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Abstract 

The purpose of this paper is to give the Kantorovich generalization of the operators via two 

variable Hermite polynomials which are introduced by Krech [1] and to research approximating 

features with help of the classical modulus of continuity, the class of Lipschitz functions, 

Voronovskaya type asymptotic formula, second modulus of continuity and Peetre's K -

functional for these operators. 
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1. INTRODUCTION 

 

Heretofore, many authors has studied on linear positive operators and properties of their approximation,  

see for example [2, 6-11, 17, 18]. In addition to fact that authors working on the approximation theory 

with help of linear positive operators have been given linear positive operators via some orthogonal  

polynomials, see for example [1, 3, 4, 5, 12]. Therefore, we are going to define the Kantorovich type of 

the operators being made up of one of orthogonal polynomials. 

Firstly, we recall kH which is two variable Hermite polynomial ( see [13] ) defined by 
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 .                                                                    (1.1) 

Furthermore, the generating function of two variable Hermite polynomials is the as follows (see [13]) 
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Secondly, Krech has presented the Szász operators including two variable Hermite polynomials  

(see [1]) as 
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(1.3) 

where 1,2,3,...n  , 0   and [0, ).x   

Now, we introduce a Kantorovich type generalization of .nG  

2. KANTOROVICH TYPE GENERALIZATION OF OPERATORS nG  

 

In this section, the Kantorovich type generalization of nG  has been defined by 
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                                                        (2.1)        

where 1,2,3,...n  , 0  , [0, )x   and [0, )f C  for which the corresponding series is convergent, in here 

[0, )C  is the space of continuous functions on [0, ).  

 

Lemma 1. The operators given by (2.1) yield the following equalities. 
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Observe that the operators are well-defined for all test function (t) ti

ie   for 0,1,2,3,4.i    

Lemma 2. The operators given by (2.1) yield the following equalities. 
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iii. 
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     . 

Now, we can give Theorem 1 for approximation properties of the operators nS  using the well known 

Korovkin theorem with the help of Lemma 1. 

Theorem 1. Let the operator defined by nS  in (2.1) and  0,Bf C  . So, ( ; )nS f x is uniformly convergent 

to ( )f x  on  0,b  where  0,BC  is the space of uniformly continuous and bounded functions on  0, .  

Proof. Follow the standart procedure in [16], see also [14,15]. 

3. APPROXIMATION PROPERTIES OF OPERATORS nS  

In this section, we present the rate of convergence of the operators with the help of the usual and second 

modulus of continuity, Lipschitz class functions, Peetre’s K - functional and Voronovskaya type formula. 

Firstly, we remind some definitions as follows. 

Let ( )MLip  be Lipschitz class of order  . If ( )Mf Lip  , the inequality  

                                                             
( ) ( )f t f u M t u


  

                                                               
(3.1) 

holds, where , [0, )t u  , 0 1    and 0M  . The classical modulus of continuity of  0,Bf C   is 

denoted by 

                                                

 ( ; ) ( ) ( ) : [0, ) ,sup
h

f f x h f x x



 



                                                         (3.2) 

where 0.   

Furthermore, a vector space,     2[0, ) 0, : ', '' 0,B B BC f C f f f C       , is normed space with following 

norm that 
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(3.3) 

for every 2[0, )Bf C  . We can remind Peetre's K -functional of the function [0, )Bf C   that is as 

follows 
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for 0  . We define the second-order modulus of smoothness of function [0, )Bf C   by 
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                                                 (3.5) 

for 0  . Moreover, we have the inequality that is relation between Peetre’s K -functional and 2 as 

following that 
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for all 0   and M  is positive constant. 

Theorem 2. The operators nS defined in (2.1) verify the following inequality 
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(3.7) 

where  0,Bf C  ,  0,x b , M is a constant and 
1

n
n

  . 

Proof. We know that modulus of continuity of function  0,Bf C 
 
verifies the following inequality 
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Using (3.8), Cauchy-Schwarz inequality and Lemma 2, we have 
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Theorem 3. If ( ),Mf Lip  then we have 
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(3.9) 

where 𝑥 ∈ [0, 𝑏], *M  is constant and 
1

n
n

  . 

Proof. From ( )Mf Lip   and linearity property of nS , we obtain 
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Theorem 4.  Let K  be Peetre’s K -functional. The operators nS  defined in (2.1) verify the following 

inequality 
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(3.10) 
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Proof . From the Taylor’s series expansion of the function  2 0,Bg C  , we have 
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When we apply the operators nS  to both sides of the aforementioned equality and recall the linearity 

property of the operators nS , we obtain 
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Now, let  0,Bf C  . We use the above inequality as follow 
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By applying infimum both sides of this inequality for  2 0,Bg C  , we have  
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Theorem 5.  For the operators (2.1), the following inequality holds 

                                     
    2( ; ) ( ) 2 , min 1, ,n n nS f x f x M f f     

                                          
(3.11) 

where    0, ,x 0,Bf C b   , M  is a positive constant that is independent of n  and
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   . 

Proof. By using Theorem 4, we obtain ( ; ) ( ) 2 ( , )n nS f x f x K f   . The proof is completed by choosing 

n   in (3.6). 

Theorem 6. Let  2 0,Bf C   and  0,x  is a fixed point. Then, we have 
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Proof. By Taylor formula for the function f , we get 
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When we apply the operators nS  to both sides of the aforementioned equality and recall the linearity 

property of the operators nS , we obtain 
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By Cauchy-Schwarz inequality, we have 
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Now, we can write the following equality from (3.13) and (3.14) 
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The proof is done. 
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