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Abstract— Skin cancer is a disease characterized by the uncontrolled proliferation of skin cells, typically manifesting as 

lesions or abnormal growths. Early diagnosis is critical for improving treatment outcomes. This study proposes an 

innovative approach to skin cancer diagnosis by integrating modern deep learning models with traditional machine 

learning algorithms. A three-phase methodology was developed. In the first phase, meaningful features were extracted 

from skin lesion images using various transfer learning models, including Xception, VGG16, ResNet152V2, InceptionV3, 

InceptionResNetV2, MobileNetV2, EfficientNetB2, and DenseNet201. In the second phase, dimensionality reduction 

was performed using Principal Component Analysis (PCA). In the final phase, the reduced feature sets were classified 

using K-Nearest Neighbors (KNN) and Random Forest (RF) algorithms. Experimental results demonstrated that the 

highest accuracy of 91.28% was achieved through the combination of DenseNet201 for feature extraction, PCA for 

dimensionality reduction, and Random Forest for classification. These findings highlight the effectiveness of integrating 

transfer learning models, dimensionality reduction techniques, and machine learning algorithms in enhancing the 

accuracy of skin cancer diagnosis. 
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Cilt Kanseri Teşhisi için Hibrit Derin Öğrenme ve Makine 

Öğrenmesi Yaklaşımı

Özet— Cilt kanseri, cilt hücrelerinin kontrolsüz çoğalması sonucu ortaya çıkan ve genellikle lezyonlar veya yeni 

büyümeler olarak kendini gösteren bir hastalıktır. Erken teşhis, tedavi sonuçlarını iyileştirmek için kritik bir rol 

oynamaktadır. Bu çalışmada, modern derin öğrenme modelleri ile geleneksel makine öğrenimi algoritmalarını 

birleştirerek cilt kanseri teşhisinde yenilikçi bir yöntem sunulmaktadır. Üç aşamalı bir metodoloji geliştirilmiştir. İlk 

aşamada, cilt lezyonlarının görüntülerinden anlamlı özellikler çıkarılmış ve bu amaçla Xception, VGG16, ResNet152V2, 

InceptionV3, InceptionResNetV2, MobileNetV2, EfficientNetB2 ve DenseNet201 gibi çeşitli transfer öğrenme modelleri 

değerlendirilmiştir. İkinci aşamada, Temel Bileşen Analizi (PCA) ile özellik boyutlarının azaltılması sağlanmış ve üçüncü 

aşamada ise bu indirgenmiş özellikler, K-En Yakın Komşular (KNN) ve Rastgele Orman (RF) algoritmaları ile 

sınıflandırılmıştır. Yapılan deneyler sonucunda en yüksek doğruluk %91.28 ile DenseNet201 modelinden elde edilen 

özelliklerin PCA ile boyutlarının azaltılarak RF algoritması ile sınıflandırılmasıyla elde edilmiştir. Bu bulgular, transfer 

öğrenme modelleri ile yapılan özellik çıkarma işlemlerinin, PCA ile boyut azaltmanın ve makine öğrenmesi 

algoritmalarının cilt kanseri teşhisinde yüksek performans sağladığını göstermektedir. 
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1. INTRODUCTION 

The number of cancer patients continues to increase due to 

factors such as rising radiation exposure, environmental 

changes, viruses, and shifts in dietary habits [1]. Skin 

cancer emerges as a neoplastic growth resulting from the 

uncontrolled proliferation of cells within the skin, which is 

the body’s largest organ. Acting as a protective barrier, the 

skin covers the body's outer layers and contains structures 

like hair follicles and sweat glands [2]. Each year, 

thousands of lives are lost to skin cancer [3],[4]. Early 

diagnosis can enhance therapeutic effectiveness and 

improve survival outcomes. Patients diagnosed at an early 

stage are more likely to respond to less invasive treatments 

and achieve favorable outcomes [5]. When detected early, 

skin cancer is highly treatable, with five-year survival rates 

reaching up to 99% [6]. 

Skin cancer commonly develops in sun-exposed areas, 

particularly on the face, neck, hands, and arms. The most 

prevalent types are basal, squamous, and melanoma, each 

requiring distinct treatment approaches [7],[8]. 

Traditionally, skin cancer diagnosis relies on physical 

examination and visual assessment of lesions. However, 

these methods have limitations, including diagnostic 

variability among physicians and the inability to detect 

deeper lesions [9],[10]. Furthermore, limited access to 

specialist dermatologists, especially in developing 

countries and rural regions, can hinder early diagnosis [11]. 

