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ABSTRACT 
Streamflow data are very important for effective planning and management of water resources in basins. In 
this study, Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Multiple Linear 
Regression (MLR) models were developed to estimate the daily streamflow of three different rivers in the 
Ceyhan River Basin. Daily precipitation and temperature data obtained from The Modern-Era Retrospective 
Analysis for Research and Applications, Version 2 (MERRA-2) re-analysis data were used as predictor 
variables in the models. The estimation performances of the models were evaluated with different statistical 
performance measures. According to the evaluation results, the SVR model demonstrated the best performance 
in daily streamflow estimation for the Ceyhan River, achieving R² = 0.95 and RMSE = 28.20 m³ s-1. 
Additionally, for Söğütlü Creek, the results were R² = 0.82 and RMSE = 6.57 m³ s-1, while for Keşiş Creek, R² 
= 0.93 and RMSE = 1.45 m³ s-1 were obtained. The findings indicate that the SVR model predicts daily 
streamflow more successfully than the other models. Furthermore, it was found that the performance of the 
models developed using machine learning algorithms was superior to that of the linear regression model. 
Keywords: Artificial neural networks, support vector regression, MATLAB, streamflow estimation, MERRA-
2 

Ceyhan Nehir Havzası için Yapay Sinir Ağları, Destek Vektör Regresyonu ve Çoklu 
Doğrusal Regresyon Modelleri Kullanılarak Günlük Akış Değerlerinin Tahmini 

ÖZ 
Akış verileri, havzalardaki su kaynaklarının etkin planlanması ve yönetilebilmesi için oldukça önemlidir. Bu 
çalışmada, Ceyhan Nehri Havzası'nda bulunan üç farklı akarsuyun günlük akışını tahmin etmek için Yapay 
Sinir Ağları (YSA), Destek Vektör Regresyonu (DVR) ve Çoklu Doğrusal Regresyon (ÇDR) modelleri 
oluşturulmuştur. Modellerde tahmin edici değişkenler olarak Araştırma ve Uygulamalar için Modern Çağ 
Retrospektif Analizi, sürüm 2 (MERRA-2) re-analiz verilerinden elde edilen günlük yağış ve sıcaklık verileri 
kullanılmıştır. Modellerin tahmin performansları farklı istatistiksel performans ölçütleri ile değerlendirilmiştir. 
Değerlendirme sonuçlarına göre, DVR modelinin Ceyhan Nehri için günlük akış tahmininde R²=0.95 ve 
RMSE=28.20 m³ s-1 değerleri ile en başarılı performansı gösterdiği belirlenmiştir. Ayrıca, Söğütlü Çayı için 
R²=0.82 ve RMSE=6.57 m³ s-1, Keşiş Dere için ise R²=0.93 ve RMSE=1.45 m³ s-1 sonuçları elde edilmiştir. 
Elde edilen bulgular, DVR modelinin günlük akarsu akışını diğer modellere göre daha başarılı bir şekilde 
tahmin ettiği belirlenmiştir. Ayrıca makine öğrenmesi algoritmaları kullanılarak oluşturulan modellerin 
performansının doğrusal regresyon modeline göre daha üstün olduğu tespit edilmiştir. 
Anahtar Kelimeler: Yapay sinir ağları, destek vektör regresyonu, MATLAB, akış tahmini, MERRA-2 
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Introduction 
The phenomenon of climate change is 
anticipated to increase both the frequency and 
intensity of natural disasters, including floods 
and droughts. It is therefore of critical 
importance to develop and implement accurate 
hydrological models in order to mitigate the 
potential impacts of such disasters. (Tongal and 
Booji, 2018; Sauquet et al., 2021; Wang et al., 
2019). The analysis of streamflow data plays a 
pivotal role in the field of hydrological 
modelling, particularly in the context of flood 
planning, the effective management of water 
resources and the comprehensive planning of 
river basins (Bhadrecha et al., 2016; Meng et al., 
2019). However, many regions suffer from 
inadequate streamflow observation networks, 
leading to challenges in obtaining accurate and 
long-term streamflow data for effective 
modeling (Kumar and Sen, 2018; Shrestha et al., 
2021). As such, it is crucial to develop new 
techniques to obtain and utilize streamflow data 
effectively in hydrological modeling, 
particularly in regions with limited resources. 
Hydrologists have long been developing 
hydrological models to estimate streamflow, but 
the complexity of the hydrological cycle and the 
inherent differences in basin characteristics 
make it challenging to accurately estimate 
streamflow (Peng et al., 2017). As a 
consequence of this, there has been a marked 
increase in interest in the development of data-
driven hydrological models for estimating 
runoff, with a view to utilizing available data. 
Data-driven models have been shown to be more 
practical and simpler to use compared to models 
that extensively examine hydrological processes 
(Masselot et al., 2016; Noori and Kalın, 2016). 
Consequently, the application of machine 
learning (ML) algorithms has become 
increasingly prevalent in hydrological studies, 
including the estimation of precipitation, the 
assessment of water quality, and the modelling 
of groundwater. (Cheng et al., 2015; Hosseini 
and Mahjouri, 2016; Young et al., 2017; Khatri 
et al., 2020). However, it is essential to consider 
the limitations of these models as well, such as 
their inability to account for complex physical 
processes and the need for adequate training 
data. Hydrological models need to be 

