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Öz

Nörolojik bir bozukluk olan Parkinson hastalığı (PH), hastaların ve bakımlarından sorumlu kişilerin hayatlarını olumsuz olarak 
etkilemektedir. Kişinin klinik özelliklerinin incelenmesi ile erken tanısı oldukça zor olan PH, konuşma ses kayıtları kullanılarak 
teşhis edilebilmektedir. Fakat ses kayıtlarının makine öğrenmesi teknikleri aracılığı ile değerlendirilmesinden elde edilen modellerin 
tutarsız performans sonuçları, bu modellerin hekimlerin teşhis koymasında yardımcı olarak kullanılabilirliğini sınırlamaktadır. Yapılan 
çalışmada 23’ü Parkinson hastası olan toplam 31 kişiden elde edilen ve 195 ses verisinden oluşan bir veri tabanı kullanılmıştır. Veri 
tabanındaki her bir konuşma sesinden elde edilen 22 adet öznitelik ile bu seslerin makine öğrenmesi aracılığıyla hasta ve sağlıklı 
olarak sınıflandırılması gerçekleştirilmiştir. Bu sınıflandırma işleminde eğitim ve test aşamasında kullanılacak verilerin rastgele olarak 
sırası ile 90/10, 80/20, 70/30, 50/50 ve 30/70 olmak üzere farklı oranlarda bölünmesi sağlanmıştır. Ayrıca her bir ayırma oranı, 
eğitim aşamasında 10 katmanlı çapraz doğrulama, 5 katmanlı çapraz doğrulama, ayırarak doğrulama ve yeniden ikame doğrulaması 
yöntemleri kullanılarak değerlendirilmiştir. Bununla beraber kuadratik diskriminant, destek vektör makineleri, toplu torbalı ağaç, k-en 
yakın komşuluk ve sinir ağları sınıflandırıcıları kullanılarak sınıflandırma işlemi gerçekleştirilmiştir. Veri ayırmadaki rastgeleliğin ve 
tutarlı sonuçların elde edilmesi  için tüm işlemler 10 defa tekrar edilmiştir. Yöntemlerin başarımlarının karşılaştırılmasında doğruluk, 
duyarlılık, özgüllük, kesinlik ve F1 skoru metrikleri aracılığı ile sonuçların ortalama ve standart sapma değerleri hesaplanmıştır. Sonuç 
olarak 80/20 ayırma oranı ve 10 katmanlı çapraz doğrulama kullanan k-en yakın komşuluk sınıflandırıcısına ait %95.64±3.21 test 
doğruluğu değeri, karşılaştırılan yöntemler içerisinde en başarılı yöntem olarak tespit edilmiştir. Dolayısıyla sadece sınıflandırıcılara ait 
mevcut parametrelerin etkileri analiz edilerek çok daha başarılı sonuçların elde edilebileceği görülmüştür.

Anahtar Kelimeler: Çapraz doğrulama, makine öğrenmesi, sınıflandırma, tekrarlı eğitim/test ayrımı

Abstract

Parkinson’s disease (PD), a neurological disorder, negatively affects the lives of patients and their caregivers. PD, which is very difficult 
to diagnose early by examining the clinical characteristics of the person, can be diagnosed using voice recordings. However, the 
inconsistent performance results of the models obtained from the evaluation of voice recordings through machine learning techniques 
limit the usability of these models to aid in diagnosing physicians. This study used a database of 195 voice data obtained from 31 
individuals, 23 of whom have PD. The classification of the voices as healthy or patient was based on the 22 features in the database. 
The split ratios 90/10, 80/20, 70/30, 50/50 and 30/70 were used to select the training and test phase data, respectively. In addition, 
each split ratio was evaluated using 10-fold cross-validation, 5-fold cross-validation, holdout validation and resubstitution validation 
methods in the training phase, which is the initial process that will directly affect the other classification procedures. In addition, the 
classification process was performed using quadratic discriminant analysis, support vector machine, ensemble bagged tree, k-nearest 
neighbours and neural network classifiers. All procedures were repeated 10 times to ensure consistency of results and randomisation 
of split ratios. As a result, the k-nearest neighbours classifier with 80/20 splitting ratio and 10-fold cross-validation was determined to 
be the most successful among the compared methods with 95.64±3.21% accuracy. Therefore, it can be seen that much more successful 
results can be obtained by analysing only the effects of the existing parameters of the classifiers.   
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1. Introduction
Parkinson’s disease (PD), a neurological disease named after 
James Parkinson, who first described its typical symptoms in 
the 1800s, is increasingly diagnosed, especially in individuals 
over a certain age (Huang et al. 2024). Although experts 
with 91% accuracy detect this disease in the first five years 
with the full application of detailed and challenging clinical 
diagnostic criteria, this correct detection rate decreases to 
76% when examined by non-experts (Virameteekul et al. 
2023).  The fact that the disease occurs at an advanced age 
causes patients to face certain difficulties in the application 
of clinical diagnostic criteria and analyses. Therefore, there 
is a significant demand for low-cost methods that will 
help the patient overcome the difficulties in PD detection 
more easily (Esmer et al. 2020). It has been observed in the 
literature that a loss of control in motor activity is a common 
cause of a variety of voice and speech disorders in patients 
diagnosed with PD (Orozco-Arroyave et al. 2016). Speech 
disorders, which is one of the cognitive-motor skills, is a 
common diagnostic criterion seen in varying degrees in 90% 
of people with Parkinson’s disease (Smith and Caplan 2018). 
Acoustic sound analyses and measurement methods may be 
useful biomarkers for diagnosing PD at an early stage of the 
disease, potentially enabling remote monitoring of patients. 
Furthermore, they may provide valuable feedback in sound 
therapy for clinicians or patients (Rusz et al. 2011). Especially 
in the last two decades, thanks to the development of software 
and hardware technologies, the idea of improving patients’ 
quality of life by detecting PD based on machine learning at 
an early stage using speech sounds has come to the forefront 
of studies. There are many studies in the literature on the 
evaluation of dysphonic symptoms of PD with machine 
learning (Bang et al. 2023, Islam et al. 2024). In one of the 
pioneering studies, a kernel support vector machine and 50 
replicates of bootstrap resampling methods were used to 
classify 195 speech data from 31 people, 23 of whom had 
Parkinson’s disease, with 91.4% success (Little et al. 2009). 
In another classification study in which Parkinson’s disease 
was evaluated with speech sounds using the probabilistic 
neural network method and the database was divided into 
70% training and 30% testing phases, training accuracy was 
81.74%, and testing accuracy was 81.28% (Ene 2008). In a 
study on the Neural Network Classification method, 65% 
of the database was used for training, and the remaining 
35% was used for testing; 100% training and 92.9% testing 
accuracy values were achieved (Das 2010). In another study 
on the Adaptive Neuro-Fuzzy Classifier with the linguistic 

