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Abstract

Discrete-time systems are sometimes used to explain natural phenomena that happen in
nonlinear sciences. We study the periodicity, boundedness, oscillation, stability, and certain
exact solutions of nonlinear difference equations in this paper. Using the standard iteration
method, exact solutions are obtained. Some well-known theorems are used to test the
stability of the equilibrium points. Some numerical examples are also provided to confirm
the theoretical work’s validity. The numerical component is implemented with Wolfram
Mathematica. The method presented may be simply applied to other rational recursive
issues.
In this paper, we explore the dynamics of adhering to a rational difference formula

xn+1 =
xn−29

±1± xn−5xn−11xn−17xn−23xn−29
,

where the initials are arbitrary nonzero real numbers.

1. Introduction

A particular natural phenomenon’s evolution is frequently explained over a period of time employing differential equations. Nevertheless,
in certain instances, numerous real-life issues can be modeled using discrete time intervals, resulting in difference equations. As a result,
recursive equations play an influential and potent role in mathematics. They are effectively employed to explore various applications in
engineering, physics, biology, economics, and other fields [1–5]. For example, recursive equations have been effectively employed in
modeling various natural phenomena, including population size, the Fibonacci sequence, drug concentrations in the bloodstream, information
transmission, pricing dynamics of certain commodities, propagation patterns of annual plants, and more [6–12]. Additionally, certain
scholars have utilized difference equations to obtain numerical solutions for certain differential equations. In particular, discretizing a
given differential equation produces a corresponding difference equation. For example, the Runge-Kutta scheme arises from discretizing
a first-order differential equation. This prompts consideration regarding the convergence of the difference scheme to the solution of a
differential equation. The study discussed in reference [13] is dedicated to investigating the preservation of a solution bounded on the entire
axis during the transition from differential to difference equations and vice versa. In reference [14], analogous inquiries were undertaken
to maintain the oscillatory nature of solutions to second-order equations. Advancements in technology have spurred the utilization of
recurrence equations as approximations to partial differential equations. It’s noteworthy that fractional-order difference equations are
frequently employed to study certain real-life phenomena that arise in nonlinear sciences. Almatrafi et. al. in [15] aim to analyzed the
asymptotic stability, global stability, periodicity of the solution of an eighth-order difference equation. Sanbo et. al. in [16], discussed the
periodicity, stability, and some solutions of a fifth-order recursive equation. Yeniçerioğlu et. al. in [17], examined the behavior of solutions
of the neutral functional differential equations. Using a suitable real root of the corresponding characteristic equation, they explained the
asymptotic behavior of the solutions and the stability of the trivial solution. Ahmed et al. [18] discovered new solutions and conducted a
dynamical analysis for certain nonlinear difference relations of fifteenth order. Berkal et. al. in [19], have derived the forbidden set and
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determined the solutions of the difference equation that contains a quadratic term. Oğul et. al. in [20], examined soluttions of the sixth-order
difference equations.
The inspiration behind this article stems from the exploration of eighteenth-order difference equations outlined in [21]. As such, the objective
of this study is to analyze various dynamical properties including equilibrium points, local and global behaviors, boundedness, and analytic
solutions of the nonlinear recursive equations (1.1).

xn+1 =
xn−29

±1± xn−5xn−11xn−17xn−23xn−29
. (1.1)

Here, the initial values x−29,x−28,x−27, . . . ,x−2,x−1,x0, are arbitrary non-zero real numbers. In this work, we also illustrate some 2D figures
with the help of Wolfram Mathematica to validate the obtained results.
In this study, stability, periodicity and global asymptotic stability definitions and theorems in the [1] source were used.

2. Solution of the Difference Equation xn+1 =
xn−29

1+xn−5xn−11xn−17xn−23xn−29

In this section, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers.

xn+1 =
xn−29

1+ xn−5xn−11xn−17xn−23xn−29
, (2.1)

where,

x−29 = A30, x−28 = A29, x−27 = A28, x−26 = A27, x−25 = A26, x−24 = A25, x−23 = A24, x−22 = A23,

x−21 = A22, x−20 = A21, x−19 = A20, x−18 = A19, x−17 = A18, x−16 = A17, x−15 = A16, x−14 = A15, (2.2)

x−13 = A14, x−12 = A13, x−11 = A12, x−10 = A11, x−9 = A10, x−8 = A9, x−7 = A8, x−6 = A7,

x−5 = A6, x−4 = A5, x−3 = A4, x−2 = A3, x−1 = A2, x0 = A1.

Theorem 2.1. Let {xn}∞
n=−29 be a solution of (2.1). Then,

x30n+1 =
A30 ∏

n
i=0(1+5iA6A12A18A24A30)

∏
n
i=0(1+(5i+1)A6A12A18A24A30)

, x30n+2 =
A29 ∏

n
i=0(1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

,

x30n+3 =
A28 ∏

n
i=0(1+5iA4A10A16A22A28)

∏
n
i=0(1+(5i+1)A4A10A16A22A28)

, x30n+4 =
A27 ∏

n
i=0(1+5iA3A9A15A21A27)

∏
n
i=0(1+(5i+1)A3A9A15A21A27)

,

x30n+5 =
A26 ∏

n
i=0(1+5iA2A8A14A20A26)

∏
n
i=0(1+(5i+1)A2A8A14A20A26)

, x30n+6 =
A25 ∏

n
i=0(1+5iA1A7A13A19A25)

∏
n
i=0(1+(5i+1)A1A7A13A19A25)

