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ABSTRACT. There are several authors who have obtained various forms of
properties for some subclasses of analytic univalent functions related to dif-
ferent distribution series, such as Binomial, Generalized Discrete Probability,
Geometric, Mittag-Leffler, Pascal, and Poisson distribution series. The au-
thors, in this paper, proved the inclusion relation of the harmonic analytic
function class Hg'(6,7(s), ¥) established by applying convolution operators
regarding neutrosophic distribution series equipped with the Sigmoid func-
tion (activation function). The present results are capable of handling both
accurate (determinate) data and inaccurate (indeterminate) data.

1. INTRODUCTION

Indicate by A the family of functions analytic in U= {z € C: |z| < 1}, of the
form f(z) = z 4+ X2 4ay, 2™ which fulfill the normalization f(0) = f/(0) —1 = 0 and
also indicate by S the subfamily of A including univalent functions in U. Further,
for the function g(z) = 2 + ba22 + - -+, the convolution f * g is expressed as

(f*9) (2) = 2+ XpZoanbnz".
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A harmonic function is a type of function that arises in various areas of mathe-
matics, including complex analysis, partial differential equations, and physics. The
real-valued function v(z,y) is named harmonic in a domain B C C if it has contin-
uous second order partial derivative in B, which fulfills

v 0%

Av = 92 + i

A harmonic mapping f of the simply connected domain B is a complex-valued
function of the form f = ¢ + A, where ¢, A are analytic and ¢(0) = ¢/(0) — 1 =
0, A(0) = 0. We call ¢ and X\ analytic and co-analytic part of f, respectively.
Jp) = 1P =) = |¢>'(z)|2 — |X(z)|2 is defined as the Jacobian of f. Also,
f is locally univalent iff its Jacobian is never zero, and is sense-preserving provided
that the Jacobian is positive. To this end, without loss of generality, indicate by H
the family of all harmonic functions of the form f = ¢ + X\, where

0.

d(z) =2+ Zavz”, Az) = vaz” (Jb] < 1) (1)
v=2 v=1

are analytic in U. We further indicate by Sy the family of functions f = ¢ + A
that are harmonic univalent and sense preserving in U. Consider the subfamily SY
of Sy as SY = {f =+ A€ S :N(0)=b = 0}. A sense-preserving harmonic
mapping f € SY is in the class S* if the range f(C) is starlike with respect to
the origin. A function f € S} is named a harmonic starlike mapping in U. On
the other hand, a function f € U is included in Ky if f € S% and if f(U) is a
convex domain. A function f € Kp is named convex harmonic in U. Analytically,
f e Sy iff arg (%f(rew)) >0, and f € Ky iff % {arg (arg (%f(rew)))} > 0,
where z =r¢?? €U, 0<r <1, 0<6 < 2x. For further details on the harmonic
classes of analytic functions, we may refer to some papers (see [3], |7]- (9], [11]-
[13], [17], [18], [22], |24], [26]- [30]) and the relevant literature cited in there.
Indicate by Ty the family of functions in Sy that are expressible as f = ¢ + A,

where
o0 o0

¢(z2) =2z = lay|z", Az) =) [bo]z" (] <1). (2)
v=2 v=1

Then, for 0 < v < 1, the following geometric representations are possible

NH(V):Re{fEHzéR[f/(z)} >, z:rei"em}

Z/
and
1
Ry (v) :Re{feH:?R[fzg/Z)} >v, z=re?’ E[U},
where
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Define
TNH(I/) = NH(V) ﬂTH and TRH(V) = RH(Z/) N TH

The classes Ty, Ny (v), TNy (v), Ry (v) and TRy (v) were defined and investigated
in [1], [14], [24], [27].

The g—derivative, also known as the Jackson g—derivative [15], is a concept from
the theory of g—calculus, which is a generalization of calculus that incorporates a
parameter ¢ (often interpreted as a complex number) and extends various concepts
from classical calculus.

Next, for 0 < g < 1, the Jackson’s g—derivative of a function f € Sy is expressed
as

$(z)—¢(gz
(Lq)g )’ z2#0

Dyg(z) = 3)

and

A(z)=A(gz)
ilfq)gz , 270
DyA(z) = : (4)

From and , we obtain

Dyp(z) =1+ Z[U]qavz“ !
v=2
and
D) = S ol gboz"!
v=1

For more details, we can refer to reference [16].
A harmonic function f = ¢+ X expressed by is said to be g—harmonic, locally
univalent, and sense preserving in U if and only if second dilatation w, fulfills

_ | Pgo(2)

<1 (ze€l).