hedges method, the database was divided into training and 
testing by 50%, and the classification accuracy values of the 
model were calculated as 95.38% in the training phase and 
94.72% in the testing phase (Çağlar et al. 2010). In another 
study, 85.03% classification accuracy was achieved using a 
similarity classifier and feature selection using fuzzy entropy 
criteria after splitting the data into training and testing by 
50% (Luukka 2011). The Classification and Regression 
(C&R) Tree, Bayes Net and C5.0 are used to generate an 
ensemble method in a classification study on detecting 
Parkinson’s patients and healthy subjects.  An accuracy of 
95.31% was achieved in this study, where training and test 
data were split by 70% and 30%, respectively (Inzamam-
Ul-Hossain et al. 2015). Classification accuracy of 92.19% 
was achieved in a study using The Optimised Cuttlefish 
algorithm for early diagnosis of Parkinson’s disease, where 
the dataset was divided into 70% training and 30% test data 
(Gupta et al. 2018). In the study using the Modified Grey 
Wolf Optimization method and Random Forest classifier, 
the data set was divided by 70% and 30% to be used in the 
training and testing phases, respectively, and a classification 
accuracy of 93.87% was calculated (Sharma et al. 2019). In 
a study, the classification accuracy of 93.84% was calculated 
with the support vector machine classifier, and the features 
were evaluated using the recursive feature elimination 
method”(Senturk 2020). Another classification process 
was performed using entropy-based feature selection using 
the k-nearest neighbour algorithm, feed-forward Extreme 
Learning Machine, and Fast Learning Machine methods for 
Parkinson’s detection. The study obtained 80% classification 
accuracy using half of the features via the Fast Learning 
Machine method (Abdulateef et al. 2023).  In a recent study, 
the % classification accuracy of 88.5% was obtained with the 
cascade forest (casForest) algorithm using deep ensemble 
transformers, a fast, scalable approach for dimensionality 
reduction problems (Nareklishvili and Geitle 2024). All 
these studies, which focus on different feature selection 
techniques or classification methods, have in common the 
use of the Oxford Parkinson’s Disease Detection Dataset 
for PD detection (Little 2007). In these studies, a single 
and different ratio was utilised to divide the database into 
distinct segments designated for use in both the training 
and testing phases. The impact of this ratio on performance 
was not explicitly elucidated.  Moreover, as the first step in a 
classification process, this separation can directly affect the 
following steps. In addition, many of the studies discussed 
above do not mention the validation technique used during 
the training phase. Conventionally, when developing a 
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machine learning classification model, a large amount of 
training data is used in the training phase. The training 
validation with this large amount of data ensures that 
the quality and quantity of the data are adjusted, i.e. that 
the classification model performs well and, in particular, 
achieves reliable and consistent results. In addition to these 
deficiencies, conflicting performance results obtained using 
different classification models limit the clinical applicability 
of machine learning-based methods developed for PD 
detection (Iyer et al. 2023). The availability of a low-cost 
method with reliable results will both alleviate the clinical 
workload and help patients over a certain age group overcome 
the many physical challenges they will face during the 
diagnostic phase.  Generally, there is no established method 
for finding the most appropriate model for the database to 
be used in a classification problem. In this respect, different 
classification algorithms should be evaluated with data 
separation and validation methods to find the optimal 
model. In the proposed study, the Oxford Parkinson’s 
Disease Detection Dataset was used to classify patients and 
healthy subjects. In this classification process, training and 
test data were separated by dividing the entire database into 
90/10, 80/20, 70/30, 50/50 and 30/70 ratios, respectively. In 
addition, in the training phase, the performance of 10-fold 
cross-validation, 5-fold cross-validation, holdout validation 
and resubstitution validation methods were analysed at each 
split ratio. The classification model was then built using 
Quadratic Discriminant Analysis (QDA), Support Vector 
Machine (SVM), Ensemble Bagged Tree (EBT), k-nearest 
neighbours (KNN) and Neural Network (NN) classifiers. 
The whole process was repeated 10 times for each data split 
ratio to ensure randomness and reliable results. The mean 

and standard deviation values of the results were calculated 
using the metrics of accuracy, sensitivity, specificity, precision, 
and F1 score to compare the performance of the methods 
in all processes.

2. Material and Methods
The block diagram of the study is shown in Figure 1.

2.1. Dataset

The database used in this study is the Oxford Parkinson’s 
Disease Detection Dataset (Little 2007), which consists 
of biomedical voice measurements from 31 individuals. Of 
the 31 people from whom the voice recordings in the da-
tabase were taken, 23 had PD. The database consists of a 
total of 195 voice data, 48 of which are healthy and 147 
of which are PD labelled. The ages of all subjects ranged 
between 46 and 85; 19 of them were male, and 12 of them 
were female. For individuals with PD, the disease duration 
ranges from 0 to 28 years since diagnosis. The voice record-
ings were captured utilising a microphone positioned at a 
distance of 8 cm from the lips, with a sampling frequency 
of 44100 Hz. After the voice recordings were digitized, a 
total of 22 features (Average vocal fundamental frequency 
(F0), Maximum vocal fundamental frequency (Fhi), Mini-
mum vocal fundamental frequency (Flo), jitter as a percent-
age ( Jitter(%)), absolute jitter in microseconds ( Jitter(Abs)), 
Relative Amplitude Perturbation (RAP), five-point Period 
Perturbation Quotient (PPQ), Average absolute difference 
of differences between cycles, divided by the average period 
(DDP), local shimmer (Shimmer), local shimmer in deci-
bels (Shimmer(dB)), Three-point Amplitude Perturbation 
Quotient (APQ3), Five-point Amplitude Perturbation 

Figure 1. Block diagram of the study.
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2.3. Validation

Machine learning-based classification research focuses on 
building more accurate models that can automatically learn 
from the real world. However, the issue of validating the 
accuracy of machine learning methods is less popular than 
implementing new methods (Xie et al. 2011). Regardless of 
which model is used, it is necessary to prevent overfitting in 
the training phase, which causes the model to underperform 
against new data not seen when well-trained on the training 
data. Therefore, there is a need for a control in the training 
phase, i.e. validation algorithms. During the training phase, 
validation will show whether the features represent the 
classes well enough and measures can be taken to improve 
the performance of the classification model. In this respect, 
the k-fold cross-validation method, one of the most preferred 
validation techniques in the literature, was also used in this 
study. The steps of this method involve randomly dividing 
the training set into k equal number of groups, considering 
the first fold as a validation set and applying the same 
method to the remaining k - 1 folds respectively ( James et 
al. 2013). The validation result of the model is calculated as 
the average of the results obtained in all iterations. Figure 2 
shows a schematic representation of 5-fold cross-validation. 