,

x30n+7 =
A24 ∏

n
i=0(1+(5i+1)A6A12A18A24A30)

∏
n
i=0(1+(5i+2)A6A12A18A24A30)

, x30n+8 =
A23 ∏

n
i=0(1+(5i+1)A5A11A17A23A29)

∏
n
i=0(1+(5i+2)A5A11A17A23A29)

,

x30n+9 =
A22 ∏

n
i=0(1+(5i+1)A4A10A16A22A28)

∏
n
i=0(1+(5i+2)A4A10A16A22A28)

, x30n+10 =
A21 ∏

n
i=0(1+(5i+1)A3A9A15A21A27)

∏
n
i=0(1+(5i+2)A3A9A15A21A27)

,

x30n+11 =
A20 ∏

n
i=0(1+(5i+1)A2A8A14A20A26)

∏
n
i=0(1+(5i+2)A2A8A14A20A26)

, x30n+12 =
A19 ∏

n
i=0(1+(5i+1)A1A7A13A19A25)

∏
n
i=0(1+(5i+2)A1A7A13A19A25)

,

x30n+13 =
A18 ∏

n
i=0(1+(5i+2)A6A12A18A24A30)

∏
n
i=0(1+(5i+3)A6A12A18A24A30)

, x30n+14 =
A17 ∏

n
i=0(1+(5i+2)A5A11A17A23A29)

∏
n
i=0(1+(5i+3)A5A11A17A23A29)

,

x30n+15 =
A16 ∏

n
i=0(1+(5i+2)A4A10A16A22A28)

∏
n
i=0(1+(5i+3)A4A10A16A22A28)

, x30n+16 =
A15 ∏

n
i=0(1+(5i+2)A3A9A15A21A27)

∏
n
i=0(1+(5i+3)A3A9A15A21A27)

,

x30n+17 =
A14 ∏

n
i=0(1+(5i+2)A2A8A14A20A26)

∏
n
i=0(1+(5i+3)A2A8A14A20A26)

, x30n+18 =
A13 ∏

n
i=0(1+(5i+2)A1A7A13A19A25)

∏
n
i=0(1+(5i+3)A1A7A13A19A25)

,

x30n+19 =
A12 ∏

n
i=0(1+(5i+3)A6A12A18A24A30)

∏
n
i=0(1+(5i+4)A6A12A18A24A30)

, x30n+20 =
A11 ∏

n
i=0(1+(5i+3)A5A11A17A23A29)

∏
n
i=0(1+(5i+4)A5A11A17A23A29)

,

x30n+21 =
A10 ∏

n
i=0(1+(5i+3)A4A10A16A22A28)

∏
n
i=0(1+(5i+4)A4A10A16A22A28)

, x30n+22 =
A9 ∏

n
i=0(1+(5i+3)A3A9A15A21A27)

∏
n
i=0(1+(5i+4)A3A9A15A21A27)

,

x30n+23 =
A8 ∏

n
i=0(1+(5i+3)A2A8A14A20A26)

∏
n
i=0(1+(5i+4)A2A8A14A20A26)

, x30n+24 =
A7 ∏

n
i=0(1+(5i+3)A1A7A13A19A25)

∏
n
i=0(1+(5i+4)A1A7A13A19A25)

,

x30n+25 =
A6 ∏

n
i=0(1+(5i+4)A6A12A18A24A30)

∏
n
i=0(1+(5i+5)A6A12A18A24A30)

, x30n+26 =
A5 ∏

n
i=0(1+(5i+4)A5A11A17A23A29)

∏
n
i=0(1+(5i+5)A5A11A17A23A29)

,

x30n+27 =
A4 ∏

n
i=0(1+(5i+4)A4A10A16A22A28)

∏
n
i=0(1+(5i+5)A4A10A16A22A28)

, x30n+28 =
A3 ∏

n
i=0(1+(5i+4)A3A9A15A21A27)

∏
n
i=0(1+(5i+5)A3A9A15A21A27)

,

x30n+29 =
A2 ∏

n
i=0(1+(5i+4)A2A8A14A20A26)

∏
n
i=0(1+(5i+5)A2A8A14A20A26)

, x30n+30 =
A1 ∏

n
i=0(1+(5i+4)A1A7A13A19A25)

∏
n
i=0(1+(5i+5)A1A7A13A19A25)

,

where, x0, . . . ,x−29 defines as in (2.2).
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Proof of Theorem 2.1. The proof of each formula are carried out in similar way. So, we will demonstrate proof using one of the formula. We
will employ the mathematical induction method. Let’s posit that, with n being greater than zero and supposing our assumption is true for
n = 1. That is,

x30n−29 =
A30 ∏

n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

, x30n−28 =
A29 ∏

n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

,

x30n−27 =
A28 ∏

n−1
i=0 (1+5iA4A10A16A22A28)

∏
n−1
i=0 (1+(5i+1)A4A10A16A22A28)

, x30n−26 =
A27 ∏

n−1
i=0 (1+5iA3A9A15A21A27)

∏
n−1
i=0 (1+(5i+1)A3A9A15A21A27)

,

x30n−25 =
A26 ∏

n−1
i=0 (1+5iA2A8A14A20A26)

∏
n−1
i=0 (1+(5i+1)A2A8A14A20A26)

, x30n−24 =
A25 ∏

n−1
i=0 (1+5iA1A7A13A19A25)

∏
n−1
i=0 (1+(5i+1)A1A7A13A19A25)