Automated diagnostic systems hold great promise for the 

early detection of skin cancer. Artificial intelligence-based 

methods, such as deep learning models, can identify and 

classify skin lesions, operating independently of 

dermatologists and potentially improving diagnostic 

accuracy [12]. However, challenges remain regarding the 

integration and reliability of these systems in clinical 

practice. Their performance compared to human 

dermatologists has not yet been fully validated, and large 

datasets are required for effective training and long-term 

sustainability [13]. Several studies have demonstrated the 

success of deep learning models in detecting and 

classifying skin lesions, accelerating the diagnostic 

process, and enhancing accuracy [14]. These models are 

increasingly being used as alternatives to traditional 

methods for skin cancer diagnosis [15]. By analyzing skin 

lesions, they can identify various cancer types, contributing 

to early detection efforts [16]. Furthermore, their ability to 

function independently of dermatologists increases access 

to diagnosis, particularly for patients in remote areas. 

Research demonstrates that employing multiple deep 

learning models can significantly enhance accuracy in skin 

cancer classification, as ensemble approaches combine the 

strengths of different architectures to improve predictive 

performance [17]. In particular, transfer learning has 

emerged as a powerful technique, enabling models pre-

trained on large datasets, such as ImageNet, to be fine-

tuned for skin cancer diagnosis. This method not only 

accelerates the training process but also mitigates the issue 

of limited domain-specific data by leveraging knowledge 

from other visual recognition tasks [18]. However, the 

deployment of deep learning models in this field faces 

several challenges. The need for large, high-quality labeled 

datasets is a primary constraint, as collecting and 

annotating dermatological images requires significant 

time, financial resources, and expertise. Furthermore, 

variability in image quality and data sources—including 

differences in resolution, lighting, and skin tones—can 

affect model performance and generalizability across 

populations [13]. The scarcity of annotated datasets also 

introduces the risk of overfitting, where the model 

performs well on the training data but struggles with 

unseen data in real-world scenarios. 

The literature features numerous studies utilizing machine 

learning and deep learning techniques for skin cancer 

classification [19–21]. Garg et al. [5] proposed a 

methodology employing image processing techniques to 

detect melanoma skin cancer, integrating the ABCD rule, 

which evaluates asymmetry, border irregularity, color, and 

diameter. After performing illumination correction and 

lesion segmentation, the model achieved an accuracy of 

91.6%. Pham et al. [22] utilized deep CNNs with data 

augmentation to classify skin lesions, compiling a dataset 

from multiple sources including the ISBI Challenge, the 

ISIC Archive, and the PH2 dataset. They evaluated the 

results using classifiers such as support vector machines, 

random forests, and artificial neural networks, and 

achieved an accuracy of 89%. Remya et al. [23] developed 

a framework combining deep learning and multi-modality 

data analysis to classify skin lesions. This approach 

demonstrated significant potential for early detection and 

accurate diagnosis, showing improvements in key 

parameters like sensitivity, specificity, and accuracy 

compared to traditional methods. The model's performance 

on real-world datasets suggests strong clinical application 

potential. Fahad et al. [24] proposed a shallow CNN 

architecture that effectively classifies skin lesions with 

reduced computational resources, achieving a test accuracy 

of 98.81% on the heavily imbalanced ISIC 2020 

dermoscopic dataset. They used preprocessing and data 

augmentation techniques to remove image noise and 

balance the dataset, and compared the model's performance 

against different transfer learning models, showing 

superior speed and accuracy. Sivakumar et al. [19] 

introduced a ResNet50-based model that enhances 

accuracy through a comprehensive process including data 

acquisition, preprocessing, segmentation, feature 

extraction, and classification. The model achieved a peak 

accuracy of 94% and an F1-score of 93.9% for malignant 

melanoma detection on the ISIC dataset, demonstrating 

significant improvement over traditional methods. 

Furthermore, an application developed by the researchers 

facilitates faster and more accurate diagnosis of malignant 

melanoma. Manimurugan et al. [21] presented a novel deep 

learning architecture combining context-aware 

convolutional and recurrent neural networks (CA-CNN-

RNN) for analyzing skin cancer images. Using H&E 

stained images from the Cancer Genome Atlas database, 

the model encoded local features into high-dimensional 

representations, achieving superior performance across 
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various classification architectures such as DarkNet-53, 

VGG-19, ResNet50, and Inception. The CA-CNN-RNN 

model demonstrated superior metrics, achieving 97.14% 

accuracy, 96.49% precision, 98.21% recall, and 96.50% F1 

score. 

