Mean Standard deviation

[-25.00

100.00

50.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

9.4954× 10−5

2.2484× 10−14

1.2634× 10−2

7.8504× 𝟏𝟎−𝟏𝟕

0.2327

0.0332

0.1744

1.2567× 𝟏𝟎−𝟕

4.8891× 10−2

8.7174× 10−3

3.5619× 10−2

2.2654× 𝟏𝟎−𝟖

3.0914× 10−2

3.2777× 10−3

4.4413× 10−3

4.7879× 10−9

[-30.00

20.00

80.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

1.5306× 10−2

3.8298× 10−15

1.9437× 10−3

0.0

0.3715

9.5388× 𝟏𝟎−𝟐

0.1011

0.1162

9.5057× 10−2

2.3801× 10−2

2.4124× 10−2

2.1863× 𝟏𝟎−𝟐

1.7430× 10−1

1.0253× 10−2

2.3077× 10−2

1.1943× 10−2

Table 7. Wilxocon test results for [-25.00 100.00 50.00], swarm size 50, iteration number 100.

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q

PSO_par_1 1.00 9.01× 10−10 8.58× 10−33 9.03× 10−10

PSO_par_2 9.01× 10−10 1.00 1.30× 10−25 0.0775

PSO_par_3 8.58× 10−33 1.30× 10−25 1.00 2.58× 10−28

PSO-RL-Q 9.03× 10−10 0.0775 2.58× 10−28 1.00

Table 8. Wilxocon test results for [-30.00 20.00 80.00], swarm size 50, iteration number 100.

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q

PSO_par_1 1.00 2.57× 10−26 3.92× 10−13 1.39× 10−28

PSO_par_2 2.57× 10−26 1.00 7.14× 10−24 0.0227

PSO_par_3 3.92× 10−13 7.14× 10−24 1.00 6.92× 10−26

PSO-RL-Q 1.39× 10−28 0.0227 6.92× 10−26 1.00

Figure 8. Objective values along the iterations for [-

25.00 100.00 50.00] Position ve Swarm Size 100,

iteration number 1000.

Furthermore, for a numerical comparison

of the results obtained, the positions reached,

position errors and processing times are

demonstrated at Table 9. As can be seen, as the

processing load increases, processing times vary

between 9 and 14 seconds. Sürü sayısı ve iterasyon

sayısı arttığında, all algorithms found the same

global optimal solution within 30 different trials.

However, the calculation times have changed due

to differences in calculations and operations.

Although the results are the same, as can be seen,

the PSO_par_1 algorithm produced the best result,

while the PSO-RL-Q algorithm was the slowest. As

a result, it is more correct to choose the faster

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

963

method among the methods that show the same

performance.

Statistical analysis results are

demonstrated at Table 10. Since the results of 30

independent experiments reached the desired

global value, the minimum, maximum, average

value and standard deviation values were obtained

as 0. The reason why all the results are 0 in Table

10, is because when the swarm numbers and

iteration numbers of the algorithms were increased,

all algorithms found the same global optimal

solution within 30 different trials. Therefore, when

the optimal solution was one, the error function, the

mean value, minimum value, maximum value and

standard deviation of the error function were found

to be 0.

Table 9. Optimal joint angle values produced by PSO_par_1, PSO_par_2, PSO_par_3, PSO_Q algorithms according to

target positions by swarm size 100, iteration number 1000.

Target

Position

(cm)

Method 𝑃𝑥

(cm)

𝑃𝑦

(cm)

𝑃𝑧

(cm)

Position Error Computation

Time (sec)

[-25.00

100.00

50.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

-25.00

-25.00

-25.00

-25.00

100.00

100.00

100.00

100.00

50.00

50.00

50.00

50.00

0.0

0.0

0.0

0.0

9.47613

11.7058

12.7068

13.2338

Table 10. Statistical results for swarm size 100, iteration number 1000.