,

x30n−23 =
A24 ∏

n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

, x30n−22 =
A23 ∏

n−1
i=0 (1+(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

,

x30n−21 =
A22 ∏

n−1
i=0 (1+(5i+1)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+2)A4A10A16A22A28)

, x30n−20 =
A21 ∏

n−1
i=0 (1+(5i+1)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+2)A3A9A15A21A27)

,

x30n−19 =
A20 ∏

n−1
i=0 (1+(5i+1)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+2)A2A8A14A20A26)

, x30n−18 =
A19 ∏

n−1
i=0 (1+(5i+1)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+2)A1A7A13A19A25)

,

x30n−17 =
A18 ∏

n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

, x30n−16 =
A17 ∏

n−1
i=0 (1+(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

,

x30n−15 =
A16 ∏

n−1
i=0 (1+(5i+2)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+3)A4A10A16A22A28)

, x30n−14 =
A15 ∏

n−1
i=0 (1+(5i+2)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+3)A3A9A15A21A27)

,

x30n−13 =
A14 ∏

n−1
i=0 (1+(5i+2)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+3)A2A8A14A20A26)

, x30n−12 =
A13 ∏

n−1
i=0 (1+(5i+2)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+3)A1A7A13A19A25)

,

x30n−11 =
A12 ∏

n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

, x30n−10 =
A11 ∏

n−1
i=0 (1+(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+4)A5A11A17A23A29)

,

x30n−9 =
A10 ∏

n−1
i=0 (1+(5i+3)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+4)A4A10A16A22A28)

, x30n−8 =
A9 ∏

n−1
i=0 (1+(5i+3)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+4)A3A9A15A21A27)

,

x30n−7 =
A8 ∏

n−1
i=0 (1+(5i+3)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+4)A2A8A14A20A26)

, x30n−6 =
A7 ∏

n−1
i=0 (1+(5i+3)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+4)A1A7A13A19A25)

,

x30n−5 =
A6 ∏

n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+5)A6A12A18A24A30)

, x30n−4 =
A5 ∏

n−1
i=0 (1+(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+5)A5A11A17A23A29)

,

x30n−3 =
A4 ∏

n−1
i=0 (1+(5i+4)A4A10A16A22A28)

∏
n−1
i=0 (1+(5i+5)A4A10A16A22A28)

, x30n−2 =
A3 ∏

n−1
i=0 (1+(5i+4)A3A9A15A21A27)

∏
n−1
i=0 (1+(5i+5)A3A9A15A21A27)

,

x30n−1 =
A2 ∏

n−1
i=0 (1+(5i+4)A2A8A14A20A26)

∏
n−1
i=0 (1+(5i+5)A2A8A14A20A26)

, x30n =
A1 ∏

n−1
i=0 (1+(5i+4)A1A7A13A19A25)

∏
n−1
i=0 (1+(5i+5)A1A7A13A19A25)

.

Now, using the main (2.1), one has

x30n+1 =
x30n−29

1+ x30n−5x30n−11x30n−17x30n−23x30n−29

=

A30 ∏
n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

1+A6A12A18A24A30
∏

n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1+(5i+5)A6A12A18A24A30)

=
A30 ∏

n−1
i=0

(1+5iiA6A12A18A24A30)
(1+(5i+1)iA6A12A18A24A30)

1+5iA6A12A18A24A30 ∏
n−1
i=0

1+5iA6A12A18A24A30
1+(5i+5)A6A12A18A24A30

= A30

n−1

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)iA6A12A18A24A30

(
1

1+ A6A12A18A24A30
1+(5i−5)A6A12A18A24A30

)

= A30

n−1

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)A6A12A18A24A30

(
1+(5i−5)A6A12A18A24A30

1+(5i−4)A6A12A18A24A30

)
.

Hence, we have

x30n+1 = A30

n

∏
i=0

1+5iA6A12A18A24A30

1+(5i+1)A6A12A18A24A30
.

Similarly,
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x30n+2 =
x30n−28

1+ x30n−4x30n−10x30n−16x30n−22x30n−28

=

A29 ∏
n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

1+
A5 ∏

n−1
i=0 (1+(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+5)A5A11A17A23A29)

A11 ∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+4)A5A11A17A23A29)

A17 ∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+3)A5A11A17A23A29)

A23 ∏
n−1
i=0 (1+(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1+(5i+2)A5A11A17A23A29)

A29 ∏
n−1
i=0 (1+5iA5A11A17A23A29)

∏
n
i=0(1+(5i+1)A5A11A17A23A29)

=
A29 ∏

n−1
i=0

(1+5iA5A11A17A23A29)
(1+(5i+1)A5A11A17A23A29)

1+5iA5A11A17A23A29 ∏
n−1
i=0

1+5iA5A11A17A23A29
1+(5i+5)A5A11A17A23A29

= A29

n−1

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)A5A11A17A23A29

(
1

1+ 5iA5A11A17A23A29
1+(5i−5)A5A11A17A23A29

)

= A29

n−1

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)A5A11A17A23A29

(
1+(5i−5)A5A11A17A23A29

1+(5i−4)A5A11A17A23A29

)
.

Therefore, we have

x30n+2 = A29

n

∏
i=0

1+5iA5A11A17A23A29

1+(5i+1)iA5A11A17A23A29
.

Additional relationships can be acquired in the same way, thereby completing the proof.

Theorem 2.2. The equation (2.1) has a unique equilibrium point which is the number zero and this equilibrium is not locally asymptotically
stable. Also x is non hyperbolic.

Proof of Theorem 2.2. For the equilibriums of equation (2.1), we have

x =
x

1+ x5
,

then

x+ x6 = x, x6 = 0.