This study presents a three-stage methodology for 

classifying different types of skin cancer, focusing on the 

synergy between deep learning and traditional machine 

learning techniques. In the first stage, several transfer 

learning models—including Xception, VGG16, 

ResNet152V2, InceptionV3, InceptionResNetV2, 

MobileNetV2, EfficientNetB2, and DenseNet201—were 

assessed for their ability to extract meaningful features 

from skin lesion images. These models, pre-trained on 

large datasets, were leveraged to transfer learned features, 

thereby addressing the challenge of limited domain-

specific data and accelerating the training process. In the 

second stage, the features extracted from the best-

performing transfer learning model were processed 

through PCA for dimensionality reduction. PCA helps 

retain essential information while reducing the feature 

space, which mitigates the risk of overfitting and decreases 

the computational burden during classification. Finally, in 

the third stage, the reduced feature set was classified using 

two machine learning algorithms: KNN and RF. KNN, 

known for its simplicity and effectiveness in classification 

tasks, offers robust performance when the dimensionality 

is reduced. RF, on the other hand, provides high flexibility 

and resilience against overfitting through its ensemble-

based structure. 

3. MATERIAL AND METHODS 

This section provides a detailed description of the datasets, 

proposed methodology, training procedures, and 

evaluation metrics employed in this study. The goal is to 

ensure transparency and reproducibility of the research 

process. First, the dataset used for model training and 

testing is introduced, including its structure and class 

distribution. Following this, the proposed hybrid approach, 

which integrates transfer learning models with traditional 

machine learning algorithms, is explained in detail. The 

training details, such as hyperparameters, batch sizes, 

learning rates, and training epochs, are also discussed. 

Finally, the performance metrics used to evaluate the 

effectiveness of the models—such as accuracy, precision, 

recall, and F1-score—are outlined, providing a 

comprehensive view of the evaluation criteria used to 

assess the classification performance. 

3.1.  Dataset 

The dataset utilized in this study was obtained from the 

Kaggle online platform, provided by the International Skin 

Imaging Collaboration (ISIC), a global initiative dedicated 

to advancing melanoma diagnosis. The images used in this 

research are available at Kaggle: 

https://www.kaggle.com/fanconic/skin-cancer-malignant-

vs-benign . The ISIC Archive is recognized as the most 

extensive public repository of dermoscopic images of skin 

lesions, with all images undergoing rigorous quality 

control to ensure consistency and reliability. The dataset 

comprises 1440 images of benign skin lesions and 1197 

images of malignant lesions, all standardized to a 

resolution of 224x224 pixels to ensure compatibility with 

deep learning models. For this study, the dataset was 

divided into separate training and test sets. The training set 

contains 1440 benign and 1197 malignant lesion images, 

yielding a total of 2637 images. The test set consists of 360 

benign and 300 malignant images, amounting to 660 

images. Additionally, 10% of the training data was 

randomly selected and reserved as a validation set to 

monitor the model’s performance during training and 

prevent overfitting. Figure 1 presents the distribution of 

benign and malignant lesions in the training set, while 

Figure 2 illustrates the class proportions in the dataset. This 

carefully curated dataset ensures that the models are trained 

and evaluated on high-quality, balanced data, contributing 

to reliable and meaningful classification outcomes. 

 

Figure 1. Distribution of benign and malignant lesion 

images in the training set. The bar chart shows that the 

training set consists of 1440 benign images and 1197 

malignant images, highlighting the slight class imbalance 

present in the dataset. 

 

 

Figure 2. Proportional distribution of benign and malignant 

lesion images in the training set. The pie chart illustrates 

that 54.7% of the images represent benign lesions, while 

45.3% correspond to malignant lesions. 

