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Singüler Pertürbe Özellikli Fredholm İntegro Diferansiyel Denkleminin Katman Davranışının İncelenmesi 

Muhammet Enes DURMAZ 
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ÖZET:  

Çalışma, ikinci mertebeden lineer singüler pertürbe özellikli Fredholm integro diferansiyel 

denklemini ele almaktadır. Bu tür problemlerin niteliksel analizi, çözümün sınır 

katmanlarındaki davranışının hızlı değişmesi nedeniyle oldukça zordur. Bu çalışmada sınır 

katmanlı Fredholm integro diferansiyel denkleminin çözümü ve çözümün birinci ve ikinci 

türevleri için asimptotik değerlendirmeler sunulmuştur. Elde edilen değerlendirmeler, 

matematiksel modelleme ve analizde uygun yaklaşık yöntemlerin geliştirilmesine ve 

değerlendirilmesine katkı sağlaması açısından önem taşımaktadır. Ayrıca sunulan örnek, teorik 

sonuçların geçerliliğine ve değerlendirmelerin doğruluğuna destek sağlamaktadır. 
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ABSTRACT:  

The work handles a second order linear singularly perturbed Fredholm integro differential 

equation. The qualitative analysis of such problems is quite difficult due to the rapid change in 
behavior of the solution within the boundary layer. In this study, asymptotic estimates for the 

solution and its first and second derivatives of the Fredholm integro differential equation with a 

boundary layer have been presented. The obtained estimates have significance in their 

contribution to the development and evaluation of appropriate approximate methods in 

mathematical modeling and analysis. Furthermore, the presented example provides support for 

the validity of the theoretical results and the accuracy of the estimates. 
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INTRODUCTION 

When the largest derivative term in a differential equation (DE) is multiplied by a tiny parameter 

( 0,1  , this parameter is called to be a singular perturbation parameter and the DE is called as a 

singularly perturbed differential equation (SPDE). Due to the presence of the perturbation parameter, 

layers appear at the boundaries, which are called as boundary layers. SPDEs express a wide variety of 

mathematical models, ranging from mathematical engineering to problems in chemical reactions, fluid 

dynamics, heat transfer, population dynamics, control theory, biology, aerodynamics, electrical 

networks and neuroscience. Further information on SPDEs can be found in the publications (Nayfeh, 

1993; Kevorkian & Cole, 1981) and their references. Due to the behaviour of the boundary layer of the 

solution, the numerical analysis of SPDEs has always been a challenge. Such problems exhibit rapid 

changes in thin layers at the interior or boundary of the problem domain (Schmisser & Weiss, 1986; 

O’Malley, 1991;  Miller et al., 2012). Standard numerical methods for solving these types of problems 

are widely accepted to be unsteady and fail to give accurate results when the  − parameter is small. 

For this reason, it is crucial to develop suitable numerical techniques that converge uniformly with 

respect to the  − parameter. A number of approaches to the numerical solution of these forms of 

differential equations are covered in the literature (Farrell et al., 2000; Reddy & Chakravarthy, 2004; 

Roos et al., 2008; Kadalbajoo & Gupta, 2010; El-Zahar, 2020). 

In mathematics, physics and engineering, there are sometimes problems that cannot be expressed 

by a single equation. Therefore, such problems can be expressed as integral, differential or integro-

differential equations, which contain more than one unknown function. 

This study will focus on the Fredholm integro-differential equation (FIDE). FIDEs can be 

encountered in a wide range of mathematical applications and scientific fields, including 

electromagnetic theory, fluid mechanics, oceanography, plasma physics, biology, artificial neural 

networks and financial mathematical processes (see, for example, (Abdulghani et al., 2019; Hamoud & 

Ghadle, 2019)). As a result, a considerable number of researchers have devoted their attention to the 

study of FIDEs over the years. Because exact solutions to these types of problems are difficult to 

obtain, researchers use appropriate analytical techniques. Some of the methods include reproducing 

kernel Hilbert space method (Arqub et al., 2013), Tau method (Hosseini & Shahmorad, 2003), 

Nyström method (Tair et al., 2021), Touchard polynomials method (Abdullah, 2021), Boole 

Collocation method (Dag & Bicer, 2020), Galerkin method (Chen et al., 2020), Collocation and 

Kantorovich methods (Tair et al. 2022), variational iteration technique (Hamoud & Ghadle, 2019), 

Legendre collocation matrix method (Yalcinbas et al., 2009) and parameterization method 

(Dzhumabaev et al., 2020). 