Target

Position

(cm)

Method Minimum Max Mean
Standard

deviation

[-25.00

100.00

50.00]

PSO_par_1

PSO_par_2

PSO_par_3

PSO-RL-Q

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

In addition, the Wilxocon test was

performed to test whether there was a significant

difference in the results. To perform this test, the

results obtained by the algorithms in 30 different

experiments were used. The algorithms always

found the same error value with a high number of

iterations and a high number of swarm. Therefore,

there was no difference in the results obtained

when high number of iterations and swarm sizes

was used in the algorithms. The results obtained

when the Wilxocon test is applied for the reliability

of this statistical result are given in Table 11. In the

results given in Table 11, it was seen that there was

no significant difference in the results since all

values were greater than 0.05. The reason why all

the results are 1.00 in Table 11, is because when

the swarm numbers and iteration numbers.

As the results are examined, changing the

parameters of the PSO algorithm affects the

performance of the algorithm, and the solution

performance of the algorithm can be increased

when a reinforcement learning-based method is

added, as in this study. Ultimately, 7-DOF robot

used in industry was turned into an inverse

kinematic problem with optimization using

advanced kinematic equations with DH to

determine its angles and distances using

optimization algorithms. So that, PSO-RL-Q

algorithm distinctly showed successful results in

finding the joint angles and distances of the robot

within short iteration number than plain PSO

algorithm.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

964

Table 11. Wilxocon test results for [-25.00 100.00 50.00], swarm size 100, iteration number 100.

 PSO_par_1 PSO_par_2 PSO_par_3 PSO-RL-Q

PSO_par_1 1.00 1.00 1.00 1.00

PSO_par_2 1.00 1.00 1.00 1.00

PSO_par_3 1.00 1.00 1.00 1.00

PSO-RL-Q 1.00 1.00 1.00 1.00

4. Conclusion and Suggestions

In this study, a new optimization method was

applied to find the joint angles of a 7-axis robot at

the desired position. In this direction, first the

kinematic equation of the robot was obtained, and

then the PSO-based PSO_par_1, PSO_par_2,

PSO_par_3 and reinforcement learning-based

proposed PSO-RL-Q optimization method using

golden section have been used to find the

manipulator angle and distances. In order to

compare the performances of the algorithms, 30

independent studies have been carried out and the

results were compared statistically. Statistically, it

has been observed that the proposed PSO-RL-Q

algorithm produces more successful results than

standard PSO algorithms when the number of

iterations is 100 and swarm size is 50. From the

results, while the swarm size of the algorithms is

50 and the number of iterations is 100, the PSO-

RL-Q algorithm performed the best result by

producing 2.2654× 10−8 mean value for the

position [-25.00 100.00 50.00]. Also, it produced

more successful results than other algorithms by

producing a mean value of 2.1863× 10−2 for the

position [-30.00 20.00 80.00]. In addition, the test

results obtained were subjected to the Wilxocon

test and it was observed that there was a significant

difference in the results when the number of

iterations was 50 and iteration number are 100.

Since reinforcement learning works on a reward

basis, it appears to be a method that can be easily

applied to many different algorithms. In future

studies, it is planned to apply these proposed

methods and their variations to different

optimization problems and systems.

Statement of Research and Publication Ethics

The study is complied with research and

publication ethics.

References

[1] F. Özüdoğru, “Endüstriyel Robot Kolu Modelinin Hedef Konum Eklem Açilarinin Yapıcı Sinir Ağı Ile

Kestirimi Ve Kontrollü Yörünge Uygulamasi,” Yüksek Lisans, Elektrik Elektronik Mühendisliği,

Tokat, 2020.

[2] E. Düzgün, “Paralel ve Hibrit Manipülatörlerin Ileri Kinematik Çözümü Için Yeni Metotlar

Geliştirilmesi,” Doktora, Fen Bilimleri Enstitüsü, Bursa, 2023.

[3] S. Dereli and R. Köker, “A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial

robotic manipulator: quantum behaved particle swarm algorithm,” Artif Intell Rev, vol. 53, pp. 949–

964, 2020.

[4] F. Aysal, İ. Çelik, E. Cengiz, and Y. Oğuz, “A comparison of multi-layer perceptron and inverse

kinematic for RRR robotic arm,” Politeknik Dergisi, vol. 27, no. 1, pp. 121–131, 2023.

[5] S. Hwang, H. Kim, Y. Choi, K. Shin, and C. Han, “Design Optimization Method for 7 DOF Robot

Manipulator Using Performance Indices,” International Journal of Precision Engineering and

Manufacturing, vol. 18, no. 3, pp. 293–299, 2017.