Cross-validation allows the model to be tested more 
frequently in the training phase, except for test data. This 
reduces overfitting and improves the generalizability of the 
model. Another method used in the study is 10-fold cross-
validation. In this method, the training set is divided into 10 
equal parts and the same process is repeated. As illustrated in 

Quotient (APQ5), 11-point Amplitude Perturbation Quo-
tient (APQ), Average absolute difference between consecu-
tive differences between the amplitudes of consecutive peri-
ods (Shimmer: DDA), Noise-to-Harmonics Ratio (NHR), 
Harmonics-to-Noise Ratio (HNR), Recurrence Period 
Density Entropy (RPDE), Detrended Fluctuation Analysis 
(DFA), Correlation dimension (D2), Three nonlinear mea-
sures of fundamental frequency variation spread1,spread2 
and Pitch period entropy (PPE)) were calculated using Kay 
Pentax Multi-Dimensional Voice Program (MDVP) (Little 
et al. 2009).

2.2. Data Splitting

The first step for a machine learning-based classification 
process is to split the data to be used in the training and 
testing phases. For a blind and fair classification process, 
the data used in the training phase should not be used 
in the testing phase. There is no optimum split ratio in 
the classification process. The most crucial point here is 
that parameter estimates have high variance with less 
training data, while less test data leads to high variance in 
performance measurements. Hence, random and repeated 
database examination with different split ratios is vital in 
classification. Therefore, in this study, the data collected from 
patient and non-patient samples in the whole database were 
split into 90/10, 80/20, 70/30, 50/50 and 30/70 ratios to be 
used in the training and testing phases, respectively, and the 
performance of different ratios was examined. In addition, 
the results were computed by repeatedly re-dividing all 
classification operations randomly with the same split ratio.

Figure 2: 5-fold cross-validation.
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enough to separate the classes by drawing a line, different 
kernel functions are used to multiply the axes and the classes 
are separated by a non-linear line. In this study, the cubic 
kernel function is employed via the parameters of stan-
dardised data, the automatic kernel scale and box constraint 
level one. Among the ensemble classification methods cre-
ated to provide a more reliable and higher performance than 
a single decision tree classifier, the bagged tree process is 
preferred because it reduces overfitting and minimises the 
variance in the decision tree classifier (Bhavsar et al. 2022). 
The method firstly divides the training set into sub-sets of 
the same size so as not to overlap, providing a unique data 
sample and creating a separate decision tree for each sub-set, 
combining the results from multiple decision trees. In the 
study, the number of learners was set at 30. In contrast to 
most classifiers, the KNN algorithm can achieve high per-
formance in difficult situations where data are intertwined. 
While predicting the class, it looks at the data to be tested 
and the class of the k closest points in the training set. If the 
k closest training set data has the most data belonging to 
which class, it is decided that the test data belongs to that 
class (Fix and Hodges 1951). For this reason, the coefficient 
k is often chosen as one in order to make a precise decision. 
In the present study, the Euclidean distance metric is em-
ployed in conjunction with a value of k, equalling one. A 
neural network, a collection of algorithms that simulate the 
workings of the human brain, is used in classification to de-
termine the connectivity between features in a dataset. Al-
though neural network models, which usually have predic-
tive solid accuracy, can be complex to understand compared 
to other classification methods, the size and amount of fully 
connected layers in the neural network increases model flex-
ibility ( Jana et al. 2023). In this study, the Trilayered Neural 
Network (TNN) classifier was used in combination with 
rectified linear unit activation.

2.5. Comparison Metrics

When evaluating a classification model’s performance, the 
model’s prediction results should be compared with the ac-
tual values. In this comparison, the number of positive pre-
dictions for positively labelled data (TP), negative predic-
tions for positively labelled data (FN), negative predictions 
for negatively labelled data (TN) and positive predictions 
for negatively labelled data (FN) are calculated. Accuracy, 
Sensitivity, Specificity, Precision and F1 Score metrics ob-
tained through these values were used in the study. Among 
these metrics, accuracy is the percentage at which positive 
and negative data can be detected in total, and it is calculat-
ed as shown in Equation 1.

Figure 3, the holdout validation method involves randomly 
dividing the training set into two subsets for training and 
validation at a specific ratio. In this method, the model is 
constructed and validated only once.

Figure 3. Holdout validation.

The entire training set is used to build the model without 
splitting it in the resubstitution validation method. Despite 
generating overly optimistic predictions of performance 
during the training phase, the actual classification perfor-
mance of the model is evaluated by comparing it with test 
data. As a result, the test dataset is used to test the accuracy 
of a particular model; the training dataset trains different 
algorithms to build the classification model. In contrast, the 
validation dataset compares the performance of different 
algorithms (with different hyperparameters) and decides 
which is suitable (Molera 2024). This study divided the 
training and test datasets into the same specific ratios, and 
the four validation methods mentioned above were applied 
sequentially in the training phase. Thus, it is determined 
which method’s training validation performance is closest 
to the test accuracy performance for the database.