Figure 3 provides representative sample images from the 

dataset, illustrating both benign and malignant skin lesions. 

https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
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Figure 3: Randomly Selected Benign and Malignant 

Images from the Dataset 

3.1.  Proposed Approach 

This section presents a detailed explanation of the proposed 

methodology, which integrates transfer learning models 

with traditional machine learning algorithms to classify 

skin cancer. The approach combines the strengths of both 

techniques, leveraging deep learning for feature extraction 

and machine learning for effective classification. The 

proposed framework utilizes a combination of feature 

extraction through deep learning models, dimensionality 

reduction techniques, and machine learning classifiers to 

enhance classification performance. The following 

subsections provide a comprehensive overview of each 

component and the workflow involved, highlighting the 

steps taken to ensure optimal model performance and 

generalization. 

Initially, the DenseNet201 model was employed to extract 

meaningful features from the skin lesion images. This 

deep-learning architecture was selected due to its proven 

ability to capture complex patterns and fine-grained 

details, which are essential for differentiating between 

benign and malignant skin lesions. In this context, the 

DenseNet201 model performs a series of convolutional 

operations on the input image, denoted as 𝑥, to generate a 

comprehensive feature representation. The output of the 

DenseNet201 model consists of a feature vector that 

encapsulates the relevant information extracted from each 

image, providing a lower-dimensional representation 

suitable for further processing. Each element within the 

feature vector corresponds to a distinct characteristic or 

pattern identified in the image during the feature extraction 

process. This process is represented mathematically as the 

function 𝐹(𝑥), where 𝑥 refers to the input image. 

𝐹(𝑥) = [𝑓1, 𝑓2, … , 𝑓𝑛]      (1) 

Where 𝐹(𝑥) denotes the extracted feature vector, with 

[𝑓1, 𝑓2, … , 𝑓𝑛] representing the individual features. Each 𝑓𝑖 

(where i=0, 1, 2, …, n) is a numerical value that captures a 

specific attribute of the input image. This feature vector 

serves as a crucial input for subsequent stages, such as 

dimensionality reduction and classification, facilitating 

accurate and efficient diagnosis of skin cancer. 

Secondly, the PCA method was applied to reduce the 

dimensionality of the obtained feature vectors. PCA 

performs dimensionality reduction by performing principal 

component analysis on the feature vectors. Accordingly, 

the covariance matrix 𝐶 of the feature vector is computed, 

and transformation is carried out based on the eigenvalues 

and eigenvectors of this matrix. These operations are 

provided mathematically in Equations 2, 3, and 4. 

𝐶 =  
1

𝑛
(𝑋 − �̅�)𝑇(𝑋 − �̅�)     (2) 

Where 𝐶 represents the covariance matrix of the feature 

vector, 𝐹(𝑥) denotes the data matrix formed by feature 

vectors, and �̅� represents the mean of the feature vectors. 

𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖     (3) 

Where 𝑣𝑖 represents the eigenvectors, forming the 

principal components of the PCA transformation, 𝜆𝑖 

denotes the eigenvalues determining the significance of the 

eigenvectors, and 𝑍 represents the matrix of newly 

obtained feature vectors after dimensionality reduction. 

𝑍 =  𝑋𝑣𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
    (4)  

After dimensionality reduction, feature vectors are 

classified using the RF classifier. RF operates by 

constructing multiple decision trees during training and 

outputting the mode of the classes for classification. For 

each new example, every decision tree within the forest 

independently provides a classification. The final class is 

then determined by taking the majority vote across all trees, 

meaning the class predicted by the most trees becomes the 

overall prediction. Mathematically, this process is 

expressed as: 

𝑦 = 𝑚𝑜𝑑𝑒(𝑦𝑡𝑟𝑒𝑒𝑠)      (5) 

Where 𝑦 represents the predicted class of the new example, 

𝑦𝑡𝑟𝑒𝑒𝑠 denotes the set of class predictions from all decision 

trees in the forest, and the mode operator indicates the most 

frequently occurring value among these predictions. 

3.1.  Metrics 

The performance of the proposed skin cancer classification 

model was assessed using several key metrics to evaluate 

its accuracy, reliability, and ability to distinguish between 

benign and malignant lesions. The following metrics were 

employed to ensure a comprehensive performance 

evaluation: 

Accuracy represents the overall effectiveness of the model 

by calculating the percentage of correctly classified cases 

among all predictions. For skin cancer classification, it 

reflects how well the model identifies both benign and 

malignant lesions accurately. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)   (6) 
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Precision measures the proportion of true malignant cases 

among all instances predicted as malignant. In skin cancer 

diagnosis, a high precision rate ensures that the model 

minimizes false positives, reducing unnecessary patient 

anxiety and avoiding unnecessary biopsies or treatments. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)              (7) 

Recall, also known as sensitivity, reflects the model’s 

ability to correctly identify all malignant lesions. In the 

context of skin cancer, recall is crucial as missing a 

malignant case (false negative) could delay treatment, 

potentially worsening patient outcomes. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)               (8) 

The F1 Score provides a balance between precision and 

recall, making it an important metric in scenarios where 

class imbalance exists, such as in the skin cancer dataset. 