appropriately applied and validated with field 
observations to ensure their reliability and 
applicability in hydrological research and 
practice. 

In recent times, ML algorithms, including 
artificial neural networks (ANNs), support 
vector regression (SVR), fuzzy logic and 
wavelet transform, have become increasingly 
popular in the field of streamflow estimation. 
This is due to their ability to provide accurate 
results that are comparable to those of physical 
process-based models. Among the algorithms 
available for this purpose, ANNs have been 
employed with considerable success for the 
estimation of streamflow in a variety of 
hydrological studies. Riad et al. (2004) utilized 
ANNs to model the precipitation-flow 
relationship in a semi-arid basin. Their findings 
reported that the ANN model demonstrated 
superior performance compared to the classical 
regression model in streamflow estimation. 
Similarly, Mehr et al. (2015) evaluated a 
backpropagation ANN model for streamflow 
estimation in a poorly observed basin. Their 
findings indicated that the ANN model has the 
potential to be an effective alternative for 
monthly flow estimation. Nevertheless, studies 
have indicated that SVR can achieve superior 
simulation accuracy in hydrological applications 
in comparison to ANNs, as reported by Tongal 
and Booji (2018) and Parisouj et al. (2020). 
Furthermore, previous research has indicated 
that ANNs and SVRs are the most preferred ML 
models for streamflow estimation, in 
comparison to other algorithms (Wang et al., 
2019). In light of the aforementioned findings, 
SVR and ANN models were preferred as the 
most appropriate ML algorithms for the 
estimation of streamflow in the study area, given 
their prevalence and reliability. 

Streamflow estimation models, including SVR 
and ANN, have been employed in a range of 
studies across diverse fields, including 
agriculture, water resources management, and 
climate change. In agriculture, streamflow 
estimation models can be used to estimate water 
availability for irrigation purposes. By 
accurately estimating streamflow, farmers can 
make informed decisions about when and how 
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much water to use for irrigation, optimizing crop 
yield and water use efficiency. Moreover, flow 
simulation models can assist in the 
administration of water resources by furnishing 
data on the availability of water and the potential 
for drought conditions. In the Awash River 
Basin in Ethiopia, SVR models have been used 
to estimate short-term drought conditions, 
enabling proactive water management strategies 
(Belayneh et al., 2015). In water resources 
management, streamflow estimation models are 
essential for planning and decision-making. 
These models can provide valuable information 
on water availability, reservoir management, and 
flood control. For instance, in the Karkheh Basin 
in Iran, ML models like ANN and SVR were 
used to estimate streamflow and analyze flood 
hazards (Kamali et al., 2022). These models can 
help in designing and implementing effective 
water management strategies, ensuring 
sustainable water supply and minimizing the risk 
of floods. 

Accurately estimating daily streamflow is 
crucial for successful decisions on water 
allocation, reservoir management, flood control 
and irrigation planning. In recent years, the 
application of ANN and SVR in particular has 
demonstrated considerable potential for 
enhancing the accuracy of daily streamflow 
estimations. (Adamowski and Sun 2010; Kisi et 
al. 2013; Fotovatikhah et al. 2018; Rauf et al. 
2018; Siddiqi et al. 2021). However, studies that 
compared the performance of different data-
driven models revealed that the success rate of 
the models may vary according to region (Chau 
and Li, 2009; Tongal and Berndtsson, 2016; 
Bafitlhile and Li, 2019).  

Consequently, it is of paramount importance to 
ascertain the most efficacious modelling method 
for the study area in order to achieve more 
accurate daily streamflow estimation. 
Furthermore, no previous study has been 
conducted on the utilization of ML algorithms 
for the estimation of daily streamflow in the 
Ceyhan River Basin. In order to achieve this 

objective, the performance of various models, 
including ANN, SVR, and MLR models, were 
evaluated in terms of their ability to estimate 
daily streamflow using precipitation and 
temperature data from the Ceyhan River Basin. 
The findings of this study will address an 
important research gap in the study area 
regarding the use of ML methods for streamflow 
estimation and the selection of the most suitable 
method to improve accuracy. Additionally, the 
objective is to contribute to the improvement of 
water management and decision-making 
processes in the region by estimating streamflow 
data. 