2.4. Classification Models

This study used Quadratic Discriminant Analysis, Support 
Vector Machine, Ensemble Bagged Tree, k-nearest neigh-
bours and Neural Network classifiers, which are widely pre-
ferred in classification studies (Ekpezu et al. 2022). Among 
these popular methods, discriminant analysis, which is fast, 
accurate and easy to interpret, assumes that different classes 
generate data based on different Gaussian distributions. It 
is more suitable for large datasets as it tends to have a lower 
bias. In training, the fitting function estimates the parame-
ters of the Gaussian distribution for each class. The trained 
classifier finds the class with the smallest misclassification 
cost to predict the classes of new data. Quadratic discrimi-
nant analysis is more flexible because it can learn quadratic 
boundaries (Duda et al. 2022). The full covariance matrix 
structure is utilised in this study for the quadratic discrimi-
nant analysis classifier. In the SVM method, to separate the 
points belonging to the classes on a plane, a line is drawn 
at the maximum distance to both classes, and the closest 
points to be drawn to the decision points are called supports 
(Cortes and Vapnik 1995). However, since it is mostly not 
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methods. Table 1 shows the calculated results of different 
validation and classification methods based on using 90% of 
all data in the training phase and 10% in the testing phase. 
Tables 1-5 show the comparison metric values calculated af-
ter separating the training and test data in the 80/20, 70/30, 
50/50, and 30/70 ratios, respectively. The KNN model exhib-
ited notable performance with the highest test accuracy of 
95.64% using an 80/20 split and 10-fold Cross-Validation, 
showcasing balanced sensitivity (92.00%) and specificity 
(96.90%). The QDA model achieved the highest test accu-
racy of 94.5±6.43% with a 90/10 data-splitting ratio and 10-
fold Cross-Validation, demonstrating superior performance 
across multiple metrics, including sensitivity (82.0%), spec-
ificity (98.66%), precision (95.50%), and F1 score (86.77%). 
The SVM model maintained consistent performance with 
test accuracies mean around 90%, demonstrating robustness 
across different splits. The EBT and TNN models displayed 
varied results, with the EBT model achieving a test accuracy 
of around 91.76% with both 80/20 and 70/30 splits and the 
TNN model achieving a test accuracy of 91.55% under the 
90/10 split. These results highlight the effectiveness of KNN 
and QDA in classification tasks, particularly with smaller 
test sets, while SVM, EBT, and TNN offer reliable alterna-
tives depending on specific metric priorities, showcasing the 
adaptability and performance of each model under differ-
ent validation conditions. Generally, the test performance 
results obtained by applying the 10-fold Cross-Validation 
method among the validation methods used in the training 
phase are higher. Notably, the performance results for the 
50/50 and 30/70 ratios, where the amount of data allocated 
for training is lower, are lower than the other cases. 

Accuracy TP FP TN FN
TP TN

100#= + + +
+   (1)

Sensitivity is the percentage of samples with a positive value 
that can be positively detected and is calculated as shown in 
Equation 2.

%Sensitivity TP FN
TP

100#= +   (2)

Specificity refers to the percentage of a sample with a 
negative value that can be detected as negative and is 
calculated as shown in Equation 3.

%Specificity TN FP
TP

100#= +   (3)

Precision indicates how much of the data predicted as 
positive is actually positive and is calculated as shown in 
Equation 4.

%Precision TP FP
TP

100#= +   (4)

The F1 Score corresponds to the harmonic mean of the 
Sensitivity and Precision values and is calculated as shown 
in Equation 5.

%F Score Precision Sensitivity
Precision Sensitivity

1 2 100# #
#

#=     (5)

3. Results and Discussion
In order to ensure randomness in data selection and to ob-
tain valid and stable results, the procedures of all methods 
used for classification were repeated 10 times. The mean and 
standard deviation values of the results obtained through 
Accuracy, Sensitivity, Specificity, Precision and F1 Score 
metrics were calculated to compare the performance of the 

Table 1. Results for the data-splitting ratio taken as 90/10.

Validation QDA Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 88.86±1.38 61.40±3.50 97.80±1.04 90.20±4.72 73.01±3.44
Test 94.50±6.43 82.00±20.41 98.66±2.81 95.50±9.56 86.77±16.14

5-fold CV
Train 87.94±0.87 55.35±3.43 98.56±0.90 92.84±4.13 69.24±2.75
Test 92.10±5.36 80.00±22.37 96.45±2.71 93.36±10.48 84.52±16.18

Holdout 25% 
Train 88.60±2.99 54.00±14.30 99.09±1.46 95.83±6.80 67.75±11.74
Test 93.40±5.42 78.00±15.01 94.12±2.54 94.67±12.25 84.32±15.20

Resubstitution
Train 98.51±0.30 100.00±0.00 98.03±0.39 94.31±1.07 97.07±0.57
Test 92.30±6.64 81.0±18.43 95.26±2.38 93.48±11.26 83.13±16.42
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Validation SVM Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 91.09±2.52 82.56±6.32 93.86±1.62 81.42±4.85 81.94±5.25
Test 93.62±3.50 94.00±7.66 92.67±2.11 81.20±5.22 86.91±6.74

5-fold CV
Train 89.66±2.34 76.98±7.79 93.79±1.12 80.07±3.64 78.39±5.42
Test 93.00±3.42 96.00±8.43 92.24±2.81 80.14±5.38 87.24±6.43

Holdout 25%  
Train 91.63±3.14 86.00±10.75 93.33±1.92 79.64±5.88 82.49±7.10
Test 93.12±3.57 94.00±8.86 92.67±2.57 81.10±5.24 84.91±6.92

Resubstitution
Train 99.89±0.24 100.00±0.00 99.85±0.32 99.55±0.96 99.77±0.48
Test 93.50±3.33 96.00±8.34 92.66±2.24 81.33±5.16 88.00±6.37

Validation EBT Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 90.11±1.55 73.02±4.93 95.68±1.47 84.81±4.47 78.37±3.59
Test 91.00±6.58 88.00±6.87 92.00±6.89 81.10±6.09 83.03±2.16

5-fold CV
Train 89.77±0.74 73.26±1.98 95.15±0.73 83.15±2.11 77.87±1.59
Test 87.50±5.89 78.00±4.76 90.66±7.83 77.21±7.45 75.94±10.40

Holdout 25%  
Train 93.26±4.02 84.00±6.99 96.06±3.51 87.23±11.01 85.45±8.41
Test 91.50±5.30 80.00±6.33 95.33±6.32 88.29±15.85 82.33±10.83

Resubstitution
Train 99.94±0.18 100.00±0.00 99.92±0.24 99.77±0.72 99.89±0.36
Test 92.00±5.87 84.00±18.38 94.66±6.13 86.62±15.35 83.65±12.19

Validation KNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 94.85±0.97 93.26±2.31 95.39±0.97 86.85±2.49 89.92±1.90
Test 91.00±5.68 98.00±6.32 88.67±7.73 76.33±13.06 85.13±8.50