[6] A. Avaei, L. van der Spaa, L. Peternel, and J. Kober, “An incremental inverse reinforcement learning

approach for motion planning with separated path and velocity preferences,” Robotics, vol. 12, no. 2,

2023.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

965

[7] S. Dereli and R. Köker, “Simulation based calculation of the inverse kinematics solution of 7-DOF

robot manipulator using artificial bee colony algorithm,” SN Appl Sci, vol. 2, no. 1, p. 27, 2020.

[8] S. Baressi Šegota, N. Anđelić, M. Šercer, and H. Meštrić, “Dynamics Modeling of Industrial Robotic

Manipulators: A Machine Learning Approach Based on Synthetic Data,” Mathematics, vol. 10, no. 7,

p. 1174, 2022.

[9] Z. Bingül and S. Küçük, Robot Kinematiği. Umuttepe Yayınları, 2019.

[10] H. Danaci, L. A. Nguyen, T. L. Harman, and M. Pagan, “Inverse Kinematics for Serial Robot

Manipulators by Particle Swarm Optimization and POSIX Threads Implementation,” Applied Sciences,

vol. 13, 2023.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Mach Learn, vol. 8, pp. 279–292, 1992.

[12] J. Peng and R. J. Williams, “Incremental Multi-Step Q-Learning,” 1996.

[13] İ. Tunç and M. Söylemez, “Fuzzy logic and deep Q learning based control for traffic lights,” Alexandria

Engineering Journal, vol. 67, pp. 343–359, 2023.

[14] M. E. Çimen, Z. Garip, Y. Yalçın, M. Kutlu, and A. F. Boz, “Self Adaptive Methods for Learning Rate

Parameter of Q-Learning Algorithm,” Journal of Intelligent Systems: Theory and Applications, vol. 6,

no. 2, pp. 191–198, 2023.

[15] A. O. Köroğlu, A. E. Edem, S. N. Akmeşe, Ö. Elmas, I. Tunc, and M. T. Soylemez, “Agent-Based

Route Planning with Deep Q Learning,” in 13th International Conference on Electrical and Electronics

Engineering (ELECO), 2021, pp. 403–407.

[16] A. Wang, H., Emmerich, M., & Plaat, “Monte Carlo Q-learning for General Game Playing,” arXiv

preprint arXiv:1802.05944.

[17] F. Candan, S. Emir, M. Doğan, and T. Kumbasar, “Takviyeli Q-Öğrenme Yöntemiyle Labirent

Problemi Çözümü Labyrinth Problem Solution with Reinforcement Q-Learning Method,” in TOK2018

Otomatik Kontrol Ulusal Toplantısı, 2048.

[18] Y. Liu, H. Lu, S. Cheng, and Y. Shi, “An adaptive online parameter control algorithm for particle

swarm optimization based on reinforcement learning,” in IEEE congress on evolutionary computation

(CEC), 2019, pp. 815–822.

[19] M. Çimen, “Hibrit ve Kaotik Metasezgisel Arama Algoritmalari Kullanarak Model Öngörülü Kontrol

Yapıları Tasarımı,” Doktora, Sakarya Uygulamalı Bilimler Üniversitesi, 2022.

[20] A. F. Boz and M. E. Çimen, “An interface design for controlling dead time systems using PSO, CS and

FA algorithms,” in 8th International Advanced Technologies Symposium (IATS’17), 19-22 October,

2017.

[21] A. F. Boz and M. E. Çimen, “PID Controller Design Using Improved FireFly Algorithm,” in 8th

International Advanced Technologies Symposium (IATS’17), 19-22 October, 2017.

[22] M. E. Çimen and A. F. Boz, “Parameter identification of a non-minimum phase second order system

with time delay using relay test and PSO, CS, FA algorithms,” Journal of the Faculty of Engineering

and Architecture of Gazi University, vol. 34, no. 1, pp. 461–477, 2019, doi:

10.17341/gazimmfd.416507.

[23] Z. B. Garip, M. E. Cimen, D. Karayel, and A. L. I. F. Boz, “The chaos-based whale optimization

algorithms global optimization,” vol. 0, no. 1, pp. 51–63, 2019.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

966

[24] A. Akgül, Y. Karaca, Pala MA, M. Çimen, A. Boz, and M. Yıldız, “Chaos Theory, Advanced

Metaheuristic Algorithms and Their Newfangled Deep Learning Architecture Optimization

Applications: A Review,” Fractals, vol. 32, no. 3, 2024.