Material and Method 
Study area and data 
The models employed for streamflow estimation 
were applied to three streams within the Ceyhan 
Basin in Turkey. The Ceyhan Basin is 
characterized by a climate that is broadly similar 
to the Mediterranean climate. In accordance with 
the Köppen classification, the climate is 
characterized by high temperatures and low 
humidity during the summer months, with 
cooler, more humid conditions prevailing during 
the winter season. The quantity of precipitation 
varies along the basin as a consequence of 
altitude differences. The Ministry of Agriculture 
and Forestry of the Republic of Turkey (TOB) 
has reported that the average annual total 
precipitation in the Ceyhan basin is 727.3 mm, 
with an average annual temperature of 14.8 °C. 
The total precipitation area of the basin is 21,391 
km², and the annual total surface water potential 
is 7,833 hm³ (TOB, 2019). The streamflow data 
utilized in the models was sourced from three 
observation stations of the State Hydraulic 
Works situated within the basin. The locations of 
the streamflow observation stations are shown in 
Figure 1 and Table 1. The stations were selected 
due to their long-standing records of annual flow 
measurement. The daily streamflow data for 
these stations were obtained from State 
Hydraulic Works for the period 1988-2015. 
(DSI, 2022). 
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Table 1. The features of stations used for the observation of streamflow 

Stations 
Mean annual 
streamflow 

(m3 s-1) 
Latitude Longitude 

Ceyhan River-Misis 190,176 36°57'28" N 35°38'03" E 
Söğütlü Creek- Hanköy 3,741 38°15'20" N 37°32'01" E 
Keşiş Creek- Sarıdanışmanlı 10,597 37°28'24" N 36°15'07" E 

 

 
Figure 1. a) location of the study area, b) location of observation stations, c) land use map of the 

study area (Corine, 2000) 

As the literature has shown, precipitation and 
temperature data are used in many studies to 
estimate streamflow (Rauf et al., 2018; Parisouj 
et al., 2020). Therefore, this study used these 
parameters and their antecedents as predictor 
variables. However, there are insufficient long-
term records in the meteorological observation 
stations in the study area. 

Many studies have reported that the Modern-Era 
Retrospective Analysis for Research and 
Applications, Version 2 (MERRA-2) reanalysis 
data is a good alternative when daily 

precipitation and temperature observation data 
are missing (Gupta et al., 2020; Hamal et al., 
2020). Therefore, precipitation and temperature 
data used as input data in the models for the years 
1988-2015 were obtained from the MERRA-2 
data at for the locations of the flow observation 
stations (NASA, 2022). The MERRA-2 data 
provides worldwide climate data from 1980 to 
the present. The data provides a spatial 
resolution of approximately 55 kilometers at 
latitude (0.5° latitude x 0.625° longitude) 
(Reichle et al., 2017). The basic statistics of the 
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Table 2. The basic statistics of the MERRA-2 data 

Stations 
Temperature (°C) Precipitation (mm) 

Min Max Mean Std Skw Min Max Mean Std Skw 

Ceyhan River-
Misis 

-0.1 38.1 19.5 8.5 -0.08 0.0 54.3 1.7 4.7 4.46 

Söğütlü Creek- 
Hanköy 

-6.6 35.3 15.6 9.1 -0.04 0.0 51.1 1.5 3.8 4.30 

Keşiş Creek- 
Sarıdanışmanlı 

-17.3 29.7 9.3 9.6 -0.13 0.0 32.1 1.1 2.6 4.35 

* Min: Minimum value, Max: Maximum value, Std: Standard deviation, Skw: Skewness 
 

MERRA-2 data are presented in Table 2. The 
input set was constructed using daily 
precipitation (Pt-1, Pt-2 and Pt) and temperature 
(Tt-1, Tt-2 and Tt) data and runoff data from the 
previous two days (Qt-1 and Qt-2). These lagged 
data are included in the model to capture how the 
hydrological system is affected by past 
conditions. In the literature, many studies have 
reported that precipitation and temperature data 
from previous days play an important role in 
hydrological processes and improve model 
performance (Riad et al., 2004; Tongal and 
Booji, 2018). 