5-fold CV
Train 93.94±1.33 91.16±3.25 94.85±1.12 85.27±2.90 88.09±2.60
Test 90.86±6.08 97.20±6.51 86.13±7.45 77.42±14.56 84.12±7.35

Holdout 25%  
Train 93.24±3.37 89.00±9.94 94.53±4.24 84.64±10.85 86.08±6.44
Test 90.08±5.34 94.01±7.73 87.43±7.42 76.15±13.64 82.15±11.87

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 89.12±6.49 91.00±8.31 86.27±7.93 76.26±14.86 85.16±12.92

Validation TNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 91.54±2.05 83.02±5.15 94.32±1.68 82.75±4.59 82.82±4.18
Test 91.55±4.10 84.33±15.72 94.00±4.92 84.45±11.53 83.15±9.04

5-fold CV
Train 90.06±1.35 82.56±3.51 92.50±1.49 78.31±3.37 80.32±2.56
Test 90.00±6.24 88.00±10.33 90.66±9.53 79.44±14.92 82.27±8.78

Holdout 25%  
Train 91.58±4.82 80.50±16.06 94.85±4.75 83.65±12.39 80.86±12.32
Test 89.00±5.68 86.00±21.19 90.00±4.71 74.20±8.99 78.63±13.62

Resubstitution
Train 99.83±0.28 99.77±0.74 99.85±0.32 99.55±0.96 99.65±0.56
Test 90.5±4.38 92.00±10.33 90.00±6.48 77.49±12.98 83.19±7.34

Table 1. Cont.
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Table 2.Results for the data-splitting ratio taken as 80/20.

Validation QDA Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 88.27±1.00 57.11±4.31 98.31±0.89 91.79±4.03 70.27±3.11
Test 90.00±3.91 66.00±14.30 98.28±1.82 93.25±7.29 76.44±11.07

5-fold CV
Train 85.71±1.48 43.68±5.14 99.24±0.84 95.03±5.34 59.69±5.07
Test 89.40±4.02 65.00±14.78 97.28±2.23 92.31±7.92 74.12±11.52

Holdout 25% 
Train 83.08±4.22 35.00±13.79 99.31±1.45 95.00±10.54 49.73±16.26
Test 85.35±4.27 63.00±12.20 95.28±3.18 91.27±7.14 71.44±12.14

Resubstitution
Train 98.65±0.82 100.00±0.00 98.22±1.09 94.85±3.06 97.34±1.61
Test 88.03±4.92 64.00±15.27 96.28±1.49 92.40±8.49 73.44±13.21

Validation SVM Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 89.55±1.96 78.42±5.92 93.14±1.01 78.58±3.26 78.45±4.39
Test 90.51±4.37 78.50±14.83 94.83±4.38 85.24±11.12 80.38±9.89

5-fold CV
Train 89.29±1.96 78.68±5.33 92.71±1.34 77.67±3.89 78.13±4.25
Test 90.00±4.75 78.00±16.19 94.14±4.61 83.55±12.35 79.52±10.62

Holdout 25% 
Train 87.44±5.73 68.78±19.43 93.89±6.12 81.68±15.90 72.45±13.89
Test 89.74±4.68 77.00±16.36 94.09±4.32 83.16±11.88 78.85±10.60

Resubstitution
Train 99.36±0.43 98.16±2.17 99.75±0.41 99.23±1.24 98.67±0.90
Test 90.26±4.80 79.00±15.24 93.14±4.98 83.55±12.35 80.26±10.53

Validation EBT Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 90.26±1.76 74.47±3.93 95.34±1.56 83.87±4.76 78.84±3.69
Test 91.79±5.10 76.00±15.78 97.24±2.72 90.56±9.73 81.95±12.21

5-fold CV
Train 89.10±1.57 70.79±4.72 95.00±1.52 82.19±4.37 75.96±3.56
Test 91.79±3.59 74.00±15.06 97.93±2.41 93.29±7.49 81.51±9.79

Holdout 25% 
Train 89.74±5.27 72.67±16.15 95.56±4.27 85.43±13.13 77.52±12.80
Test 91.79±3.97 77.00±13.37 96.90±2.54 89.73±7.72 82.33±9.84

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 91.79±3.97 75.00±13.54 97.59±3.27 92.40±10.66 82.01±9.60

Validation KNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 93.46±1.12 90.00±2.99 94.58±1.34 84.35±3.17 87.03±2.14
Test 95.64±3.21 92.00±9.19 96.90±3.43 91.83±8.22 91.52±6.24

5-fold CV
Train 92.44±1.20 87.63±4.12 93.98±1.16 82.50±2.87 84.93±2.53
Test 94.44±4.53 91.12±9.32 95.85±3.21 90.63±7.48 91.38±6.03

Holdout 25% 
Train 93.33±3.46 87.78±8.17 95.22±3.30 86.42±8.71 86.85±6.87
Test 93.56±4.71 91.17±9.94 95.64±3.67 90.43±8.11 90.04±7.22

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 94.34±4.27 91.24±9.08 96.90±4.02 89.88±9.52 90.72±7.54

Validation TNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 88.97±2.63 79.73±4.48 91.95±2.41 76.35±6.06 77.95±4.93
Test 88.97±4.53 76.00±17.13 93.45±5.74 82.87±13.73 77.35±10.32

5-fold CV
Train 88.78±1.26 79.21±5.75 91.86±1.70 76.00±3.44 77.42±3.00
Test 90.29±4.93 80.27±16.17 93.79±4.24 82.60±10.25 80.54±10.96

Holdout 25% 
Train 90.00±5.60 80.89±13.63 93.18±5.78 81.44±14.67 80.28±11.01
Test 87.95±4.69 78.00±15.49 91.38±5.69 77.32±11.36 76.48±10.04

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 91.79±3.97 83.00±13.37 94.83±3.35 85.21±7.64 83.47±8.90
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Table 3. Results for the data-splitting ratio taken as 70/30.