A high F1 Score ensures that the model performs well in 

both identifying true positives and minimizing false 

positives. 

F1 Score = 2 × (Precision × Recall) / (Precision + Recall)     (9) 

The Area Under the Curve (AUC) of the Receiver 

Operating Characteristic (ROC) curve evaluates the 

model’s capability to distinguish between benign and 

malignant lesions across different thresholds. A high AUC 

value indicates that the model is effective in differentiating 

between the two classes, which is essential for reliable skin 

cancer diagnosis. 

3.1. Training details 

The training process for the skin cancer classification 

model was configured with several key hyperparameters to 

ensure optimal performance. All input images were resized 

to 224x224 pixels and normalized by scaling pixel values 

to the range [0, 1] (1/255.0) to facilitate faster convergence. 

The Adam optimizer was employed for weight updates due 

to its adaptive learning rate and ability to handle sparse 

gradients effectively. As the task involved binary 

classification, binary cross-entropy was used as the loss 

function to measure the discrepancy between predicted 

probabilities and true labels. The model was trained for a 

maximum of 100 epochs with a batch size of 32, balancing 

training speed and memory efficiency. To prevent 

overfitting, early stopping with a patience value of 6 was 

applied, meaning the training process stopped if the 

validation performance failed to improve for six 

consecutive epochs. Table 1 shows the hyperparameters 

used in the training phase of Transfer learning models used 

as feature extractors. 

 

 

 

Figure 4: The proposed architecture involves several stages. Initially, preprocessing was applied to the images before 

training. The DenseNet201 model was then used to extract relevant features. Following this, the most significant feature 

vectors were selected using the PCA dimensionality reduction algorithm. Finally, the RF algorithm was employed to 

classify the reduced feature set 

 

Table 1: Hyperparameters 

Hyperparameters Value 

Image size 224x224 

Normalization Yes (1/255.0) 

Optimization Algorithm Adam 

Early Stopping Yes (Patience: 6) 

Epoch  100 

Batch Size 32 

Loss Function Binary cross entropy 

 

4. EXPERİMENT AND RESULTS 

This section presents the experimental results obtained 

using the proposed approach. The experiments were 

conducted with several popular transfer learning models, 

including Xception, VGG16, ResNet152V2, InceptionV3, 

InceptionResNetV2, MobileNetV2, EfficientNetB2, and 

DenseNet201, to evaluate their performance in classifying 

benign and malignant skin lesions. During preprocessing, 

only normalization (scaling pixel values to the range [0,1]) 

was applied, without the use of any additional 

preprocessing or data augmentation techniques. Feature 

extraction was performed using the selected transfer 
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learning models, where only the output layer with a 

sigmoid activation function was utilized, with no 

additional hidden layers added. Binary cross-entropy was 

employed as the loss function for optimization. A 10% 

subset of the training data was reserved for validation, 

while the images designated for testing, as outlined in the 

dataset section, were used for the final evaluation. The 

summarized performance metrics of each model are 

presented in Table 2. 

Among all the models, DenseNet201 delivered the best 

performance, achieving a test accuracy of 90.61%, an F1 

Score of 90.60%, and an AUC of 90.50%. This model’s 

superior performance can be attributed to its architecture, 

which effectively captures complex features through 

densely connected layers, making it highly suitable for 

differentiating between benign and malignant skin lesions. 

Additionally, DenseNet201 maintained a well-balanced 

performance between precision (90.60%) and recall 

(90.61%), indicating that it effectively identified malignant 

cases without generating an excessive number of false 

positives. 

The Xception model also demonstrated strong 

performance, with a test accuracy of 86.97% and an F1 

Score of 86.98%, making it the second-best model in the 

study. The high accuracy of Xception reflects its ability to 

capture spatial and abstract features efficiently, 

contributing to reliable classification results. Similarly, 

ResNet152V2 performed well, achieving 86.52% 

accuracy, closely trailing Xception. Both models’ high F1 

Scores (86.98% and 86.49%) confirm their suitability for 

skin cancer classification tasks. 

