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Abstract

This study presents a novel extension of the Schurer type Stancu operators and
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expressed in terms of the modulus of continuity. Subsequently, the theorem known as
Griiss-VVoronovskaja is proven. In addition, the related generalized Boolean sum (GBS)
operators are defined, and the rates of approximation for these operators are obtained
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Keywords: Schurer-Stancu operators; Modulus of continuity; Griiss-Voronovskaja type

theorem; GBS operators.

DOI: 10.37094/adyujsci.1484906 @

* Corresponding Author



Manav Mutlu (2024), ADYU J SCI, 14(2), 103-122

Yeni bir Schurer tipi Stancu Operatorleri ve ilgili GBS Operatorleri ile Yaklasim

Oz

Bu calisma, Schurer tipi Stancu operatorlerinin yeni bir genellestirmesini sunmakta ve bu
operatorlerin yaklasim 6zelliklerini incelemektedir. Bu operatorlerin diizgiin yakinsakligi
Korovkin Teoremi yardimiyla verilmis ve yakinsama hizlar siireklilik modiilii cinsinden ifade
edilmistir. Daha sonra Griiss-Voronovskaja olarak bilinen teorem ispatlanmistir. Ayrica, ilgili
genellestirilmis Boolean toplam1 (GBS) operatorleri tanimlanmis ve bu operatorlerin yaklasim
hizlar1 karma diizgiinliik modiilii ile Lipshitz sinifindan fonksiyonlar kullanilarak elde edilmistir.

Sonrasinda, her iki operator icin sayisal 6rnekler ve grafiksel sonuglar sunulmustur.

Anahtar Kelimeler: Schurer-Stancu operatorleri; Siireklilik modiilii; Griiss-Voronovskaja

tipi teorem; GBS operatorleri.
1. Introduction

Polynomials are considered the fundamental functions that computers can directly
compute. The Weierstrass approximation theorem in mathematical analysis states that any
continuous function defined on a closed interval may be represented by a polynomial function.
The Weierstrass approximation theorem is highly useful in both practical and theoretical contexts,
particularly in the domain of polynomial interpolation, due to this characteristic of the property.
An exemplary demonstration of this theorem is S.N. Bernstein got it by defining the subsequent

polynomials in reference [1]. The Bernstein polynomials are expressed by the following equation:

n
By(0,1) = ) Py, (7] nen
p=0

for each function ¢ in the space €[0,1], which includes all real-valued continuous functions

defined on the closed interval [0,1] and p,, , () is a Bernstein basis function equal to

) P(1 —)N—P
(p) ™(1 —1)"P.
F. Schurer, [2], introduced and investigated the features of the linear positive operators

known as Bernstein-Schurer polynomials,
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n+y

By @)= ) Prays @9 (T) meN,
p=0

for ¢ be an element of C[0,1 + y], which is a set of all real-valued continuous functions defined

on the expanded closed interval [0,1 + y].

Then, D. Barbosu as an extension of Bernstein operators, created the linear positive Schurer-

%B. c[0,1 +y] - €[0,1] as

Stancu operators, in [3], S,

“o,B — y+Y pta

Sy @D = g pray, 0 (53),
where y be a given integer from the set of natural numbers, and o and {3 be provided parameters
from the set of real numbers. These parameters must satisfy the requirements 0 < a < 8. Note
that for a = B = 0 these polynomials become Schurer operators, for y = 0 the operators are the
Stancu operators, for a = 8 = 0 and y = 0 the operators are the Bernstein operators. Barbosu's

work has inspired many studies in literature. Some of them are as [4-6].

Stancu introduced a new type of linear positive operators named Stancu operators in the

literature, as follows,

Lyu(d,1) = ZE=O Wi (DO (%), T€[0,1] (1)

for ¢ € C[0,1], a non-negative integer parameter y, 1 € N such that n > 2y, where

1- T)pn—u,p(‘[); 0<p<u
Wn,p,u(r) ={(1- T)pn—y,p () + Tpn—y,p—y(f); USPpSN—u, (2)
Tpn—u,p—u(r); n—u<psn

and p,, ,(7) is the well-known Bernstein basis polynomials [7-8]. For the special cases p = 0

and p = 1, Stancu operators defined by Eq.1 give the classical Bernstein operators.

Recently, many academics have focused on Stancu operator approximation. The
researchers in [9-11] showed Stancu operator approximation properties in multiple domains,
including the complex plane and distinct forms. The complex form of Schurer-type Stancu

operators is defined in [13], and their complex approximation properties are investigated by
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authors. In this study, we introduce and examine the real-valued form of operators whose complex

form has been examined in [13].