Validation QDA Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 86.06±1.70 47.06±5.37 98.93±0.85 93.56±5.03 62.50±5.41
Test 88.45±2.82 58.57±11.07 97.95±1.68 90.68±8.08 70.49±9.09

5-fold CV
Train 82.77±0.99 32.35±3.92 99.42±0.50 95.02±4.35 48.13±4.35
Test 86.36±3.81 56.30±10.94 95.58±2.23 89.57±8.10 70.26±8.99

Holdout 25% 
Train 80.59±3.45 20.56±13.22 100.00±0.00 100.00±0.00 36.38±13.49
Test 82.42±2.97 53.57±11.07 94.22±2.72 86.46±9.58 69.23±9.17

Resubstitution
Train 99.27±0.91 100.00±0.00 99.03±1.21 97.25±3.31 98.58±1.74
Test 84.28±4.26 54.57±11.07 95.35±2.41 88.81±11.03 68.41±9.22

Validation SVM Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 90.37±1.68 80.59±2.48 93.59±1.95 80.82±4.86 80.64±2.99
Test 91.72±1.09 82.14±13.57 94.77±4.42 85.53±9.22 82.47±3.27

5-fold CV
Train 89.85±1.59 77.94±3.18 93.79±1.90 80.77±4.46 79.25±2.92
Test 91.52±1.78 81.53±14.63 94.57±4.68 85.70±10.41 82.52±4.29

Holdout 25% 
Train 87.65±4.76 71.25±12.80 92.98±2.47 76.35±9.20 73.58±10.74
Test 89.25±7.13 80.14±14.59 85.00±13.21 83.70±11.31 81.43±4.07

Resubstitution
Train 99.34±0.64 97.65±2.70 99.90±0.31 99.71±0.90 98.65±1.33
Test 90.37±1.99 81.14±14.95 94.32±5.38 84.96±11.42 82.02±4.12

Validation EBT Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 88.83±1.09 72.35±5.41 94.27±0.72 80.68±1.56 76.19±3.10
Test 90.52±2.33 72.14±7.86 96.36±1.59 86.46±5.75 78.46±5.81

5-fold CV
Train 88.10±2.26 70.59±5.55 93.88±1.65 79.28±5.19 74.62±4.91
Test 91.72±2.54 75.00±9.07 97.05±2.16 89.42±6.43 81.22±6.11

Holdout 25% 
Train 87.94±3.52 71.53±11.42 93.46±5.75 81.03±16.78 74.30±6.97
Test 92.41±1.67 77.86±7.86 97.05±2.64 90.39±7.93 83.13±3.65

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 91.55±2.87 77.14±8.11 96.14±2.84 87.10±9.21 81.47±6.68

Validation KNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 93.87±1.69 92.06±5.20 94.47±1.38 84.66±3.21 88.14±3.33
Test 93.28±3.09 90.00±10.75 94.32±4.58 84.98±10.58 86.63±6.50

5-fold CV
Train 92.70±2.64 88.82±5.51 93.98±2.09 83.07±5.44 85.81±5.10
Test 92.12±3.29 89.50±11.45 93.45±4.64 83.65±11.75 86.52±6.11

Holdout 25% 
Train 92.65±2.50 86.81±12.22 94.55±2.00 83.96±4.25 84.87±6.23
Test 92.22±3.58 89.15±10.87 92.82±4.49 82.90±10.63 85.03±6.63

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 91.67±4.01 88.90±11.98 92.95±5.57 83.18±11.78 85.83±7.50

Validation TNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 89.49±2.34 80.29±3.12 92.52±2.63 78.36±6.21 79.22±4.09
Test 89.14±5.08 74.29±21.87 93.86±3.72 79.18±9.88 74.76±18.86

5-fold CV
Train 89.27±2.53 78.53±3.93 92.82±2.34 78.51±5.93 78.48±4.68
Test 89.31±3.02 80.71±10.67 92.05±3.59 77.12±7.58 78.32±6.60

Holdout 25% 
Train 87.94±3.52 67.64±13.72 94.52±4.19 82.70±12.69 72.94±7.80
Test 89.14±3.36 85.00±11.88 90.45±5.12 75.55±10.30 79.01±6.63

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 88.52±5.20 82.14±10.24 90.53±5.92 75.21±14.33 77.77±9.60



Engin / Data Splitting and Validation of Parkinson’s Disease Detection

Karaelmas Fen Müh. Derg., 2024; 14(2):134-147 143

Table 4. Results for the data-splitting ratio taken as 50/50.

Validation QDA Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 70.31±3.92 87.92±3.07 64.59±4.93 44.83±3.64 59.32±3.58
Test 67.84±5.41 93.75±8.39 59.32±8.04 43.50±4.49 59.21±4.52

5-fold CV
Train 71.12±3.73 87.92±3.07 65.68±4.78 45.61±3.67 59.98±3.44
Test 66.32±5.22 91.43±10.12 57.32±8.31 42.67±6.96 57.13±4.81

Holdout 25% 
Train 66.67±10.21 80.00±13.15 62.22±12.51 42.68±9.99 55.18±10.16
Test 68.27±4.41 92.61±12.27 58.32±8.82 43.21±9.67 58.61±5.98

Resubstitution
Train 71.84±2.97 92.08±1.32 65.27±3.82 46.38±2.80 61.65±2.60
Test 69.54±6.43 92.45±11.43 59.27±9.64 43.42±12.16 58.91±6.42

Validation SVM Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 89.18±237 76.25±8.11 93.38±1.34 78.85±4.16 77.39±5.65
Test 85.46±3.81 67.92±11.63 91.23±4.20 72.84±9.42 69.62±7.70

5-fold CV
Train 86.94±3.78 72.50±9.04 91.62±2.97 73.99±8.85 73.06±8.08
Test 83.69±5.21 66.63±12.11 90.18±5.20 72.67±11.12 69.23±7.13

Holdout 25% 
Train 85.85±8.40 63.33±24.60 93.33±5.74 76.15±21.35 67.74±20.77
Test 84.31±4.67 65.82±12.72 90.26±3.12 72.84±10.14 66.62±9.20

Resubstitution
Train 99.18±0.94 97.08±3.95 99.86±0.43 99.60±1.26 98.28±2.03
Test 85.20±5.47 67.54±12.97 91.11±6.23 72.84±12.57 67.72±8.71

Validation EBT Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 88.88±1.12 75.00±6.51 93.38±1.85 78.95±4.23 76.67±2.92
Test 90.01±1.88 76.25±7.87 94.52±2.51 82.72±6.68 78.94±4.34

5-fold CV
Train 88.06±1.74 68.33±3.51 94.46±1.74 80.19±5.04 73.73±3.59
Test 85.88±4.98 74.17±9.58 89.73±7.65 73.55±14.02 72.60±7.27