Support vector regression (SVR) 
The objective of SVR is to calculate a linear 
regression function in a higher-dimensional 
input space (feature space), to which the input 
data is mapped via a nonlinear function 
(Raghavendra and Paresh, 2014). Consequently, 
a linear problem of regression in a complex input 
space is derived from a nonlinear problem of 
regression in a relatively simple input space. The 
solution is then performed in this space. The 
challenge is to identify a function f(x) hat 
exhibits the greatest discrepancy ε from the 
observed lateral displacements for the training 
data while maintaining a minimal degree of 
curvature. In order to achieve this, the e-
insensitive loss function is employed, whereby 
errors below a threshold of ε are deemed 
acceptable, whereas deviations above this 
threshold are penalized and considered 
unacceptable (Misra et al., 2009). 
Mathematically, 
f(x) = 	 〈w, x〉 + b					with	w ∈ X, b ∈ R (1) 

where 〈w, x〉	represents the magnitude of the dot 
product in X. In Equation 1, flatness is indicated 
by a small value of w. This can be achieved by 
reducing the Euclidean norm to a minimum, i.e.,. 
‖w‖!. In this case, the problem can be 
formulated as given in Equation 2 and 3. 

minimise	 "
!
	‖w‖! (2) 

subject to 8
(〈w, x#〉 	+ b) −	y# 	≤ 	ε
y# −	(〈w, x#〉 	+ b) 	≤ 	ε= (3) 

Nevertheless, there are instances when it is not 
feasible to derive a flat function f with an error 
margin of less than ε. In order to solve this 
problem, Equation 4 and 5 are obtained by 
adding the parameters called slackness, which 
are expressed in ξ#$, ξ#% notation, to the 
constraints in the optimization problem (Smola 
and Schölkopf, 2004; Misra et al., 2009). 

minimise	 "
!
	‖w‖! + C	∑ (ξ#$ + ξ#%)&

#'"  (4) 

subject to A
(〈w, x#〉 	+ b) −	y# 	≤ 	ε +	ξ#$

y# −	(〈w, x#〉 	+ b) 	≤ 	ε +	ξ#%

ξ#$, ξ#% 	≥ 0
D (5) 

where, C represents the predetermined term that 
governs the magnitude of the penalty associated 
with errors that fall outside the negligible margin 
of error. The slack variables, ξ#$ and ξ#% represent 
the lower and upper constraints on the outputs, 
respectively. It is required that the constant C be 
greater than zero. The value of C serves to 
establish a balance between the degree of 
flatness exhibited by the function and the extent 
of permissible deviations exceeding the 
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specified tolerance limit of ε. In conclusion, this 
optimization problem. Finally, this optimization 
problem  

 

Table 3. Hyperparameter optimization results 

Stations SVR 
ε C y 

Ceyhan River-Misis 1.91 999.1 347.9 
Söğütlü Creek- Hanköy 0.03 255.5 133.8 
Keşiş Creek- Sarıdanışmanlı 0.04 112.5 32.6 

is expressed in Equation 6 given below by taking 
the dual of the problem. 

f(x) = 	∑ (a# −	a#∗)	k〈x#, x〉 + b&
#'"  (6) 

Here, a#, a#∗ is the dual variables of the 
constraints of the problem in Equation 3 and 
takes values in the range of [0, 𝐶].In Equation 6, 
k〈x#, x〉 is called the kernel function. 
Consequently, the nonlinear SVR is transformed 
within the high-dimensional input space in order 
to facilitate linear analysis. A variety of kernel 
functions may be employed in support of SVR, 
including linear, polynomial, sigmoid, and radial 
basis functions. 

In comparison to other kernel functions, there is 
a notable prevalence of the RBF kernel function 
in the literature, due to its superior performance 
in producing more satisfactory results than other 
functions (Liong and Sivapragasam, 2002; Lin et 
al., 2006; Tongal and Booji, 2018). Therefore, 
the radial basis kernel function is used in this 
study as given Equation 7 (Misra et al., 2009). 

k〈x#, x〉 = exp	(−	‖*!$	*‖
!,"

) (7) 

where, y is kernel scale. To obtain best results of 
SVR model, three parameters need to be 
optimized which are ε value, box constraint (C), 
and kernel scale (γ). These parameters were 
determined by applying hyperparameter 
optimization to the training data in the 
MATLAB R2021 program, and the value ranges 
were selected according to the default 
parameters determined by the MATLAB 
Regression Learner App. The parameters 
obtained for each river for SVR models are given 
in Table 3. 