Motivated by the beforementioned studies, we introduce the real variable case of the Schurer

form of Stancu operators as follows,

Lyb () = ngu (‘1 + :)’ - H) TP (1 — )ty -w-e [(1 - Do (EJFTE) )
+p+
o (5

where a, 3 are real parameters with 0 < o < 3, 1 isanon -negative integer, 1 € N such thatn +
Y > 2,y € NU {0} and examined the approximation properties of them. Here, for the situation
vy = 0, these operators become the original Stancu operators represented with the equation (1),

and for u = 0, they become Schurer-type Stancu operators.

In this study, we first investigate this new real-valued generalization of the Schurer-type
Stancu operators and their properties related to approximation. By applying the renowned
Korovkin theorem, we achieve a uniform approximation result and consider the modulus of
continuity rate of convergence given. Next, we establish the theorems of Griiss-Voronovskaja.
Then, we create related GBS operators of two real variables and examine their approximation
properties. Finally, we provide numerical examples to demonstrate the process of approximation

using these new operators.
2. Supplementary Findings

To achieve the primary findings, we provide the following information. These findings in
this section were written using the results found for the complex variable in [13]. Thus, the results

are presented without proof.

Lemma 2.1. Considering the operators (3), we have the following moments,

1] py(BO:T)
M+y)T+a
1] py(el'r) T:
1
Lty (e3,7) = CFIOL ——={+ty-wh+y+p-17?

+m+y—-wQRa+1)+u(u+ 2a)]t + a},
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Tmy(eg,)—(T]Jrs)g,{(nﬂf Wh+y+p—DM+y+2p-2)t +

3m+y-wWlm+y—p—-Dla+ D) +ppe+2a+D]* + [(M+y -+
3a+ 3a?) + u(p? + 3ap + 3a?)]t +ad},

Ly uy(e4.r) (n+s)4{(“ y-wh+y+p-—DM+y—pn—-2)(n+y+3u-—
Nt +2m+y—-wWh+y—pu—D[M+y—pn—2)B +2a) +3u(2 + 2a +
Wt +M+y—wWlm+y—p—1)(7 + 12a + 6a%) + 4p3 + p?(6 + 12a) +
4p(1+3a+3a)?+[(M+y— W@+ 20)(1 + 2a + 2a2) + p* + 4ap3 +
6a2p?% + 4 + 203p]t +at}.

Lemma 2.2. The central moments corresponding to the operators (3) are displayed below:

y—B)t+a B,
Ly =T = === O,

Ly (=020 = (o (- + ) + (¢ + B2 — p(u— DIt +

N +y + 2a(y — B) + (i — DIt + a?} = 002,

Liny(E-D%D == +B)4{[3n +1(12yB + 64 — 61— 6 — 8 — 6B2) +
Y+ v3(—6 — 4B) + Y2 (—6u® + 6p+ 11 + 12B + 6B2) + y(8u3 + 6p2 +
12812 — 141 — 12Bp — 6 — 8B — 682 — 4p3)& — 3t — 13(6 + 8P) +

n2(3 — 6p2%) + u(6 + 8B + 6B2) + p*t* + [—6m? + n(6y? — 12y(2 + a +
B) —12p% + 12p+ 12 + 8a + 12B + 120 + 6B2) + y3(6 + 4a) +

v?(6p2 —6p—18 — 12a— 12 — 12af) + y(—12p3 — 12p2(1 + a + B) +
1202+ a+B) + 12 + 8o + 12 + 12aB + 12aB? + 6B2%) + 6u* +

433 + 2a+ 3B) — 6p2(1 — 2aB — B%) — 2u(6 + 4a + 6B + 6af + 3B2) —
4ap3]t3 + [3n2 + n(y(10 + 12a) + 6p® — 60— 602 — 12a— 7 — 120 —
4B8) + v2(7 + 12a + 6a?) + y(4p3 + p2(6 + 12a) + p(—10 — 12a) — 7 —
12a — 602 — 4B — 12aB — 12a%B) — 4p* — 2p3(3 + 60 + 2B) +

3u?(1 — 4af — 2a?) + w(7 + 12a + 6a? + 4B + 12ap) + 16a2B2]1% +
[(M— WA + 4o+ 6a%) +y(1 +20)(1 + 2a + 20?) + p* + 4ap® + 6a%p? +
403 p]t +a*}.