Holdout 25% 
Train 84.58±6.53 68.33±12.30 90.00±5.11 70.05±13.83 69.03±12.62
Test 87.63±3.67 75.83±12.55 91.51±6.55 77.26±11.43 75.19±6.30

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 88.66±2.57 75.42±9.71 93.01±3.32 78.79±7.38 76.54±6.01

Validation KNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 92.35±2.77 86.25±6.23 94.32±2.53 83.40±6.46 84.68±5.59
Test 90.72±2.00 86.67±5.83 92.35±3.58 79.00±7.03 82.30±3.25

5-fold CV
Train 91.12±2.55 83.33±5.20 93.65±2.18 81.11±5.81 82.16±5.10
Test 88.64±3.05 83.67±5.27 90.07±3.64 77.00±7.29 79.94±5.20

Holdout 25% 
Train 90.83±6.46 81.67±14.59 93.89±6.11 83.14±16.17 81.75±13.27
Test 86.17±3.57 82.67±5.68 91.68±5.15 79.00±7.53 81.37±4.12

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 87.22±4.01 84.67±7.84 92.05±5.52 79.00±8.13 82.12±6.15

Validation TNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 89.29±2.90 76.25±7.87 93.51±1.89 79.34±6.22 77.61±6.53
Test 87.01±4.01 82.08±10.77 88.63±6.87 72.58±11.09 75.96±5.70

5-fold CV
Train 83.88±5.54 70.00±12.39 88.38±3.67 66.12±10.68 67.93±11.21
Test 83.81±6.07 70.83±9.42 88.08±7.45 68.80±14.20 68.88±8.83

Holdout 25% 
Train 89.58±7.92 86.67±20.49 90.56±5.89 75.73±17.35 80.18±17.15
Test 86.80±3.07 82.21±16.02 88.77±5.66 72.90±8.89 75.63±6.19

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 85.67±6.49 77.08±11.99 88.49±7.42 71.14±15.95 73.08±11.25
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Table 5. Results for the data-splitting ratio taken as 30/70.

Validation QDA Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 68.45±6.35 82.14±6.94 64.09±6.67 42.56±6.47 55.97±6.96
Test 71.02±4.73 87.65±5.85 65.53±5.48 45.89±4.50 60.16±4.83

5-fold CV
Train 69.66±6.15 82.86±6.02 65.45±6.84 43.79±6.39 57.17±6.44
Test 70.56±4.57 85.37±5.85 63.13±5.37 44.27±4.69 58.96±4.63

Holdout 25% 
Train 68.57±15.13 83.33±6.57 64.55±6.72 42.56±6.51 54.94±6.99
Test 71.27±4.51 87.82±5.85 65.21±5.87 45.98±4.55 60.56±4.23

Resubstitution
Train 70.34±5.68 88.57±3.69 64.55±6.79 44.78±5.94 59.35±5.64
Test 70.42±4.82 86.25±5.85 65.57±6.63 45.96±5.80 59.18±7.83

Validation SVM Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 83.45±5.02 62.86±14.98 90.00±4.44 66.91±12.17 64.21±12.66
Test 85.77±3.77 60.88±13.23 93.98±2.81 77.03±9.42 67.40±10.93

5-fold CV
Train 81.90±8.10 60.00±20.54 88.86±4.96 62.51±19.16 60.93±19.28
Test 86.92±3.85 61.58±10.12 94.16±3.57 80.23±10.21 68.67±10.23

Holdout 25% 
Train 83.57±8.28 63.33±33.15 89.09±7.17 61.30±19.07 64.63±20.95
Test 86.79±3.86 61.62±12.13 94.07±2.67 78.61±9.12 68.42±10.15

Resubstitution
Train 98.97±1.45 95.71±6.02 100.00±0.00 100.00±0.00 97.72±3.23
Test 85.56±2.34 60.18±9.21 92.99±3.82 77.08±12.54 67.29±9.91

Validation EBT Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 83.28±6.61 55.71±14.98 92.05±5.05 69.89±19.04 61.54±15.47
Test 85.62±3.95 63.24±10.76 93.01±4.60 77.01±13.26 68.41±5.64

5-fold CV
Train 83.62±4.16 58.57±14.60 91.59±3.40 69.04±11.53 62.69±11.85
Test 86.64±3.89 63.24±8.69 94.37±4.41 80.52±13.26 70.20±8.06

Holdout 25% 
Train 82.86±11.76 53.33±39.13 90.91±6.87 66.67±26.35 65.60±26.56
Test 86.79±2.74 65.88±7.87 93.69±2.97 78.22±8.49 71.15±6.03

Resubstitution
Train 99.66±0.73 98.57±3.01 100.00±0.00 100.00±0.00 99.26±1.56
Test 85.91±2.62 61.76±6.65 93.88±3.86 78.48±10.54 68.55±4.92

Validation KNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 85.34±3.92 75.71±7.68 88.41±3.93 68.04±8.46 71.47±7.17
Test 88.61±3.27 78.24±10.30 92.04±3.13 76.88±7.80 77.18±7.10

5-fold CV
Train 85.52±5.09 67.86±12.26 91.14±4.60 71.93±13.87 69.30±10.89
Test 88.57±4.13 78.11±11.12 91.98±4.12 75.96±7.56 77.09±8.23

Holdout 25% 
Train 85.00±10.88 66.67±27.22 90.00±10.00 70.17±27.76 65.45±23.75
Test 88.43±2.21 77.97±10.56 91.94±3.53 76.58±6.97 77.11±7.52

Resubstitution
Train 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Test 87.61±6.21 77.61±12.37 91.08±3.57 75.68±10.81 76.03±7.12

Validation TNN Accuracy Sensitivity Specificity Precision F1 Score

10-fold CV
Train 81.90±5.41 65.00±12.35 87.27±3.89 61.98±11.26 63.33±11.39
Test 84.67±4.09 67.06±15.43 90.49±4.41 70.50±8.25 67.75±11.14

5-fold CV
Train 80.69±6.84 60.71±17.25 87.05±4.16 59.38±14.41 59.87±15.56
Test 84.96±5.04 66.47±19.32 91.07±3.39 70.46±10.15 67.46±14.86

Holdout 25% 
Train 80.00±12.51 56.67±35.31 86.36±11.54 52.67±36.69 60.88±14.74
Test 84.89±2.71 70.88±15.09 89.51±3.57 69.40±5.09 69.28±8.38

Resubstitution
Train 99.66±0.73 98.57±3.01 100.00±0.00 100.00±0.00 99.26±1.56
Test 84.59±6.75 64.71±18.91 91.17±4.79 70.52±14.87 66.86±16.05



Engin / Data Splitting and Validation of Parkinson’s Disease Detection

Karaelmas Fen Müh. Derg., 2024; 14(2):134-147 145

96.90% ± 3.43%, 91.83 ± 8.22% and 91.52 ± 6.24%, respec-
tively. These findings emphasise the generalizability of our 
model to unseen data and its potential as a diagnostic tool 
for Parkinson’s disease. A comparison of our model with 
other studies in the literature is presented in Table 6.