Let us indicate this class by Sg,. As ¢ — 17, Sy, reduces to the class SH (see [2]).

The concept of neutrosophic theory, a new branch of philosophy as a general-
ization for the fuzzy logic, and also a generalization of the intrinsic fuzzy logic,
introduced by Smarandache [25]. This generalization provided a new foundation
for handling with the issues of indeterminate data. The usage of neutrosophic crisp
sets theory by means of the classical probability distributions, particularly, Poisson,
Exponential and uniform distributions provide a new pathway to deal with issues
that follow the classical distribution, and also contain data not specified accurately.
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A discrete random variable Y is said to have a neutrosophic Poisson distribution
if it has a probability mass function

—my

P(Y =v) =m¥ < v=0,1,2,-

ol
and my is the parameter of the distribution. Further,
NEY)=NV(Y)=mpn

where N = d + I is a neutrosophic number [25].
Recently, Alhabib et al. [4] studied a power series of neutrosophic Poisson, which
was further exploited in [5] via coefficient inequalities defined by the power series

K(my,z) =2+ e”MmNZY (€U
(m Z o (=€ V)
and by ratio test, the radius of convergence of the above series was shown to be
infinite.
Now for my1, muy2 > 0, we establish the operator ©(my1, my2) for f € Sy as

Y(f) = Y(mni,mn2)f(2)
= K(mn1,2)* ¢(2) + K(mnz2,2) * A(2)
= d(2)+Q(2),
where
Z+Z le —mmavzv’ _b1z+z mN2 7mN2b:qu (5)

for f=¢+X€H.

The present investigation builds on the foundational works of Smarandache and
Khalid [25], Oladipo [21], and the recent contributions by Frasin and Lupas [14].
This study explores the innovative application of neutrosophic Poisson distribution
series, augmented with an artificial neural network (Sigmoid function), to analyze
harmonic data. This approach effectively handles both determinate (accurate) and
indeterminate (inaccurate) data, offering a robust method for dealing with uncer-
tainty in mathematical and statistical analyses.

We define and study the class Hg'(0,7(s), ¥) of the function of the form (/1)) that
fulfills the condition

§R{ 29(s) [2(Dgd(2)) + 2(DgA(2))'] + [Dgd(2) + Dg( )i} S U 6)

fora>0,0<¥ <1, —7r<0<m qge(0,1) and y(s) =
modified Sigmoid functions studied in [6], [19], [20].

By suitably specializing the parameters, the class H¢*(6,7(s), ¥) reduces to the
various subclasses of harmonic univalent functions:

(i) H(0,7(s),¥) = H*(0,7(s),¥) as ¢ — 1.

H%’ s > 0 (real) is
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(ii) Hg(0,7(s),¥) = H*(0,7(0),¥) = H*(¥) as ¢ — 17 [28].
(iii) Hg(0,0,7(0)) = H* as ¢ — 17 [10].
(iv) Hg(0,~7(0),¥) = H (0, V).
(v) Hg(0,7(s), ¥) = Hi (v(s), ¥).
The aim of this paper is to present some inclusion properties of the harmonic
class H'(60,7(s), ¥) and its related classes.

2. PRELIMINARY LEMMAS

Before presenting our main outcomes, we need to state some lemmas that will
be used in the sequel.

Lemma 1. A function f of the form belongs to class H'(0,7(s), V) if and only
if

D salv]q [27(s) + a(v = 1)(1 + cos 0)] |av|

+ 201 Vg [29(s) + a(v — 1)(1 + cos 0)] [by| < 2y(s)(1 — ¥).
Proof. Assume f € H2(0,7(s),¥)). From (@, we note that

%{1 -, Wl [W} lay] 271+ 32 o], [w] 1B z“_l} 7

(7)

v(s) 2v(s)

Choosing z to be real and lettting z — 17, we arrive at

1— Z[U]q [2’7(8)+a(v71)(1+0050 } lay| + Z {2“/(5 +o 21)’7(13(1+c059)} by| > U,

2v(s)
v=2

which is equivalent to . Conversely, assume that @ is true, then

« eie

(;j())[zwm(z))’ + (DAY + [D,0(2) + DA
< Z )+ a(v—1)(1 + cosh)] |ay|

+Z $) + a(v — 1)(1 + cosh)] |by|

<m0 - W),

which implies that f € Hg(6,7v(s), V).
When f € Hg(0,7(s), V), then
2y(s)(1 - ¥)
W, 270) + (v~ DL+ cosd)] ">

lay| <

and
29(s)(1 = ) )
= [lg [27(s) + (v = 1)(1 +cosd)]”
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As g — 17, we arrive at

2y(s)(1 - W)
[27(s) + a(v — 1)(1 + cosd)]’ v>2

lay| <
v

and
2y(s)(1 - V)
[27(5) + OZ(’U - 1)(1 + COS@)]’ v > 1.