Lemma 2.3. From the previous lemma we immediately get the following results.

hm L,””,(E 7,7)=(—B)t+a,
lim L5, (€ = 0%, 0) = (1 - ),

11m an,((f -4t =0.
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3. Main Results for Univariate Operators
As a result of the previous lemmas, the following Korovkin type theorem is easily reached.
Theorem 3.1. If ¢ belongs to the set of continuous functions defined on the interval [0,1 + v],

T%1m an,(qb 7) = ¢(1), uniformly on [0,1].

Now, we want to provide an upper limit for the approximation error using the

K —functional. Let us start by reviewing certain definitions and notations.

The definition of the modulus of continuity for a function ¢ in the space C[0,1 + y] with a

given value of 6 > 0 is as follows:

w($,8) =sup  sup |Pp(T+8) = (D)

|§1<8 T, T+8€[0,1+Y]

The Petree's K —functional is formally defined as follows:

p($,8) = Ul =<+ 811”113, (6 > 0),

ZECZ[01

where €2[0,1 +y] = {T€ C[0,1 +Y]: T, T’ € C[0,1 + y]}. Then, for a positive constant M, we
have the following inequality [12, p.1]

p(d,8) < Mw, (¢, Vo) 4)

where modulus of smoothness of the second order for a function ¢ belonging to the space
C[0,1 + y] is defined as

wy(¢,V8) = sup  sup |p(t+2) —2¢(t+ ]+ (D).

0<Z<8 T,T+22€[0,1+Y]

The upper bound for the error ¢(t) — L (¢, T) can be bounded by the modulus of

n, uv
continuity, as previously described.

Theorem 3.2. If ¢ € C[0,1 + y], then

Ly (6,7) — $(0)] < 20(¢, V3)
where w denotes the usual modulus of continuity.

Proof. By considering the inequality
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(—1)?
6@ ~ (] < w(@,5) (1 g
and applying the operators these operators (3) we have

L (60 — @] < Lyh  (1p(®) — o0 D)

1 ap 2
< (ﬂ(d),S) <1 + S_ZLT] py((z - T) ,T))

if we choose § = / d)ﬁ‘ﬁ'i we reach the desired result.

®)

Theorem 3.3. Lety € N U {0} be fixed. For any value of t inside the interval [0,1] and every

function ¢ belonging to the set of continuous functions defined on the interval [0,1 + y],the

inequality below,

|e8 (@0 - (0] < 4p< ((d#%‘ﬁi) + Oy >) +o(oonl)

1| ap2 a1 a,p1
< Mw, (‘p'E\/q)nuy-"chw & +w(¢;¢n.u,Y)

holds.

(n+B)‘t+oc

Proof. We denote €’ uy(r) = Ln w(t T) = o

LB @0 = Ly (50 + 0(0) — ¢ (58,0

By using Lemma 2.1. we can easily reach that,

nuv(l D=1

nuy(f =1

and define the auxiliary operator,

(6)

Consider a function ¢ that belongs to the class C?[0,1 + y]. For any values of t and € that are

inside the interval [0,1 + y] we have,

and applying L we get

77!”’
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L8 @0® - (0 = YL G -t0 + ~(f (& - V)" (V)dv; )

G
Loy <f € —v){"(W)dv; T) f ( )( enh (1) - v) " (v)dv.

T

If we continue with absolute values of both sides of last equation

|58 @@ — 30 )|

ey (T
s L‘%‘ﬁy( fE(E — )" (V)dv :T> - f ( )( €n, uv(T) —v) 7" (v)dv
||§2"|| %Ey(@_ 2, )_I_Il("II( Wy( )) (7
=1 e+ (555 ]
In the view of Eq. (6) we obtain
|15 80| = |58, 90| + 161 + |6 (58, )| < 31191 ®)

Now, for ¢ € €[0,1 + y] and T € C2[0,1 + y], using (7) and (8) we have,

Lih @0 = 6] = |15, (&0 - (0 + ¢ (56, @ ) - ¢ )
< |12F (¢~ 50| +[F @0 — (@] + [t - (D)
+[o (e, ) - 00|

< 41— g1+ 8 o2y 4 (S22 4 (g - ot ).

Choosing 6§ = /CDS‘E:, we obtain the desired inequality.

The Voronovskaja’s-type theorem is given in the study [13] as Theorem 2.1. Therefore, the

theorem is presented without proof.