The results of the proposed method, which is the most 
successful among the compared studies, emphasise the 
robustness and generalizability of the KNN classifier in 
accurately identifying individuals with Parkinson’s disease 
based on speech data. The success of the KNN classifier can 
be attributed to its ability to classify data points based on 
their proximity to neighbouring examples in the feature 
space. Utilising the natural structure of the data, the K-NN 
algorithm effectively captured the subtle differences in 
speech features between individuals with and without 
PD, thus facilitating accurate classification. In addition, 
although the 70/30 ratio is commonly used in the literature, 
the experimental studies found that the 80/20 ratio is 
more appropriate for data separation when using the KNN 
classifier. In contrast to most of the compared studies, high 
mean and low standard deviation values of 95.64 ± 3.21% 

4. Conclusion and Suggestions
Early diagnosis of PD, a neurodegenerative disorder charac-
terised by a range of motor and non-motor symptoms, espe-
cially speech abnormalities, is crucial for timely intervention 
and disease management. In this study, we investigate the 
effectiveness of machine learning methods applied to speech 
data for Parkinson’s disease detection, focusing on different 
data separation and validation methods. As a result of the 
detailed investigations, the KNN classifier model, which 
separates the data into training and test sets using an 80/20 
ratio and uses 10-fold cross-validation in the training phase, 
was the most successful method. In the training phase, the 
accuracy of our model was 93.46 ± 1.12%, demonstrating 
its ability to classify individuals as PD or healthy with high 
precision accurately. Sensitivity, specificity, precision and 
F1 score were also computed and obtained 90.00 ± 2.99%, 
94.58 ± 1.34%, 84.35 ± 3.17% and 87.03 ± 2.14%, respec-
tively. In evaluating the test set, our model maintained its 
strong performance, achieving an accuracy of 95.64 ± 3.21%. 
More importantly, the sensitivity, specificity, precision and 
F1 score remained consistently high, with 92.00 ± 9.19%, 

Table 6. Comparative analysis of studies on PD.

Study Split Rate
Train/Test Classification Method Accuracy %

Ene 2008 70/30 Probabilistic Neural Network 81.28

Little et al. 2009 Bootstrap resampling 
50 replicates

Gaussian Radial Basis Kernel Support Vector 
Machine 91.4

Das 2010 65/35 Artificial Neural Network 92.9

Çağlar et al. 2010 50/50 Adaptive Neuro-Fuzzy Classifier with Linguistic 
Hedges 94.72

Luukka 2011 50/50 Fuzzy Entropy Measures
+ Similarity 85.03

Inzamam et al. 2015 70/30 Ensemble Method Generated with C&R Tree, 
Bayesian Network and C5.0 95.31

Gupta et al. 2018 70/30 The Optimized Cuttlefish algorithm 92.19

Sharma et al. 2019 70/30 Modified Grey Wolf Optimization and 
Random Forest 93.87

Senturk 2020 N/A Recursive Feature Elimination
Support Vector Machines 93.84

Abdulateef et al. 2023 N/A Fast Learning Machine 80.00
Vu et al. 2023 70/30 Random Forest 95.42

Nareklishvili and Geitle 2024 N/A Deep Ensemble Transformers (casForest) 
algorithm 88.5

Proposed 80/20 K-Nearest Neighbours 95.64
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associated with age at onset of Parkinson’s disease in the 
UK Biobank. NPJ Parkinson’s Disease, 10(1), 3. https://doi.
org/10.1038/s41531-023-00623-9

Inzamam-Ul-Hossain, M., MacKinnon, L., Islam, MR. 2015. 
Parkinson disease detection using ensemble method in PASW 
benchmark. 2015 IEEE International Advance Computing 
Conference (IACC).

Islam, MA., Hasan Majumder, MZ., Hussein, MA., Hossain, 
KM., Miah, MS. 2024. A review of machine learning and 
deep learning algorithms for Parkinson’s disease detection 
using handwriting and voice datasets. Heliyon, 10(3), e25469. 
https://doi.org/10.1016/j.heliyon.2024.e25469

Iyer, A., Kemp, A., Rahmatallah, Y., Pillai, L., Glover, A., 
Prior, F., Larson-Prior, L., Virmani, T. 2023. A machine 
learning method to process voice samples for identification of 
Parkinson’s disease. Scientific Reports, 13(1), 20615. https://
doi.org/10.1038/s41598-023-47568-w

James, G., Witten, D., Hastie, T., Tibshirani, R. 2013. An 
introduction to statistical learning: With applications in R (1st 
ed.). Springer.

Jana, DK., Bhunia, P., Adhikary, SD., Mishra, A. 2023. 
Analyzing of salient features and classification of wine 
type based on quality through various neural network and 
support vector machine classifiers. Results in Control and 
Optimization, 11(100219), 100219. https://doi.org/10.1016/j.
rico.2023.100219

Little, M. 2007. Parkinsons [Data set]. UCI Machine Learning 
Repository. https://doi.org/10.24432/C59C74

Little, MA., McSharry, PE., Hunter, EJ., Spielman, J., Ramig, 
LO. 2009. Suitability of dysphonia measurements for 
telemonitoring of Parkinson’s disease. IEEE Transactions 
on Bio-Medical Engineering, 56(4), 1015–1022. https://doi.
org/10.1109/tbme.2008.2005954

were achieved by performing all operations repetitively in 
order to minimise the effect of randomness in data separation 
on the generalised results and thus achieve more consistent 
results. In conclusion, the promising results on progressive 
PD pave the way for the development of robust and reliable 
diagnostic tools for the early detection and management of 
this debilitating condition.
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