Artificial neural network (ANN) 
ANNs are systems for information processing 
that are constructed from nodes or neurons, 
which are analogous in structure to the human 
brain. They are employed for the resolution of 
complex problems. A number of studies have 
demonstrated the efficacy of ANN as a 
methodology for modelling nonlinear 
relationships between inputs and outputs in 
hydrological studies (Kisi, 2004; Corzo and 
Solomatine, 2007; Guimaraes Santos and Lima, 
2014; Sušanj et al., 2016). The general structure 
of an ANN is composed of three layers: an input 
layer, a hidden layer, and an output layer. Each 
layer contains nodes that represent the variables 
associated with that layer. 
In accordance with Equation 8, each node j 
receives signals from node i in the preceding 
layer. A weight, denoted as Wij is assigned to 
correspond with each incoming signal, 
represented by Xi. The active incoming signal 
(Sj) to node j is the weighted sum of all incoming 
signals, and bj is the neuron threshold value. 

S- =	∑ X#W#- +	b-&
#'" 	 (8) 

The active incoming signal (Sj) is subjected to a 
nonlinear activation function, thereby generating 
the node's outgoing signal as illustrated in 
Equation 9. 

f	KS-L = 	
"

"%	.#$%
	 (9) 

The structure of the network, the activation 
functions and the training algorithms all 
contribute to the determination of ANN models. 
Among the various types of ANNs, multilayer 
perceptron feedforward neural networks are 
among the most commonly employed (Singh et 
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al., 2009; Lohani et al., 2011). In these networks, 
each neuron is associated with all neurons in the 
previous layer. Furthermore, the output of each 
layer is utilized as input for the subsequent layer. 
A number of studies have indicated that quasi-
Newtonian optimization methods are capable of 
achieving rapid convergence times and low 
mean squared errors in hydrological processes. 
(Aqil et al., 2007; Badrzadeh et al., 2013; Linares 
Rodriguez et al., 2015). For this reason, the 
Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton algorithm (LBFGS) and the feedforward 
neural network algorithm were employed as 
optimization techniques. 

In the ANN model, the system's nonlinearity is 
captured through the use of activation functions. 
In the field of hydrological modelling, the 
tangent sigmoid function is the activation 
function that is most frequently employed. 
(Dawson and Wilby, 2001; Zadeh et al., 2010). 
Consequently, the tangent sigmoid function was 
employed in this study. The function has an 
output range of 0 to 1. However, since the input 
data are outside this range, it is necessary to 
standardize the data. Consequently, the input 
data is subjected to standardization in 
accordance with Equation 10 (Rajurkar et al., 
2002; Lohani et al., 2011). 

XM = 	 /$	/&!'
/&()$	/&!'

 (10) 

where X is the original data, XM is the standardized 
value of the input, Xmin is minimum and Xmax is 
maximum of the measured values in all 
observations. 

Once the data has been normalized, the next step 
is to determine the optimal number of neurons in 
the hidden layer. In the event that the number of 
neurons is insufficient, the network will be 
unable to structure the complex data, resulting in 
suboptimal outcomes. A high number of neurons 
is typically beneficial in enabling the network to 
address complex systems, although it can also 
lead to overfitting issues. Consequently, it is of 
paramount importance to ascertain the optimal 
number of nodes in the hidden layer, as this has 
a significant impact on the performance of the 
trained network. Consequently, the optimal 
number of neurons in the hidden layer was 

identified through a trial-and-error approach, 
wherein the number of neurons in the hidden 
layer was varied from 2 to 10 (Lohani et al., 
2011; Tongal and Booji, 2018). The results of 
the experiments indicated that the optimal 
number of neurons in the hidden layer was 6 for 
Ceyhan River-Misis, 4 for Söğütlü Creek- 
Hanköy and 7 for Keşiş Creek- Sarıdanısmanlı. 

Multiple linear regression (MLR) 
Regression analysis is one of the oldest and most 
widely used methods in long-term hydrological 
forecasting (Rezaeianzadeh et al., 2014). The 
MLR Model is a linear model that explains the 
relationship of a y variable with two or more x 
variables. The general structure of the model is 
as given in Equation 11; 
y	 = 	β0 + β"x" +⋯+	β&x& + ε (11) 

Here, y is the dependent (or response) variable, 
x is the independent (or predictive) variable. ε is 
random error. β is the regression coefficient 
(constant). Each β coefficient is simply 
multiplied by a variable x. 

Evaluation of model performance 
In order to assess the performance of the models 
against the station data, the four statistical 
methods of coefficient of determination (R²), 
root mean square error to standard deviation 
ratio (RSR) and Nash-Sutcliffe model efficiency 
(NSE) were employed.  
R2 is a statistic metric that indicates what 
proportion of variation in observations a model 
is able to explain. In addition, R2 is a statistic that 
gives some information about whether a model 
fits well. A high R2 value is desirable because the 
higher it is, the less unexplained variation there 
is. These coefficients are statistical measures of 
how closely a regression line approximates real 
data (Moriasi et al., 2007). It is computed by 
Equation 12. 