In consequence, the equilibrium point of (2.1), is x = 0.
Consider f : (0,∞)5→ (0,∞) as the function defined by

f (ξ ,ν ,ρ,χ,κ) =
ξ

1+ξ νρχκ
.

Therefore, it is deduced that,

fξ (ξ ,ν ,ρ,χ,κ) =
1

(1+ξ νρχκ)2 , fν (ξ ,ν ,ρ,χ,κ) =
−ξ 2ρχα

(1+ξ νρχκ)2
, fρ (ξ ,ν ,ρ,χ,κ) =

−ξ 2νχκ

(1+ξ νρχκ)2
,

fχ (ξ ,ν ,ρ,χ,κ) =
−ξ 2νρκ

(1+ξ νρχκ)2
, fκ (ξ ,ν ,ρ,χ,κ) =

−ξ 2νχρ

(1+ξ νρχκ)2
.

We see that,

fξ (x,x,x,x,x) = 1, fν (x,x,x,x,x) = 0, fρ (x,x,x,x,x) = 0, fχ (x,x,x,x,x) = 0, fκ (x,x,x,x,x) = 0.

The proof now follows by using Theorem 2.1.

3. Solution of the Difference Equation xn+1 =
xn−29

1−xn−5xn−11xn−17xn−23xn−29

In this part, we furnish a specific pattern for the solutions of the difference equation given, assuming that the initial conditions are arbitrary
real numbers, where, x0, . . . ,x−29 defines as in (2.2)

xn+1 =
xn−29

1− xn−5xn−11xn−17xn−23xn−29
. (3.1)
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Theorem 3.1. Let’s {xn}∞
n=−29 be a solution of equation (3.1). Accordingly,

x30n+1 =
A30 ∏

n
i=0(1−5iA6A12A18A24A30)

∏
n
i=0(1− (5i+1)A6A12A18A24A30)

, x30n+2 =
A29 ∏

n
i=0(1−5iA5A11A17A23A29)

∏
n
i=0(1− (5i+1)A5A11A17A23A29)

,

x30n+3 =
A28 ∏

n
i=0(1−5iA4A10A16A22A28)

∏
n
i=0(1+(5i+1)A4A10A16A22A28)

, x30n+4 =
A27 ∏

n
i=0(1−5iA3A9A15A21A27)

∏
n
i=0(1+(5i+1)A3A9A15A21A27)

,

x30n+5 =
A26 ∏

n
i=0(1−5iA2A8A14A20A26)

∏
n
i=0(1− (5i+1)A2A8A14A20A26)

, x30n+6 =
A25 ∏

n
i=0(1−5iA1A7A13A19A25)

∏
n
i=0(1− (5i+1)A1A7A13A19A25)

,

x30n+7 =
A24 ∏

n
i=0(1− (5i+1)A6A12A18A24A30)

∏
n
i=0(1− (5i+2)A6A12A18A24A30)

, x30n+8 =
A23 ∏

n
i=0(1− (5i+1)A5A11A17A23A29)

∏
n
i=0(1− (5i+2)A5A11A17A23A29)

,

x30n+9 =
A22 ∏

n
i=0(1− (5i+1)A4A10A16A22A28)

∏
n
i=0(1− (5i+2)A4A10A16A22A28)

, x30n+10 =
A21 ∏

n
i=0(1− (5i+1)A3A9A15A21A27)

∏
n
i=0(1− (5i+2)A3A9A15A21A27)

,

x30n+11 =
A20 ∏

n
i=0(1− (5i+1)A2A8A14A20A26)

∏
n
i=0(1− (5i+2)A2A8A14A20A26)

, x30n+12 =
A19 ∏

n
i=0(1− (5i+1)A1A7A13A19A25)

∏
n
i=0(1− (5i+2)A1A7A13A19A25)

,

x30n+13 =
A18 ∏

n
i=0(1− (5i+2)A6A12A18A24A30)

∏
n
i=0(1− (5i+3)A6A12A18A24A30)

, x30n+14 =
A17 ∏

n
i=0(1− (5i+2)A5A11A17A23A29)

∏
n
i=0(1− (5i+3)A5A11A17A23A29)

,

x30n+15 =
A16 ∏

n
i=0(1− (5i+2)A4A10A16A22A28)

∏
n
i=0(1− (5i+3)A4A10A16A22A28)

, x30n+16 =
A15 ∏

n
i=0(1− (5i+2)A3A9A15A21A27)

∏
n
i=0(1− (5i+3)A3A9A15A21A27)

,

x30n+17 =
A14 ∏

n
i=0(1− (5i+2)A2A8A14A20A26)

∏
n
i=0(1− (5i+3)A2A8A14A20A26)

, x30n+18 =
A13 ∏

n
i=0(1− (5i+2)A1A7A13A19A25)

∏
n
i=0(1− (5i+3)A1A7A13A19A25)

,

x30n+19 =
A12 ∏

n
i=0(1− (5i+3)A6A12A18A24A30)

∏
n
i=0(1− (5i+4)A6A12A18A24A30)

, x30n+20 =
A11 ∏

n
i=0(1− (5i+3)A5A11A17A23A29)

∏
n
i=0(1− (5i+4)A5A11A17A23A29)

,

x30n+21 =
A10 ∏

n
i=0(1− (5i+3)A4A10A16A22A28)

∏
n
i=0(1− (5i+4)A4A10A16A22A28)

, x30n+22 =
A9 ∏

n
i=0(1− (5i+3)A3A9A15A21A27)