In addition, some existence and uniqueness of the solution for both SPDEs and FIDEs are 

discussed in (Vougalter & Volpert, 2018; Lin et al., 2020). In (Amiraliyev et al., 2020; Amiraliyev et 

al., 2021) the authors have discussed an asymptotic approach for singularly perturbed Fredholm 

integro-differential equations (SPFIDEs). Furthermore, some numerical perspectives of these types of 

problems with a small term are considered in (Durmaz et al., 2022a; Durmaz et al., 2022b; Amirali et 

al., 2023; Panda et al., 2024). In (Cimen & Cakir, 2021) it is shown for the linear SPFIDE that the 

difference scheme constructed using interpolating quadrature rules converges uniformly with respect 

to the perturbation parameter. In research on the initial value problem for nonlinear SPFIDE, the 

authors proved uniform convergence with respect to the  − parameter for a new difference scheme 

(Cakir et al., 2022). In ( Cakir & Cimen, 2023), for the singularly perturbed second order Volterra 
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integro-differential equation, it was shown that the difference scheme is uniformly convergent in the 

first order with respect to the perturbation parameter. 

In the present paper, we provide the asymptotic estimates for the solution of (2.1)-(2.2) and its 

first and second derivatives. The results obtained are very important for the analysis of suitable 

approximation methods. To support the predicted theory, an example is given. 

This study is presented in the following format: Section 1 presents the introduction, Section 2 

evaluates the main findings and Section 3 illustrates the theoretical results with an example. 

 

MATERIALS AND METHODS  

In this paper, the following SPFIDE is being analyzed: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

: , ,    0 ,Lu a b M d f                = + − + =    (1) 

( ) ( )0 ,    , =  =  (2) 

where 0 1  is a perturbation and   is a real parameter.   and   are given invariables. We 

presume that ( ) ( )    ( ), , 0, x 0, ,M       ( ),f   ( ) 0,a     ( ) 0,b     ( )0,  are the 

sufficiently smooth functions satisfying certain regularity conditions to be specified. The solution 

( )   of (1)-(2) has in general boundary layer near 0. =  We denote the maximum norm of any 

continuous function ( )q   on the interval by q


. 

Definition 1. (Maximum Principle) Assume that ( )0 0u   and ( ) 0u  . Then ( ) 0,Lu    0 ,   

implies that ( ) 0,u    for all 0 .   

Lemma 1. For any ( )u   function, let ( )   ( )20, 0, .u C C    Then the following estimate is true. 

( ) ( ) ( ) ( )1

1
0 max ,    0 .

i N
u u u Lu   −

 
 + +    

Proof. Let us define the ( )  function as follows: 

( ) ( ) ( ) ( ) ( )1

1
0 max ,    0 .

i N
u u u Lu    −

 
 =  + + +    

Then the following inequalities are satisfied 

( )0 0,   ( ) 0   

and 

( ) 0.L    

The maximum principle gives ( ) 0,   for all 0    and so inequality Lemma 1 holds. 

RESULTS AND DISCUSSION  

In this section, we give a priori bounds on the solution and its derivatives for the given problem 

(1)-(2). 

Theorem 1. Assume that  1, , 0,a b f C  and  
2

0, ,
s

s

M
C







 ( )0,1 .s =  Moreover 
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( )

1

0
0

.

max ,M d





  

−

 





 (3) 

The solution ( )   of the problem (1)-(2) satisfies the bounds 

,C

  (4) 

( ) ( )
1

1 ,C e


 


 


− 
 + 

 
  0, ,  1, 2. =  

(5) 

Proof. First we show the validity of (1). By virtue of  1, 0,a f C  and  
2

0, ,
s

s

M
C







 according to 

maximum principle from (1)-(2) we have 

( ) ( )

( )

1 1

0
0

1 1

0
0

max ,

max , .

f M d

f M d





        

      

− −

   

− −

  

  +  + +

  +  + +





 

So, we obtain 

( )

1

1

0
0

1 max ,

.

f

M d

C






    

−




−

 

 +  +


−



  

Thus, taking into account (3), the correctness of the expression (4) has shown. Now, we show the 

proof of (5). We can rewrite the problem (1)-(2) as 

( ) ( ) ( ) ( ),a F      + =  (6) 

where 

( ) ( ) ( ) ( ) ( )
0

( ) , .F f b u M u d        = + −   

Taking into account (4) evidently we get relation 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

( ) ,

( ) ,

.