R! = P ∑ (3!$	34)	×	(7!$	74 )'
!*+

8∑ (3!$	34)"'
!*+ 		×	8∑ (7!$	74 )"'

!*+

Q

!

 (12) 

One of the commonly used statistical measures 
of error is the Root Mean Square Error (RMSE) 
(Singh et al., 2005; Moriasi et al., 2007). It is 
widely acknowledged that a lower RMSE value 
indicates superior model performance. However, 
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the actual value of this parameter varies 
according to the size of the data. In light of this, 
RSR has been developed as a model evaluation 
statistic that facilitates the interpretation of these 
values (Singh et al., 2005). RSR converts the 
RMSE values to a standard value using the 
standard deviation values of the observations. 
The RSR is calculated by dividing the RMSE 
and the observation standard deviations, as given 
in Equation 13. 

RSR = 97:;
:<=.?.@.

=
8∑ |3!$	7!|"'

!*+

8∑ |3!$	34|"'
!*+

  (13) 

The Nash-Sutcliffe efficiency coefficient offers 
a quantitative measure of the predictive efficacy 
of a given model. Its values range from negative 
infinity to one. It is desirable that the value it 
receives is between zero and one, and as it 
approaches one, it indicates that the model 
provides a satisfactory estimation result (Moriasi 
et al., 2007). The NSE is calculated using the 
equation provided in Equation 14. 

	NSE = 1 −	∑ (3!$	7!)"'
!*+
∑ (3!$	34)"'
!*+

  (14) 

In this equations; Oi represents the observation 
station measurement, OM denotes the average of 
the observation station measurements, Mi 
signifies the model output, MM  signifies the model 
output. Finally, n denotes the number of data 
points. The results of the RSR and NSE 
evaluation are presented in Table 4. 

Results and Discussion 
In this study, ANN, SVR, and MLR models were 
applied for three rivers in the Ceyhan River basin 
to estimate daily streamflow values. Model 
performances are evaluated using three 
statistical measures. The input set of the model 
was constructed using precipitation (Pt-1, Pt-2 
and Pt) and temperature (Tt-1, Tt-2 and Tt) data 

from the previous two days, as well as flow data 
from the previous days (Qt-1 and Qt-2). This 
choice was made in order to account for the 
lagged effects of variables such as precipitation, 
temperature, and runoff in order to obtain more 
accurate predictions. The use of previous flow 
data (Qt-1 and Qt-2) can contribute to a better 
performance of the model, especially during 
periods of rise and fall of the hydrograph. In 
addition, lagged temperature and precipitation 
data allow the process of infiltration of 
precipitation into the soil and its contribution to 
streamflow to be incorporated into the model 
(Riad et al., 2004; Tongal and Booji, 2018; Rauf 
et al., 2018). In the modeling, 70% of the data 
was used as a training data and 30% as a test 
data. Test results were used in the evaluation of 
the models. 
 
Streamflow estimation results for Ceyhan 
River-Misis 
The performance results for daily flow 
measurements between 1988 and 2015 of the 
SVR, ANN, and MLR models are presented in 
Table 5, respectively. Based on the results from 
the performance assessment criteria, the model 
estimates were found to be similar. However, it 
has been determined that the model obtained by 
using the SVR algorithm makes estimations with 
a lower error amount than other models. 
The models' performances in terms of RMSE 
and R2 for the test phases are shown in Table 5. 
RMSE values for MLR are lower than SVM and 
ANN. Due to the maximum R2 (0.95) and 
minimum RMSE values (28.20), the SVR model 
was determined to be the best model for the daily 
streamflow estimation of the Ceyhan river. 
Similar results were observed in the ANN model 
(Table 5). Among the models, the MLR model 
had the worst performance compared to the other 
models (R2 = 0.93 and RMSE = 28.94). 
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Table 4. Performance evaluation table for RSR and NSE (Moriasi et al. 2007) 

Rank NSE RSR 
Very Good  0.75 - 1.00 0.00 - 0.50 
Good 0.65 - 0.75 0.50 - 0.60 
Satisfactory 0.50 - 0.65 0.60 - 0.70 
Unsatisfactory < 0.50 > 0.70 
* NSE: Nash-Sutcliffe model efficiency, RSR: Root mean square error to standard deviation ratio 

 

However, when NSE and RSR were evaluated as 
model performance success, it was determined 
that the models made very good estimations 
according to the threshold values given in the 
literature (RSR<0.50, NSE>0.75). In general, 
ML regression analysis (SVR and ANN) has 
been found to give more accurate results than 
linear regression analysis (MLR) when statistical 
performance criteria are taken into account. A 
comparison of the observed and estimated daily 
flow for all models on a timeline is given in 
Figure 2. When the figure is examined, it is seen 
that the estimations obtained from the models 
make similar estimations to the station 
observation values and the estimation errors are 
quite low. As a result of the evaluations, it has 
been determined that the daily flow of the 
Ceyhan River, which has a high annual average 
flow, can be successfully estimated using the 
model created with a small number of 
parameters. 