∏
n
i=0(1− (5i+4)A3A9A15A21A27)

,

x30n+23 =
A8 ∏

n
i=0(1− (5i+3)A2A8A14A20A26)

∏
n
i=0(1− (5i+4)A2A8A14A20A26)

, x30n+24 =
A7 ∏

n
i=0(1− (5i+3)A1A7A13A19A25)

∏
n
i=0(1− (5i+4)A1A7A13A19A25)

,

x30n+25 =
A6 ∏

n
i=0(1− (5i+4)A6A12A18A24A30)

∏
n
i=0(1− (5i+5)A6A12A18A24A30)

, x30n+26 =
A5 ∏

n
i=0(1− (5i+4)A5A11A17A23A29)

∏
n
i=0(1− (5i+5)A5A11A17A23A29)

,

x30n+27 =
A4 ∏

n
i=0(1− (5i+4)A4A10A16A22A28)

∏
n
i=0(1− (5i+5)A4A10A16A22A28)

, x30n+28 =
A3 ∏

n
i=0(1− (5i+4)A3A9A15A21A27)

∏
n
i=0(1− (5i+5)A3A9A15A21A27)

,

x30n+29 =
A2 ∏

n
i=0(1− (5i+4)A2A8A14A20A26)

∏
n
i=0(1− (5i+5)A2A8A14A20A26)

, x30n+30 =
A1 ∏

n
i=0(1− (5i+4)A1A7A13A19A25)

∏
n
i=0(1− (5i+5)A1A7A13A19A25)

,

holds.

Proof of Theorem 3.1. Let’s suppose that n is greater than 0, and our assumption remains valid for n=1. That is,

x30n−29 =
A30 ∏

n−1
i=0 (1−5iA6A12A18A24A30)

∏
n−1
i=0 (1− (5i+1)A6A12A18A24A30)

, x30n−28 =
A29 ∏

n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1− (5i+1)A5A11A17A23A29)

,

x30n−27 =
A28 ∏

n−1
i=0 (1−5iA4A10A16A22A28)

∏
n−1
i=0 (1− (5i+1)A4A10A16A22A28)

, x30n−26 =
A27 ∏

n−1
i=0 (1−5iA3A9A15A21A27)

∏
n−1
i=0 (1− (5i+1)A3A9A15A21A27)

,

x30n−25 =
A26 ∏

n−1
i=0 (1−5iA2A8A14A20A26)

∏
n−1
i=0 (1− (5i+1)A2A8A14A20A26)

, x30n−24 =
A25 ∏

n−1
i=0 (1−5iA1A7A13A19A25)

∏
n−1
i=0 (1− (5i+1)A1A7A13A19A25)

,

x30n−23 =
A24 ∏

n−1
i=0 (1− (5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+2)A6A12A18A24A30)

, x30n−22 =
A23 ∏

n−1
i=0 (1− (5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+2)A5A11A17A23A29)

,

x30n−21 =
A22 ∏

n−1
i=0 (1− (5i+1)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+2)A4A10A16A22A28)

, x30n−20 =
A21 ∏

n−1
i=0 (1− (5i+1)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+2)A3A9A15A21A27)

,

x30n−19 =
A20 ∏

n−1
i=0 (1− (5i+1)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+2)A2A8A14A20A26)

, x30n−18 =
A19 ∏

n−1
i=0 (1− (5i+1)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+2)A1A7A13A19A25)

,

x30n−17 =
A18 ∏

n−1
i=0 (1− (5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+3)A6A12A18A24A30)

, x30n−16 =
A17 ∏

n−1
i=0 (1− (5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+3)A5A11A17A23A29)

,

x30n−15 =
A16 ∏

n−1
i=0 (1− (5i+2)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+3)A4A10A16A22A28)

, x30n−14 =
A15 ∏

n−1
i=0 (1− (5i+2)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+3)A3A9A15A21A27)

,

x30n−13 =
A14 ∏

n−1
i=0 (1− (5i+2)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+3)A2A8A14A20A26)

, x30n−12 =
A13 ∏

n−1
i=0 (1− (5i+2)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+3)A1A7A13A19A25)

,
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x30n−11 =
A12 ∏

n−1
i=0 (1− (5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+4)A6A12A18A24A30)

, x30n−10 =
A11 ∏

n−1
i=0 (1− (5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+4)A5A11A17A23A29)

,

x30n−9 =
A10 ∏

n−1
i=0 (1− (5i+3)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+4)A4A10A16A22A28)

, x30n−8 =
A9 ∏

n−1
i=0 (1− (5i+3)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+4)A3A9A15A21A27)

,

x30n−7 =
A8 ∏

n−1
i=0 (1− (5i+3)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+4)A2A8A14A20A26)

, x30n−6 =
A7 ∏

n−1
i=0 (1− (5i+3)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+4)A1A7A13A19A25)

,

x30n−5 =
A6 ∏

n−1
i=0 (1− (5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1− (5i+5)A6A12A18A24A30)

, x30n−4 =
A5 ∏

n−1
i=0 (1− (5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1− (5i+5)A5A11A17A23A29)

,

x30n−3 =
A4 ∏

n−1
i=0 (1− (5i+4)A4A10A16A22A28)

∏
n−1
i=0 (1− (5i+5)A4A10A16A22A28)

, x30n−2 =
A3 ∏

n−1
i=0 (1− (5i+4)A3A9A15A21A27)

∏
n−1
i=0 (1− (5i+5)A3A9A15A21A27)

,

x30n−1 =
A2 ∏

n−1
i=0 (1− (5i+4)A2A8A14A20A26)

∏
n−1
i=0 (1− (5i+5)A2A8A14A20A26)

, x30n =
A1 ∏

n−1
i=0 (1− (5i+4)A1A7A13A19A25)

∏
n−1
i=0 (1− (5i+5)A1A7A13A19A25)

.