[25] A. Hossain and Z. Yılmaz Acar, “Comparison of New and Old Optimization Algorithms for Traveling

Salesman Problem on Small, Medium, and Large-scale Benchmark Instances,” Bitlis Eren Üniversitesi

Fen Bilimleri Dergisi, vol. 13, no. 1, pp. 216–231, 2024.

[26] M. E. Cimen, Z. Garip, A. F. Boz, and D. Karayel, “Firefly Algorithm and Particle Swarm Optimization

for photovoltaic parameters identification based on single model,” ISMSIT 2018 - 2nd International

Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, 2018, doi:

10.1109/ISMSIT.2018.8567288.

[27] A. Karthikeyan, M. E. Cimen, A. Akgul, A. F. Boz, and K. Rajagopal, “Persistence and coexistence of

infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation

considering feedback flux effect,” Nonlinear Dyn, vol. 103, no. 2, pp. 1979–1998, 2021, doi:

10.1007/s11071-020-06159-4.

[28] K. Rajagopal et al., “A family of circulant megastable chaotic oscillators, its application for the

detection of a feeble signal and PID controller for time-delay systems by using chaotic SCA algorithm,”

Chaos Solitons Fractals, vol. 148, no. May, p. 110992, 2021, doi: 10.1016/j.chaos.2021.110992.

[29] S. A. Celtek and S. Kul, “Parameter Extraction of PV Solar Cells Using Metaheuristic Methods,” Bitlis

Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 4, pp. 1041–1053, 2023.

[30] M. Çimen, Z. Garip, E. M, and A. Boz, “Fuzzy Logic PID Design using Genetic Algorithm under

Overshoot Constrained Conditions for Heat Exchanger Control,” Journal of the Institute of Science and

Technology, vol. 12, no. 1, pp. 164–181, 2022.

[31] H. Geçmez and H. Deveci, “Optimization of Hybrid Composite Laminates with Various Materials

using the GA/GPSA Hybrid Algorithm for Maximum Dimensional Stability,” Bitlis Eren Üniversitesi

Fen Bilimleri Dergisi, vol. 13, no. 1, pp. 107–133, 2024.

[32] M. E. Çimen and A. F. Boz, “PSO, CS ve FA Algoritmalarıyla Ortak Emiterli BJT’li Yükselteç

Tasarımı,” Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 1, pp.

119–130, 2017.

[33] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE international

conference on neural networks, 1995, pp. 1942–1948.

[34] X. S. Yang, “Firefly algorithms for multimodal optimization,” Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

5792 LNCS, pp. 169–178, 2009, doi: 10.1007/978-3-642-04944-6_14.

[35] M. Cimen and Y. Yalçın, “A novel hybrid firefly–whale optimization algorithm and its application to

optimization of MPC parameters,” Soft comput, vol. 26, no. 4, pp. 1845–1872, 2022.

[36] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” 2009 World Congress on Nature and

Biologically Inspired Computing, NABIC 2009 - Proceedings, pp. 210–214, 2009, doi:

10.1109/NABIC.2009.5393690.

[37] S. Mirjalili, S. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol.

69, pp. 46–61, 2014.

[38] M. Çimen, Z. Garip, and A. Boz, “Chaotic flower pollination algorithm based optimal PID controller

design for a buck converter,” Analog Integr Circuits Signal Process, 2021.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

967

[39] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in engineering software, vol.

95, pp. 51–67, 2016.

[40] M. Juneja and S. K. Nagar, “Particle swarm optimization algorithm and its parameters: A review,” in

International Conference on Control, Computing, Communication and Materials (ICCCCM), 2016.

[41] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm

optimization,” in Proceedings of the 2000 congress on evolutionary computation. CEC00, 2000, pp.

84–88.

[42] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm

optimizer with time-varying acceleration coefficients,” IEEE Transactions on evolutionary

computation, vol. 8, no. 3, pp. 240–255, 2004.

[43] H. M. Cui and Q. B. Zhu, “Convergence analysis and parameter selection in particle swarm

optimization,” Jisuanji Gongcheng yu Yingyong (Computer Engineering and Applications), vol. 42,

no. 23, pp. 89–91, 2007.