Streamflow estimation results for Söğütlü 
Creek- Hanköy 

The statistical evaluation results of the estimates 
made for the Hanköy measurement station 
located on the Söğütlü Stream in the northern 
part of the Ceyhan basin are given in Table 6. It 
was seen that ANN, MLR, and SVM models 
gave similar results to the results in the Ceyhan 
River. It has been determined that the models 
created using ANN and SVM ML algorithms are 
more successful than the flow estimations of the 
traditional MLR model. 

As shown in Table 6, the best result was for the 
SVR, as demonstrated by the minimum error 
rate, RMSE = 6.57, and the best correlation rate, 
R2 = 0.82. Additionally, the ANN model also 

 

 

Figure 2. Time series and scatter plot of models for Ceyhan River-Misis 
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Table 5. Performance results of testing phase for Ceyhan River 

Station Method Testing Period 
R2 RMSE NSE RSR 

Ceyhan River-Misis 
MLR 0.93 28.94 0.92 0.25 
ANN 0.95 28.25 0.95 0.23 
SVR 0.95 28.20 0.95 0.22 

*R2: Coefficient of determination, RMSE: Root mean square error, NSE: Nash-Sutcliffe model 
efficiency, RSR: Root mean square error to standard deviation ratio 

performed well like the SVR model, with the 
minimum error rate, RMSE = 6.61, and the best 
correlation rate, R2 = 0.81, refers to the most 
precise correlation value. On the other hand, the 
MLR model showed worse estimation 
performance than the others, with the minimum 
error rate RMSE = 6.93 and the best correlation 
rate R2 = 0.79. However, when the model 
performance success was evaluated according to 
the threshold values (RSR<0.50, NSE>0.75), it 
was determined that it made very good 
estimations. The correlation and similarity of the 
estimations of all models with the observation 
data can be observed in Figure 3. Similar to the 
Ceyhan River; It is seen that all three models 
underestimate the daily flow for Söğütlü Creek- 
Hanköy, especially the peak flow values, then 
the observed values. The use of delayed flow 
data as input to ANN and SVR models can create 
difficulties in determining and estimating the 
effects of sudden extreme events such as floods 

and droughts on stream flow (Chau and Li, 2009; 
Sazib et al., 2020).  

In addition, extreme events in climatic factors 
such as temperature and precipitation used as 
input in the models can affect hydrological 
processes and river flows (Zamanisabzi et al., 
2018). These changes may cause over- or 
underestimation of the model in certain time 
periods. 

Streamflow estimation results for Keşiş 
Creek- Sarıdanışmanlı 
The statistical evaluation of different types of 
model performances in daily streamflow 
estimations of the Sarıdanışmanlı measurement 
station located on the Keşiş Creek for the testing 
phase is presented in Table 7. In general, it has 
been observed that ML models (ANN and SVR) 
give better results than MLR.  
 

 
Figure 3. Time series and scatter plot of models for Söğütlü Creek- Hanköy 
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Table 6. Performance results of testing phase for Söğütlü Creek- Hanköy 

Station Method Testing Period 
R2 RMSE NSE RSR 

Söğütlü Creek- Hanköy 
MLR 0.79 6.93 0.79 0.46 
ANN 0.81 6.61 0.81 0.44 
SVR 0.82 6.57 0.81 0.44 

*R2: Coefficient of determination, RMSE: Root mean square error, NSE: Nash-Sutcliffe model 
efficiency, RSR: Root mean square error to standard deviation ratio 

The R2 and RMSE values obtained showed 
agreement with the observed data. The lowest 
RMSE value was calculated for the SVR model 
(1.45) and the highest for the MLR model (1.62). 
The R2 value that indicates the agreement with 
the observation data was higher than 
approximately 0.90 for all models. When NSE 
and RSR were evaluated as model performance 
success, it was determined that the models made 
very good estimations according to the threshold 
values given in the literature (RSR<0.50, 
NSE>0.75). Figure 4 shows the daily streamflow 
estimation graphs obtained by ANN, SVR, and 
MLR methods for the testing phase of Keşiş 
Creek- Sarıdanışmanlı. SVR and ANN model 
estimations were found to be very similar when 
compared to MLR. Also, it was determined that 
the model estimates and the observed 
streamflows are similar except for the peak 
values. When the comparison of flow 
observation measurements and daily flow 
forecasts obtained from the models on the 

timeline is examined, it is seen that it makes 
estimations similar to the observation 
measurements and trend, as in the Ceyhan river 
forecasts. 