Now, using the main equation (3.1), one has

x30n+1 =
x30n−29

1− x30n−5x30n−11x30n−17x30n−23x30n−29

=

A30 ∏
n−1
i=0 (1+5iA6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

1+A6A12A18A24A30
∏

n−1
i=0 (1−5iA6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+1)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+2)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+3)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+4)A6A12A18A24A30)

∏
n−1
i=0 (1−(5i+5)A6A12A18A24A30)

=
A30 ∏

n−1
i=0

(1−5iA6A12A18A24A30)
(1−(5i+1)iA6A12A18A24A30)

1+ iA6A12A18A24A30 ∏
n−1
i=0

1−5iA6A12A18A24A30
1−(5i+5)A6A12A18A24A30

= A30

n−1

∏
i=0

1−5iA6A12A18A24A30

1− (5i+1)iA6A12A18A24A30

(
1

1− A6A12A18A24A30
1−(5i−5)A6A12A18A24A30

)

= A30

n−1

∏
i=0

1−5iA6A12A18A24A30

1− (5i+1)A6A12A18A24A30

(
1− (5i−5)A6A12A18A24A30

1− (5i−4)A6A12A18A24A30

)
.

Hence, we have

x30n+1 =
A30 ∏

n
i=0(1−5iA6A12A18A24A30)

∏
n
i=0(1− (5i+1)A6A12A18A24A30)

.

Similarly,

x30n+2 =
x30n−28

1− x30n−4x30n−10x30n−16x30n−22x30n−28

=

A29 ∏
n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1−(5i+1)A5A11A17A23A29)

1+
A5 ∏

n−1
i=0 (1−(5i+4)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+5)A5A11A17A23A29)

A11 ∏
n−1
i=0 (1−(5i+3)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+4)A5A11A17A23A29)

A17 ∏
n−1
i=0 (1−(5i+2)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+3)A5A11A17A23A29)

A23 ∏
n−1
i=0 (1−(5i+1)A5A11A17A23A29)

∏
n−1
i=0 (1−(5i+2)A5A11A17A23A29)

A29 ∏
n−1
i=0 (1−5iA5A11A17A23A29)

∏
n
i=0(1−(5i+1)A5A11A17A23A29)

=
A29 ∏

n−1
i=0

(1−5iA5A11A17A23A29)
(1−(5i+1)A5A11A17A23A29)

1+5iA5A11A17A23A29 ∏
n−1
i=0

1−5iA5A11A17A23A29
1−(5i+5)A5A11A17A23A29

= A29

n−1

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)A5A11A17A23A29

(
1

1− 5iA5A11A17A23A29
1−(5i+1)A5A11A17A23A29

)

= A29

n−1

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)A5A11A17A23A29

(
1− (5i−5)A5A11A17A23A29

1− (5i−4)A5A11A17A23A29

)
.

Therefore, we have

x30n+2 = A29

n

∏
i=0

1−5iA5A11A17A23A29

1− (5i+1)iA5A11A17A23A29
.

In a similar way, it is readily achieved in extra relationships.

Theorem 3.2. In (3.1) there is a unique equilibrium point located at x = 0, yet it does not fulfill the criteria for local asymptotic stability.

Proof of Theorem 3.2. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.

4. Solution of the Difference Equation xn+1 =
xn−29

−1+xn−5xn−11xn−17xn−23xn−29

In this case, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers,

xn+1 =
xn−29

−1+ xn−5xn−11xn−17xn−23xn−29
, (4.1)

where, x0, . . . ,x−29 defines as in (2.2) with x−5x−11x−17x−23x−29 6= 1, x−4x−10x−16x−22x−28 6= 1, x−3x−9x−15x−21x−27 6= 1,
x−2x−8x−14x−20x−26 6= 1, x−1x−7x−13x−19x−25 6= 1, x0x−6x−12x−18x−24 6= 1.
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Theorem 4.1. Each solution {xn}∞
n=−29 of equation (4.1) recurs every sixty units and has the structure,

x60n+1 =
A30

−1+A6A12A18A24A30
, x60n+2 =

A29

−1+A5A11A17A23A29
, x60n+3 =

A28

−1+A4A10A16A22A28
,

x60n+4 =
A27

−1+A3A9A15A21A27
, x60n+5 =

A26

−1+A2A8A14A20A26
, x60n+6 =

A25

−1+A1A7A13A19A25
,

x60n+7 = A24(−1+A6A12A18A24A30) , x60n+8 = A23(−1+A5A11A17A23A29) , x60n+9 = A22(−1+A4A10A16A22A28) ,

x60n+10 = A21(−1+A3A9A15A21A27) , x60n+11 = A20(−1+A2A8A14A20A26) , x60n+12 = A19(−1+A1A7A13A19A25) ,

x60n+13 =
A18

−1+A6A12A18A24A30
, x60n+14 =

A17

−1+A5A11A17A23A29
, x60n+15 =

A16

−1+A4A10A16A22A28
,

x60n+16 =
A15

−1+A3A9A15A21A27
, x60n+17 =

A14

−1+A2A8A14A20A26
, x60n+18 =

A13

−1+A1A7A13A19A25
,

x60n+19 = A12(−1+A6A12A18A24A30) , x60n+20 = A11(−1+A5A11A17A23A29) , x60n+21 = A10(−1+A4A10A16A22A28) ,