[44] C. Guimin, J. Jianyuan, and H. Qi, “Study on the strategy of decreasing inertia weight in particle swarm

optimization algorithm,” Journal-Xian Jiaotong University, vol. 40, no. 1, p. 53, 2006.

[45] Tanabe R and Fukunaga A, “Success-history based parameter adaptation for differential evolution,” in

IEEE Congress on Evolutionary Computation. IEEE, 2013, pp. 71–78.

[46] Z. Liu and T. Nishi, “Multipopulation ensemble particle swarm optimizer for engineering design

problems,” Math Probl Eng, 2020.

[47] Tatsis VA and Parsopoulos KE, “Grid-based parameter adaptation in particle swarm optimization,” in

2th Metaheuristics International Conference (MIC 2017), 2017, pp. 217–226.

[48] F. Olivas, F. Valdez, O. Castillo, and P. Melin, “Dynamic parameter adaptation in particle swarm

optimization using interval type2 fuzzy logic,” Soft Computing, vol. 20, no. 3, pp. 1057–1070, 2016.

[49] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, “Optimal design of fuzzy

classification systems using pso with dynamic parameter adaptation through fuzzy logic,” Expert Syst

Appl, vol. 40, no. 8, pp. 3196–3206, 2013.

[50] S. Yin et al., “Reinforcement-learning-based parameter adaptation method for particle swarm

optimization,” Complex & Intelligent Systems, vol. 9, no. 5, pp. 5585–5609, 2023.

[51] Y. Xu and D. Pi, “A reinforcement learning-based communication topology in particle swarm

optimization,” Neural Comput Appl, pp. 10007–10032, 2020.

[52] C. Lee and M. Ziegler, “Geometric approach in solving inverse kinematics of PUMA robots,” IEEE

Trans Aerosp Electron Syst, vol. 6, pp. 695–706, 1984.

[53] R. Köker, C. Öz, T. Çakar, and H. Ekiz, “A study of neural network based inverse kinematics solution

for a three-joint robot,” Rob Auton Syst, vol. 49, no. 3–4, pp. 227–234, 2004.

[54] S. Alavandar and M. J. Nigam, “Neuro-fuzzy based approach for inverse kinematics solution of

industrial robot manipulators,” International Journal of Computers Communications & Contro, vol. 3,

no. 3, pp. 224–234, 2008.

[55] G. Jin, S. Ma, and Z. Li, “Dynamic simulation modeling of industrial robot kinematics in industry 4.0,”

Discrete Dyn Nat Soc, pp. 1–11, 2022.

[56] Y. Chen, X. Zhang, Y. Huang, Y. Wu, and J. Ota, “Kinematics optimization of a novel 7-DOF

redundant manipulator,” Rob Auton Syst, vol. 163, p. 104377, 2023.

M. E. Çimen / BEU Fen Bilimleri Dergisi 13 (4), 950-968, 2024

968

[57] S. Baressi Šegota, N. Anđelić, I. Lorencin, M. Saga, and Z. Car, “Path planning optimization of six-

degree-of-freedom robotic manipulators using evolutionary algorithms,” International journal of

advanced robotic systems, vol. 17, no. 2, 2020.

[58] Y. Hou and J. Li, “Learning 6-DoF grasping with dual-agent deep reinforcement learning,” Rob Auton

Syst, vol. 166, 2023.

[59] S. Müftü and B. Gökçe, “Design and Implementation of an Optimized PID Controller for Two-Limb

Robot Arm Control,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 1, pp. 192–204, 2024.

[60] M. Çimen and A. Boz, “Parameter identification of a non-minimum phase second order system with

time delay using relay test and PSO, CS, FA algorithms,” Journal of the Faculty of Engineering and

Architecture of Gazi University, vol. 34, no. 1, pp. 461–477, 2019.

[61] A. Angiuli, J. P. Fouque, and M. Laurière, “Unified reinforcement Q-learning for mean field game and

control problems,” Mathematics of Control, Signals, and Systems, vol. 34, no. 2, pp. 217–271, 2022.

[62] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D., Dissertation, King’s College UK, 1989.

[63] A. S. Posamentier and I. Lehmann, The Glorious Golden Ratio. Prometheus Books, 2011.

[64] S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2019.