As a result of the evaluations, it was seen that the 
estimations obtained for Keşiş Stream, which 
has an annual average flow of 10.60 m3 s-1, are 
better than the Söğütlü Stream measurements but 
less unsuccessful than the Ceyhan River, which 
has a higher annual average flow. 

When the results were evaluated in general for 
the three measurement stations, it was seen that 
the estimations were generally successful 
(Figure 5). Similar to the findings of this study, 
Vatanchi et al. (2023) reported that the 
performance of the ANN prediction model was 
successful (NSE=0.92) in their study to predict 
the daily 

 

 
Figure 4. Time series and scatter plot of models for Keşiş Creek- Sarıdanışmanlı 
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Table 7. Performance results of testing phase for Keşiş Creek- Sarıdanışmanlı 

Station Method Testing Period 
R2 RMSE NSE RSR 

Keşiş Creek- Sarıdanışmanlı 
MLR 0.90 1.62 0.90 0.32 
ANN 0.91 1.50 0.91 0.29 
SVR 0.93 1.45 0.92 0.29 

*R2: Coefficient of determination, RMSE: Root mean square error, NSE: Nash-Sutcliffe model 
efficiency, RSR: Root mean square error to standard deviation ratio 

 

 

Figure 5. Overall evaluation results obtained for the test phase of the models 
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flow of the Colorado River in the USA. Kamali 
et al. (2023) evaluated different machine 
learning models in a similar study in the Karkheh 
basin of Iran. It was reported that the SVR model 
showed high performance with an R2 and RMSE 
of 0.85 and 36.49 m³ s-1, respectively, during the 
test periods. Oad et al. (2023) evaluated the 
usability of ANN prediction models for stream 
forecasting in their study for the Goulburn River 
in Australia and found that the models were 
acceptable with correlation coefficient values 
ranging between 0.61-0.95. 

In addition, it has been determined that the low 
amount of flow of the measured river affects the 
estimation success of the models. Accordingly, 
it was seen that the estimations for the Ceyhan 
River, which has high flow, were the most 
successful, while the estimations made for the 
Söğütlü Creek, which had the lowest flow, were 
more unsuccessful. It has been determined that 
model estimations created using ML algorithms 
from the models evaluated in the study are more 
successful than traditional regression 
approaches. When the results obtained were 
compared with the information given in the 
literature, it was seen that similar results and 
inferences were obtained (Rauf et al., 2018; 
Tongal and Booji, 2018; Parisouj et al., 2020; 
Siddiqi et al., 2021;) 

Conclusion 
In this study, ANN, SVR, and MLR models were 
developed to estimate daily streamflow values in 
the Ceyhan River Basin. The performance of the 
models was determined using daily precipitation 
and temperature data, which were obtained from 
MERRA-2 reanalysis data. 
The analysis results revealed that the SVR model 
exhibited the best predictive performance for the 
Ceyhan River, with R² = 0.95 and RMSE = 28.20 
m3 s-1. Furthermore, high accuracy was also 
observed in the other rivers, with the Söğütlü 
Creek showing R² = 0.82 and RMSE = 6.57 m3 
s-1, and the Keşiş Creek showing R² = 0.93 and 
RMSE = 1.45 m3 s-1. These results indicate that 
machine learning algorithms (particularly SVR 
and ANN) performed significantly better than 
the traditional MLR model. 

The key findings of this study highlight the 
effectiveness of data-driven approaches in 
hydrological modeling and emphasize the 
benefits of using alternative data sources (such 
as MERRA-2 reanalysis data) for streamflow 
estimation in areas like the Ceyhan River Basin, 
which may suffer from data scarcity. However, 
the limitation of the model to only predict one 
day ahead streamflow constrains its potential 
applications. Future research should focus on 
developing multi-step prediction methods to 
enhance the accuracy of streamflow forecasts. 

In conclusion, this study contributes to the 
improvement of hydrological modeling in the 
Ceyhan River Basin and provides valuable 
insights for water management and decision-
making processes. These findings can assist in 
the more effective management of water 
resources in the region. 
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