F f b M d

f b M d

C

          

         

 + −

 + +





  

From the equation (6), we can write 

( ) ( )
( )

( )
( )

0

11

0

1
0 .

a da d

e F e d





   


    


−− 
 = +   

(7) 

We need an estimate in (7) for ( )0 .  For this reason, integrating this equality over ( )0, ,  we have 
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( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

0

0

11

0 0 0

11

0 0 0

1
0 0 ,

1
0 .

a da d

a da d

e d F e d d

e d F e d d









   


   


      


    


−−

−−


− = +


− = +

  

  

 

Rearranging this equality we obtain 

( )
( )

( )

( )
0

1

0 0

1

0

1

0 .

a d

a d

F e d d

e d







  


 


  






−

−


 −−

 =



 



 

 

(8) 

For integral in the denominator, we acquire 

( ) ( )
0 0

1 1

0 0

0

1

1

,

a d a d

a

a

e d e d

e d

e
a

c

 

   
 







 







− −

−

−

 


=

 
= − 

 



 

  

 

 

 

(9) 

where is 
( 

( )
0,1

max .a a





=  Applying the mean value theorem to integral term in the numerator in (8), we 

get 

( )
( )

( )
( )

( )

1 1

0 0 0 0

1

0 0

0 0

0

2

1 1

1

.

a d a d

d

F e d d F e d d

F
e d d

F
e d d

F
e d

F

c

 

 





    
 

  


   







     
 

 


 





 



− −

−



−
−



−




 







 
= − 

 





   

 

 



 

 

 

 

 

(10) 

By considering the estimates (9) and (10) in (8), we can write 
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( )
( )

( )

( )
0

1

0 0

1

0

2

1

1

1

0

.

a d

a d

F e d d

e d

c

c

C







  


 


  








−

−


 +  +

 



 +  +




 



 

By taking the absolute value in (7), we get 

( ) ( )
( )

( )
( )

0

0

11

0

11

1

0

1

1
0

1

1
1

a da d

dd

e F e d

C
e F e d

FC
e

C e









   


   










    



 

 



−−

−−



−


−


  +


 +

= +

 
 + 

 




 

which reach at the proof of (5) for 1. =  

Now, to obtain (5) estimation for 2, =  differentiating (1) we get 

( ) ( ) ( ) ( ) ,a      + =  (11) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

, .f b b a M d                



     = + + − −


 

It is obvious that 

( )
1

1 .C e





− 
  + 

 
 

From the relation (11), we get 

( ) ( )
( )

( )
( )

0

11

0

1
0 .

a da d

e e d





   


    


−− 
 = +   

(12) 

We need an estimate in (12) for ( )0 . From (1) we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1

2

1
0 0 0 0 0 0 0,

.

f b a M d

C

       




 = + − −




 

Taking the absolute value in (12), we get 
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( ) ( )
( )

( )
( )

( )

0

0

11

0

1

1 1

2

0

1
0

1
1 .

a da d

d

e e d

C C
e e e d







   


    


 

    



  

−−

−−
− −


  + 

  
 + + 

 





 

Therefore, we obtain 

( ) 11 1
12 2

0

1
1 2 2

1

1
1 ,

C C
e C e e d

C
C e e

  

  

 

 

   
 



 

− − −
−

− −

 
  + − + 

 

 
 + + 

 


 

which proves (5) for 2. =  

Example 1. We contemplate the special problem with 

( ) ( ) ( ) ( ) ( )
1

1

0

1
1 2 ,    0 1,

2
d             + − + + =    

10,    1 , =  = +  

where 

2

2

1 1

1
1 1 1 4 .
2 6 4

1e


   

−
   

= − + + +   
   

−

 

The exact solution is given by 

( )

( )
2

11

2 1 1

2

1

e

e









      

−

−

 
− − 

 = + − + +

−

 

which is in agreement with the theoretical bounds described above. Below is the graph of the exact 

solution for 0.1,  0.05,  0.02,  0.002 =  values. 

 
Figure 1. Solution of example for different values 𝜀 
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CONCLUSION 

In this work, a boundary value problem for FIDEs with a boundary layer has been taken 

considered. It has been determined how the solution behaves in the boundary layer and how its first 

and second derivatives behave. These estimates are important because they contribute to the 

development and evaluation of appropriate approximation methods in mathematical modelling and 

analysis. By understanding the details of the behaviour of the solution and its derivatives, researchers 

can design more accurate and efficient numerical methods to solve similar problems in applied 

mathematics. An example is given that is consistent with the theoretical analysis and demonstrates the 

practical applicability of the theoretical results. Future work could extend these results to more 

complex systems and explore the effect of different types of boundary conditions on the solution and 

its derivatives. 
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