Other models, such as InceptionV3, VGG16, and 

InceptionResNetV2, produced moderate performance with 

test accuracies ranging between 81.52% and 85.00%. 

While these models demonstrated acceptable precision and 

recall values, their overall performance was slightly 

inferior to that of DenseNet201 and Xception. These 

results suggest that while these models are effective in 

identifying patterns in skin lesions, they may not generalize 

as well to unseen data compared to more advanced 

architectures like DenseNet201. 

MobileNetV2 and EfficientNetB2 performed poorly, 

failing to achieve satisfactory results. MobileNetV2, with 

a test accuracy of 57.42%, exhibited poor generalization, 

as reflected in its low F1 Score of 44.65%. Although its 

precision (76.09%) was relatively high, this model failed 

to maintain adequate recall, leading to an imbalanced 

classification performance. EfficientNetB2 demonstrated 

even weaker performance, with an accuracy of 54.55% and 

a precision of only 29.75%, despite achieving a recall of 

54.55%. The low F1 Score (38.50%) indicates that 

EfficientNetB2 was not well-suited for this classification 

task.  Figure 5 presents the loss and accuracy graphs for 

DenseNet201, the model that achieved the highest 

performance in this study. In contrast, Figure 6 displays the 

loss and accuracy graphs for EfficientNetB2, which 

demonstrated the lowest performance. These graphs 

provide insights into the training process of both models, 

highlighting DenseNet201's superior ability to converge 

effectively and achieve high accuracy while illustrating the 

challenges faced by EfficientNetB2 in learning from the 

dataset. Figure 7 illustrates the ROC curve for the 

DenseNet201 model, which provides a visual 

representation of the model's ability to distinguish between 

benign and malignant skin lesions at various threshold 

settings. The area under the curve (AUC) indicates the 

overall effectiveness of the model in terms of sensitivity 

and specificity. A higher AUC suggests better performance 

in correctly classifying positive and negative instances. 

Figure 8 shows the confusion matrix, which details the 

model’s classification outcomes by comparing the 

predicted labels with the actual labels. The matrix provides 

insight into the number of true positives, true negatives, 

false positives, and false negatives, allowing for a more 

detailed evaluation of the model's accuracy and error 

distribution. 

In summary, the experimental results highlight that 

DenseNet201 outperformed all other models, providing the 

most accurate and balanced classification performance. In 

contrast, MobileNetV2 and EfficientNetB2 were less 

effective, suggesting that lightweight architectures may 

struggle with the complexities of skin cancer detection. 

These findings underscore the importance of selecting 

robust deep learning models, such as DenseNet201, for 

tasks requiring high precision and reliability in medical 

diagnostic.

Table 2: Performance Results of Transfer Learning Models 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%) 

Xception 86.97 87.02 86.97 86.98 86.97 

VGG16 81.52 84.41 81.52 81.40 82.61 

ResNet152V2 86.52 86.51 86.52 86.49 86.25 

InceptionV3 84.55 84.78 84.55 84.43 83.94 

InceptionResNetV2 85.00 86.02 85.00 84.74 84.03 

MobileNetV2 57.42 76.09 57.42 44.65 53.17 

DenseNet201 90.61 90.60 90.61 90.60 90.50 

EfficientNetB2 54.55 29.75 54.55 38.50 50.00 
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The performance of deep learning models is largely 

influenced by their ability to capture and learn complex 

patterns within the data. While these models excel at 

extracting deep features, the resulting high-dimensional 

feature space often leads to increased computational 

demands, making model training both time-consuming and 

resource-intensive. To mitigate these challenges, 

dimensionality reduction techniques like PCA are 

employed. PCA reduces the number of features by 

identifying the most significant components that preserve 

the essential variability in the data, thereby enabling more 

efficient and faster processing. 

In the second phase of the experimental studies, rather than 

directly training transfer learning models—which can be 

computationally expensive and time-consuming—features 

were first extracted using the DenseNet201 model. 

DenseNet201 was selected based on its superior 

performance in earlier experiments, as it demonstrated the 

best classification accuracy and balance across key metrics. 

The high-dimensional features obtained from this model 

were then subjected to dimensionality reduction using PCA 

to minimize complexity without losing critical 

information. 