x60n+22 = A9(−1+A3A9A15A21A27) , x60n+23 = A8(−1+A2A8A14A20A26) , x60n+24 = A7(−1+A1A7A13A19A25) ,

x60n+25 =
A6

−1+A6A12A18A24A30
, x60n+26 =

A5

−1+A5A11A17A23A29
, x60n+27 =

A4

−1+A4A10A16A22A28
,

x60n+28 =
A3

−1+A3A9A15A21A27
, x60n+29 =

A2

−1+A2A8A14A20A26
, x60n+30 =

A1

−1+A1A7A13A19A25
,

x60n+31 = A30, x60n+32 = A29, x60n+33 = A28, x60n+34 = A27, x60n+35 = A26, x60n+36 = A25, x60n+37 = A24,

x60n+38 = A23, x60n+39 = A22, x60n+40 = A21, x60n+41 = A20, x60n+42 = A19, x60n+43 = A18, x60n+44 = A17,

x60n+45 = A16, x60n+46 = A15, x60n+47 = A14, x60n+48 = A13, x60n+49 = A12, x60n+50 = A11, x60n+51 = A10,

x60n+52 = A9, x60n+53 = A8, x60n+54 = A7, x60n+55 = A6, x60n+56 = A5, x60n+57 = A4, x60n+58 = A3,

x60n+59 = A2, x60n+60 = A1.

The solutions consist of 60 periods.

Proof of Theorem 4.1. Suppose,

x60n−59 =
A30

−1+A6A12A18A24A30
, x60n−58 =

A29

−1+A5A11A17A23A29
, x60n−57 =

A28

−1+A4A10A16A22A28
,

x60n−56 =
A27

−1+A3A9A15A21A27
, x60n−55 =

A26

−1+A2A8A14A20A26
, x60n−54 =

A25

−1+A1A7A13A19A25
,

x60n−53 = A24(−1+A6A12A18A24A30) , x60n−52 = A23(−1+A5A11A17A23A29) , x60n−51 = A22(−1+A4A10A16A22A28) ,

x60n−50 = A21(−1+A3A9A15A21A27) , x60n−49 = A20(−1+A2A8A14A20A26) , x60n−48 = A19(−1+A1A7A13A19A25) ,

x60n−47 =
A18

−1+A6A12A18A24A30
, x60n−46 =

A17

−1+A5A11A17A23A29
, x60n−45 =

A16

−1+A4A10A16A22A28
,

x60n−44 =
A15

−1+A3A9A15A21A27
, x60n−43 =

A14

−1+A2A8A14A20A26
, x60n−42 =

A13

−1+A1A7A13A19A25
,

x60n−41 = A12(−1+A6A12A18A24A30) , x60n−40 = A11(−1+A5A11A17A23A29) , x60n−39 = A10(−1+A4A10A16A22A28) ,

x60n−38 = A9(−1+A3A9A15A21A27) , x60n−37 = A8(−1+A2A8A14A20A26) , x60n−36 = A7(−1+A1A7A13A19A25) ,

x60n−35 =
A6

−1+A6A12A18A24A30
, x60n−34 =

A5

−1+A5A11A17A23A29
, x60n−33 =

A4

−1+A4A10A16A22A28
,

x60n−32 =
A3

−1+A3A9A15A21A27
, x60n−31 =

A2

−1+A2A8A14A20A26
, x60n−30 =

A1

−1+A1A7A13A19A25
,

x60n−29 = A30, x60n−28 = A29, x60n−27 = A28, x60n−26 = A27, x60n−25 = A26, x60n−24 = A25, x60n−23 = A24,

x60n−22 = A23, x60n−21 = A22, x60n−20 = A21, x60n−19 = A20, x60n−18 = A19, x60n−17 = A18, x60n−16 = A17,

x60n−15 = A16, x60n−14 = A15, x60n−13 = A14, x60n−12 = A13, x60n−11 = A12, x60n−10 = A11, x60n−9 = A10,

x60n−8 = A9, x60n−7 = A8, x60n−6 = A7, x60n−5 = A6, x60n−4 = A5, x60n−3 = A4, x60n−2 = A3,

x60n−1 = A2, x60n = A1.

Now, it follows from equation (4.1) that

x60n+1 =
x60n−29

−1+ x60n−5x60n−11x60n−17x60n−23x60n−29
=

A30

−1+A6A12A18A24A30
.
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Then, we have

x60n+1 =
A30

−1+A6A12A18A24A30
.

Other relation can be given by the same way.

Theorem 4.2. Equation (4.1) has three equilibrium points which 0,± 5
√

2, and these equilibrium points aren’t locally asymptotically stable.

Proof of Theorem 4. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.

5. Solution of the Difference Equation xn+1 =
xn−29

−1−xn−5xn−11xn−17xn−23xn−29

In this case, we give a specific form of the solutions of the difference equation below, provided that the initial conditions are arbitrary real
numbers,

xn+1 =
xn−29

−1− xn−5xn−11xn−17xn−23xn−29
, (5.1)

where, x0, . . . ,x−29 defines as in (2.2) with x−5x−11x−17x−23x−29 6=−1, x−4x−10x−16x−22x−28 6= 1, x−3x−9x−15x−21x−27 6=−1,
x−2x−8x−14x−20x−26 6=−1, x−1x−7x−13x−19x−25 6=−1, x0x−6x−12x−18x−24 6=−1.