[by| <
v

O

Lemma 2. A function f of the form @ belongs to class TNy (v) if and only if

o

o0
Zv|a1,|+2v|av| <1l-wv.

v=2 v=1

Then

1— 1—
lao| < v”7 v>2, |by|§T”,v21.

Lemma 3. A function f of the form (@ belongs to class TRy (v) if and only if

oo o0
sz lay | +Zv2 lay] <1 —v.
v=2 v=1

Then

1—v 1—v
|a”U|S U2 ) ’022, ‘b’U|§ ’U2 ) UZ]-

Lemma 4. Consider f € S};, where the function f is of the form and by =0,
then

2u+1)(v+1)

(2v—-1)(v—1)
< —— = by < —mF— 2,
|ay| < 6 ) |by] < 6
Lemma 5. Consider f € Ky, where the function f is of the form and by =0,
then
(v+1) (v—1)
v < ) b'u S .
ao < P2 b <

For easy handling throughout the sequel, we designate the notations:

v—1 v—1
oo Myy .  mn1 _ oo Mys  __  my2 __
PR w1y — € L >0 o—1y1 — € L

v—1 . v—1 .
co myy 71 _mpn 0 Myy o J—1 mpo :
Zv:j w—j! — MnN1 € , Zv:j o—g) — Mn2 € s (] > 2)‘
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3. MAIN RESULTS
Theorem 1. Assume mpyi,my2 >0 and 0 < ¥ <1, q€(0,1). If
2a(1 + cos ) (mA + mis) + [21a(1 + cos ) + 4y(s)|m + 5[4a(l + cos0) + 5v(s)Jm3,

+6[5(1 + cos ) + 8v(s)|mn1 + 8v(s)[1 — e™™N1] + [15a(1 + cos 0) + 4y(s)|my

+6[4ar(1 + cos ) + 3y(s)]m3y + 6[a(1 + cos ) + 27y(s)mu2 < 127(s)(1 — ),

(®)
then Y (Sg) C HZ (0,7(s), V).

Proof. Let f = ¢ + A € S} such that ¢ and ) are represented by with b; = 0.
We aim to establish that Y(f) = ® + Q € HZ(0,7(s),¥), where ® and () are
analytic functions in U as shown by with by = 0. According to Lemma |1} we
need to show that

Fq(leamNQ”Y(s)’e) < 27(5)(1 - \I/)a

where
Ty(mnt,ma, 1(s),0) = S02,[ely 2v(s) + alv = 1)(1 + cost)] |2,

~leT™MN2

30, g [27(s) + o — 1)(1 + cos)] | "R T, |

Applying the inequalities from Lemma |l{ and letting ¢ — 17, we obtain
Ly(mn1, mn2,7(s),0)

v—1_ —mpyq

< 3 [S3,v@e+ D+ 1) 22(s) + alo = 1)(1 + cost)] | i

)

v—1_—mpo

4 [ w0 = D = 1) 2905) + a(v = 1)(1 + cosd)] |25

=1 [Z;“;Q {2a[1 + cos)v* + [47(s) + a(1 + cosd)]v® + Q@ %]

TMN2

+3 {Zzoﬁ {2a[1 + cosf)v* + [47(s) — ba(1 + cosh)]v® + Q1 } %}

. (9)
Q1 = 2[27(s) — a(1 + cost)]v? + [27(s) — a1 + cosh)|v
and
Q2 = 2[2a(1 + cos8) — 3v(s)]v? + [27(s) — a(1 + cosh)]v.
Setting

v=@w-1)+1, *=@w-1)@w-2)+30w-1)+1,
v =@w-1)(v—-2)(v—3)+6(v—1)(v—2)+T(v—1)+1,



1004 I.T. AWOLERE, A.T. OLADIPO, §. ALTINKAYA

vt = (v=1)(v=2)(v—3)(v—4)+10(v—1)(v—2) (v—3)+25(v—1)(v—2)+15(v—1)+1

and using these equalities in @D, we can obtain

Ty(mn1, mn2,7(s),0)