After reducing the feature set with PCA, two machine 

learning algorithms, KNN and RF, were used to classify 

the reduced features. This approach combines the deep 

feature extraction power of DenseNet201 with the 

efficiency of traditional machine learning classifiers. The 

RF and KNN algorithms were chosen for their 

complementary strengths—RF for its robustness and 

ability to handle large datasets, and KNN for its simplicity 

and effectiveness in smaller, well-structured datasets. 

The classification results obtained using this approach 

were evaluated on the test set, and the performance metrics, 

including accuracy, precision, recall, F1 score, and AUC, 

are presented in Table 3. The results demonstrate the 

effectiveness of integrating deep learning with 

dimensionality reduction and machine learning classifiers, 

offering a more computationally efficient solution while 

maintaining high classification performance. 

This combined methodology allows for a scalable, efficient 

approach to skin cancer diagnosis, enabling the model to 

perform well even when computational resources are 

limited. The success of this approach highlights the 

potential of using feature extraction followed by 

dimensionality reduction and machine learning 

classification as a viable alternative to fully training deep 

learning models in resource-constrained environments. 

 

Figure 5: Loss and accuracy graph for DenseNet201 

 

Figure 6: Loss and accuracy graph for EfficientNetB2 

 

Figure 7: Roc curve for DenseNet201 

 

 

Figure 8: Confusion matrix
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Table 3: Results of the Hybrid Model Approach 

 

Model Test Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%) 

KNN 91.1 91.07 91.1 91.09 90.85 

Random Forest 91.28 91.58 91.28 91.32 91.69 

 

Table 3 presents the performance metrics of hybrid models 

utilizing different machine learning algorithms after 

feature extraction by a deep learning model. The KNN 

classifier yielded notable results with a test accuracy of 

91.1%, precision of 91.07%, recall of 91.1%, F1 score of 

91.09%, and an AUC of 90.85%. In comparison, the 

Random Forest classifier demonstrated marginally 

superior performance, achieving a test accuracy of 91.28%, 

precision of 91.58%, recall of 91.28%, F1 score of 91.32%, 

and an AUC of 91.69%. 

The results indicate that both classifiers when applied to 

the features extracted from the DenseNet201 model and 

processed through PCA, exhibit high performance metrics. 

However, the RF classifier consistently performs better 

than KNN across all evaluated metrics. This indicates that 

while KNN delivers solid performance, the Random Forest 

model demonstrates higher classification accuracy and 

AUC, proving to be more effective in handling 

dimensionality-reduced features. These findings underline 

the efficacy of using a deep learning model for feature 

extraction combined with PCA for dimensionality 

reduction, followed by classification with machine 

learning algorithms. Figure 9 illustrates the qualitative 

performance of the proposed approach by comparing the 

predicted outputs with ground truth on randomly selected 

test images. This figure further validates the effectiveness 

and reliability of the hybrid model approach. 

 

Figure 9: Results of the qualitative assessment of the 

proposed approach's performance on test images 

5. CONCLUSION 

This study demonstrates the effectiveness of a hybrid 

approach that integrates deep learning models with 

machine learning algorithms for the early detection of skin 

cancer. In the first phase, several transfer learning models 

were evaluated, with DenseNet201 emerging as the top 

performer, achieving high accuracy, precision, recall, F1 

score, and AUC. Given its superior performance, 

DenseNet201 was selected for feature extraction in the 

subsequent phase, and PCA was employed to reduce the 

dimensionality of the extracted features. 

The reduced features were classified using machine 

learning algorithms, with RF delivering the best overall 

performance, surpassing the results of KNN. findings 

highlight that integrating dimensionality reduction with 

machine learning classifiers can enhance performance 

beyond what is achievable by deep learning models alone. 

Specifically, the RF classifier demonstrated robustness in 

handling the dimensionality-reduced feature space, 

providing superior accuracy and balanced performance. 

This approach underscores that machine learning 

techniques, when applied to features extracted from 

transfer learning models, can offer meaningful 

improvements in classification tasks. Rather than aiming 

for state-of-the-art results, the study emphasizes the 

practicality and efficiency of combining these 

methodologies to achieve reliable outcomes. 

In conclusion, the integration of deep learning with 

machine learning techniques presents a practical approach 

for enhancing skin cancer diagnosis, with considerable 

potential benefits for clinical practice. Future studies will 

focus on expanding the dataset and incorporating more 

diverse skin lesion types to improve the model's 

generalization and robustness. 
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