Theorem 5.1. Each solution {xn}∞
n=−29 of equation (4.1) is periodic with period sixty and is of the form,

x60n+1 =
A30

−1−A6A12A18A24A30
, x60n+2 =

A29

−1−A5A11A17A23A29
, x60n+3 =

A28

−1−A4A10A16A22A28
,

x60n+4 =
A27

−1−A3A9A15A21A27
, x60n+5 =

A26

−1−A2A8A14A20A26
, x60n+6 =

A25

−1−A1A7A13A19A25
,

x60n+7 = A24(−1−A6A12A18A24A30) , x60n+8 = A23(−1−A5A11A17A23A29) , x60n+9 = A22(−1−A4A10A16A22A28) ,

x60n+10 = A21(−1−A3A9A15A21A27) , x60n+11 = A20(−1−A2A8A14A20A26) , x60n+12 = A19(−1−A1A7A13A19A25) ,

x60n+13 =
A18

−1−A6A12A18A24A30
, x60n+14 =

A17

−1−A5A11A17A23A29
, x60n+15 =

A16

−1−A4A10A16A22A28
,

x60n+16 =
A15

−1−A3A9A15A21A27
, x60n+17 =

A14

−1−A2A8A14A20A26
, x60n+18 =

A13

−1−A1A7A13A19A25
,

x60n+19 = A12(−1−A6A12A18A24A30) , x60n+20 = A11(−1−A5A11A17A23A29) , x60n+21 = A10(−1−A4A10A16A22A28) ,

x60n+22 = A9(−1−A3A9A15A21A27) , x60n+23 = A8(−1−A2A8A14A20A26) , x60n+24 = A7(−1−A1A7A13A19A25) ,

x60n+25 =
A6

−1−A6A12A18A24A30
, x60n+26 =

A5

−1−A5A11A17A23A29
, x60n+27 =

A4

−1−A4A10A16A22A28
,

x60n+28 =
A3

−1−A3A9A15A21A27
, x60n+29 =

A2

−1−A2A8A14A20A26
, x60n+30 =

A1

−1−A1A7A13A19A25
,

x60n+31 = A30, x60n+32 = A29, x60n+33 = A28, x60n+34 = A27, x60n+35 = A26, x60n+36 = A25, x60n+37 = A24,

x60n+38 = A23, x60n+39 = A22, x60n+40 = A21, x60n+41 = A20, x60n+42 = A19, x60n+43 = A18, x60n+44 = A17,

x60n+45 = A16, x60n+46 = A15, x60n+47 = A14, x60n+48 = A13, x60n+49 = A12, x60n+50 = A11, x60n+51 = A10,

x60n+52 = A9, x60n+53 = A8, x60n+54 = A7, x60n+55 = A6, x60n+56 = A5, x60n+57 = A4, x60n+58 = A3,

x60n+59 = A2, x60n+60 = A1.

The solutions consist of 60 periods.

Proof. The proof mirrors the proof of Theorem 4.1, and hence, it is not elaborated upon.

Theorem 5.2. Equation (5.1) has three equilibrium points which 0,± 5
√
−2, and these equilibrium points are not locally asymptotically

stable.

Proof. The proof follows the same procedure as the proof of Theorem 2.2, thus it is not detailed.



Universal Journal of Mathematics and Applications 119

6. Numerical Investigation

We devote this section to verifying the theoretical work obtained in this article.

Example 6.1. For Eq. 2.1 and 3.1 we consider following initial conditions.

x−29 = 3.2, x−28 = 3.3, x−27 = 3.4, x−26 = 3.5, x−25 = 3.6, x−24 = 3.7,

x−23 = 3.8, x−22 = 3.9, x−21 = 4, x−20 = 4.1, x−19 = 4.2, x−18 = 4.3,

x−17 = 4.4, x−16 = 4.5, x−15 = 4.6, x−14 = 4.7, x−13 = 4.8, x−12 = 4.9,

x−11 = 5, x−10 = 5.1, x−9 = 5.2, x−8 = 5.3, x−7 = 5.4, x−6 = 5.5,

x−5 = 5.6, x−4 = 5.7, x−3 = 5.8, x−2 = 5.9, x−1 = 6.1, x0 = 6.

Example 6.2. For Eq. 4.1 and 5.1 we consider following initial conditions.

x−29 = 0.32, x−28 = 0.33, x−27 = 0.34, x−26 = 0.35, x−25 = 0.36, x−24 = 0.37,

x−23 = 0.38, x−22 = 0.39, x−21 = 0.4, x−20 = 0.41, x−19 = 0.42, x−18 = 0.43,

x−17 = 0.44, x−16 = 0.45, x−15 = 0.46, x−14 = 0.47, x−13 = 0.48, x−12 = 0.49,

x−11 = 0.5, x−10 = 0.51, x−9 = 0.52, x−8 = 0.53 x−7 = 0.54, x−6 = 0.55,

x−5 = 0.56, x−4 = 0.57, x−3 = 0.58, x−2 = 0.59, x−1 = 0.61, x0 = 0.6.
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Figure 6.1: Plot illustrates the stability of Eq. 2.1
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Figure 6.2: Plot illustrates the stability of Eq. 3.1
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Figure 6.3: Plot illustrates the stability of Eq. 4.1
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Figure 6.4: Plot illustrates the stability of Eq. 5.1

7. Conclusion

This article extensively explores the qualitative behaviors of difference equations. It effectively examines local stability, periodicity,
oscillation, and solutions. Traditional iteration methods are employed to derive exact solutions for the relevant equations.
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