<3 [2502 {201 + cost) (v —1)(v = 2)(v = 3)(v —4) + Q3 + Qs + Q5
+127(3)W} +1 {23‘;2 {20(1 + cost) (v — 1) (v — 2)(v — 3)(v — 4)

+Qs + Q7 + QSW]v

where
Qs = [21a(1 + cosf) + 4v(s)](v — 1) (v — 2)(v — 3),

Q4 = 5]9a(1 + cos0) + 5v(s)](v — 1)(v — 2),
Q5 = 6[5a(1 + cosh) + 8y(s)](v — 1),
Q6 = [15a(1 + cos0) + 4v(s)](v — 1)(v — 2)(v — 3),

Q7 = 6[4a(l + cosh) + 3v(s)](v — 1)(v — 2), Qs = 6[a(1 + cosh) + 2y(s)](v — 1).
Thus

—MmMN1

Lg(my1,mu2,7(s),0) < & |20(1 + cosh) 307, %

+ [21a(1 4 cosO) + 4v(s)] >y mN&J:; +12%°0° %&Nl]

4 [B90(1+ cosh) + 5y(3)] 0y "t + 6[5a(1 + cosh) + 8y(s)] o, T ]
1 [20(1+ cost) 0025 REEE - [150(1 + cost) + y(s)] 50, M

v—1_—mpo :|

+3 [6[404(1 + cos) + 3v(s)] >oes % + 6[a(1 4 cost) + 27v(s)] Do, %]
= 1 [2a(1 + cosh) (miy; + mis) + [21a(1 + cosf) + 4y(s)Jm%;; + 5[4a(1 + cosh) + 5y(s)m%,]

+& [6[5(1 + cosb) + 8v(s)Jmn1 + 87(s)[1 — e™™N1] + [15a(1 + cost) + 4y(s)|m%,)

D=

+& [6[4(1 + cosb) + 3v(s)]mAry + 6[a(1 + cost) + 2y(s)]mnz2] .

D=
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This expression is bounded by 2v(s)(1 — ¥) if condition holds. O

Theorem 2. Let my1,my2 >0 and 0 < ¥ < 1. If
a(l + cos0)[miyy +mRp] + 2[3a(l + cosd) +(s)][miy; +mi]

+6[a(1 + cos ) + v(s)mn1 + 2[a(l + cos ) + 3v(s)|mn2 (10)

F2y(s)[2 — e~ — =] < dy(s)(1 - W),
then Y(Kg) C H(0,7(s), V).
Proof. Let f = ¢ + A € Kg such that w and ¢ are given by with b = 0. We
need to establish that Y(f) = ® +Q € HZ(0,7(s), ¥), where ® and (2 are analytic
functions in U as shown by with b; = 0. According to Lemma [I} we must show
that

Lq(mn1, myz,v(s),0) < 2v(s)(1 — W),

where
—1 —mpn7

Dy(mavt, mz, 1(5),6) - = SZloly 27(5) + a0 — 1)(1+ cost)] |55 5,

—MN2

5[t [27(5) + a(o = 1)(1 + cost)] | 25100,

Applying Lemma |5l and the condition ¢ — 17, we obtain

y(mavt, v, 1(5),6) < ;_§ZMU+1Mwﬂﬁ+wuv—1X1+cwmﬂ"§jf1;“]
+ ;i oo —1) )+a(v—1)(1+cose)]’”W]
_ ;i[ o1+ cost)v® + 2y(s)v? — a(1 + cos)v }M]
+ % [i[a(l + cos0)o® + 2(7(s) — a1+ cosd)o? + a(l + cosh)]

Next, we have

Ly(mn1, mn2,7(s),0)

[\D\)—‘

mv—le—le
[Z {a(1+cost)(v—1)(v—2)(v—3)+ K1 + Q2+ 2v(s)} 1\;}1_1)']

v=2

Z{a 14 cost)(v—1)(v—2)(v —3) + K3+ Q4+ 27(s)}

v=2

N)M—l
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where
K1 =2[3a(l + cosd) +v(s)](v — 1) (v —2), Kz =6[a(l+ cost) + v(s)](v — 1),

K3 =2[2a(1 + cost) + v(s)](v — 1) (v — 2), Ky =2[a(l + cosh) + 3v(s)](v — 1).
Thus

[(1 4 cost)[miy + my] + 2[3c(1 + cosh) + (s)]

N | =

Fq(leamNZaV(S)va) S

1 6[a(1 4 cosB) + vy(s)]mn1

X [m%, + m?vz]] + 5

+  2[a(1 + cosh) + 3v(s)|maa + 27(s)[2 — e TN — 7 N2] |

The last relation is bounded by 2v(s)(1 — ¥) provided holds. O

Theorem 3. Assume myi,my2 >0 and 0 < ¥ < 1. If
(1—v)[a(l1+cos@)(my1+my2)+27(s)(2—e "Nt —e™™N2) 4 by < 29(s)(1— D),
then Y(T Ny (v)) C H(0,7(s), ¥).

Proof. Let f € TNy (v). In view of Lemma [} we need to establish that

pq(leamN%'Y(S)ve) < 2’7(‘9)(1 - \I/>7

where
o0 mv 1eme1
pamat, s, 2(5),0) = S [ela [22(5) + v — 1)1+ cosd)] | "2 | 4y
‘f = =1
v—1 —mpo
mi, €
+Z Jroz(vl)(lJrcosH)]‘](V?_l)!bv .
Application of Lemma [2| and the condition ¢ — 1~ yields
) v le—le
py(mn1, my2,7(s),0) < (1 —v) 1;2 )+« v—l)(l+cos€)]%

v—=1_—mpo
)+ a(v—1)(1 + cos8)] Mya ©

7( _1)! + b

(1-v)

CMg

=1 -v)a ( +cosf)(my1 +mnz) +29(s)(2 — eT"N — 7N

+ b
<2(s)(1 - W),

which completes the proof. (I
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Theorem 4. Assume my1,myz >0 and 0 < ¥ < 1. If

_ _n 1 _ _
(1-v) [a(l +cosf)(2 — e N —eTN2) (1 —eT NV —myie” )

+(1-v) [ﬁma — e mNze*mNz)] < 24(s)(1 - ©),
then Y(TRp(v)) C H (0,7(s), V).
Proof. Assume f € TRy (v). In view of Lemmal[l] we need to establish that

Pg(mn1,my2,y(s),0) < 2v(s)(1 - V),

where
oo v le—le
py(mat,ma,v(s),0) = qu [27(s) + a(v = 1)(1 + cos6)] ' CENIG
mb 1e—mN2
+b1+z +a(v—1)(1+cos€)]’](vi_1)!by‘.

From Lemma [3] we have

e 27(s) — (1 + cos 0)] m¥;te~m
py(my1, my2,v(s),0) lZ{ (14 cosf) + (s) 1() )] ](\lvl_l)' ]
v=2 .
oo _ v—1_—mpno
+(1-v) Z[O‘(”“’SQ”%(S) a1(11+c089)} e th
Lv=2 )

=1 —-v)|a(l+cosh)(2—e N — e "N2) 4

(1 —e7 MmN — leele)]
mni

(1—e™™mnN2 — mN2€_mN2):| < 29(s)(1 — ).
LTMN2

Theorem 5. Let my1,my2 >0 and 0 < ¥ < 1. If

by

emel +e*mN2 S 1_|_ ,
29(s)(1 =)

then Y (Hg(0,7(s), ¥)) C HF(0,7(s), ).
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Proof. From Lemma [} we established that

pg(mn1, my2,7y(s),0)

mV e ™N1L mV e ™N2
< 29(s)(1 - ) [ 352, M+ 3, M | gy
=29(s)(1 = U)[2 — e ™NT — g7 ™N2] 4

=2v(s)(1 = P)[2 —e ™Vt —e7™mN2] 4 ]y < 2v(s)(1 — D).

4. CONCLUSION

In this paper, we have established the inclusion relations for the harmonic an-
alytic function class Hg(0,7(s), ¥) by applying convolution operators associated
with the neutrosophic distribution series and incorporating the Sigmoid activation
function. Our results extend the existing body of knowledge on analytic univalent
functions, which previously encompassed distributions such as Binomial, General-
ized Discrete Probability, Geometric, Mittag-Leffler, Pascal, and Poisson.

The innovative approach of utilizing the Sigmoid function within the framework
of neutrosophic distribution series has demonstrated the potential to handle both
accurate (determinate) and inaccurate (indeterminate) data effectively. This dual
capability is particularly significant in applications where data uncertainty and
variability are prevalent.

Our findings contribute to the broader understanding of harmonic analytic func-
tions and offer new pathways for future research in the domain of mathematical
analysis, particularly in the context of univalent functions and their applications.
Further exploration may involve extending these results to other classes of func-
tions and distributions, as well as investigating the practical implications of these
theoretical advancements in real-world scenarios.
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