Theorem 3.4. ([13]) Let ¢ be a function in the set of continuous functions defined on the interval

[0,1 + y]. Suppose that function ¢ has a second-order derivative at a point T on the interval
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[0,1 + y]. Then, by considering the behavior of ¢ around t and ensuring that the expression

accounts for limits approaching from both sides of t, we have the following conclusion:

1
lim n[L58, @0 - @] = [ty - Bre + ¢/ (0 + 571 - D" (D),

where 0 < o < B.

In the subsequent discussion, we will provide a Griiss-Voronovskaya type theorem using

the methodology outlined in (cf, [14]).

Theorem 3.5. Let ¢, € C[0,1 + y], for each T € [0,1] we have,
lim (0 + B) [ 55,00 0) — L5, (0,913, @G D) = 1 - D¢ T (.

Proof. Since

(@D (1) = d(1)5(1)
(@' (™) = ¢’ (V) + d(DT' (V)
and

(¢ (™ = ¢"(DI(D) + 2¢' (DT (D) + (DT (D).

—[nw(d)ir) DOUD + 00 L, 6~ 50+ P (- 00

((T)[ y(d) ) — ¢(0) + ¢’ (D)L y(E il ( ) aBy((E— 0% T)]
ap ¢ () LB 2,
_Ln uy(q) T) n, p.y(( T) C(T) + Z (T)Ln uy(z n uy((z - ) T)

218 (@030 [T @ + 20/ U@ + T OLE, @50
+ Ly, G =10 [0 - L5E (0]

By utilizing Lemma 2.2, we obtain
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lim (n + ) [Ly, (42 0) — Ly, (DL, G 0]

= lim(+ B [ L5, (050 — 6(I®)] - 60 v R

II()

4@ lim 1+ B) [Ly, (45D = 60| = ¢ Dyt = =11 - D

— lim 157, (&0 lim (0 + ) 156, G0 = 0] - T @ve - E220 - )]

r(l— v
——— '@ lim 0 [¢@ - L35, (65D + 26’ T ()

+ @yt lim (+ B) [(0) — Lt (0.

Considering Theorems 3.1 and 3.4 completes the proof.
4. Approximation Properties in the Space of Bogel Continuous Functions

Yang et. al. examined the multivariate context of the Stancu operators on a simplex and
demonstrated that these operators preserve the Lipschitz property of the original function [15].
The operators in question are examined in their two-variable form in reference [16]. In their work
[16], the authors presented Voronovskaja-type and Griiss-Voronovskaja-type theorems using the
standard modulus of continuity for bivariate Stancu operators, within the context of quantitative

mean.

In the bivariate scenario, the ideas that are commonly used in the univariate case are
naturally extended. Let I,q =1, X1, and I, = [0,1+ ], I, =[0,1+v] and I> =1 xI,] =

[0,1]. The bivariate Stancu-Schurer operators define as follows,

N+u=—Y m+v-s

Lo s @@y = Y Z Wy Wi s (1

p=0 j=

)

where & € C(1q), Wiappy(®) and wpyyjs(y) are similar in the definition (2),

3|~

Pr—y,p(T), Pm—s,(¥) are similar to the previous Equation (2), y,s are non-negative integers,
n,m € N such thatn + p > 2y,m+v > 2s, and y, v € N, . Throughout this paper, ep_j(‘r, y) =
tPyJ,j € Ny and p +j < 2.
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In this part, we will provide a generalization of operator (3) specifically for the B-
continuous functions. To accomplish this, we will create a GBS operator that is linked to the

bivariate type operators and examine some of its features related to smoothness.

Karl Bogel developed the ideas of B-continuous and B-differentiable functions in his work,
as referenced in sources [17-19]. The Korovkin theorem, which is widely recognized in
approximation theory, was established by Badea et al. in their works [20] and [21]. This theorem
specifically focuses on B-continuous functions. The authors in [20] established a Korovkin-type

theorem for approximating B-continuous functions by employing the Boolean sum technique.

The investigation in [22, 23] focused on the approximation features of the bivariate
Bernstein-type operators and their associated generalized Boolean sum operators. In recent years,
numerous researchers have made substantial contributions to this area. Please consult the

mentioned articles for further information [24-29].

Now, we shall provide fundamental concepts and notations that will be utilized in this
research. For more information, please refer to references [17, 18].

Let I and J represent closed intervals in the real numbers and let D be the Cartesian product

of I and J. A function ¢: D — R is called a B-continuous (Bogel continuous) at a point (7, y,) €

D if lim A, [10,y0;7,y] =0, for any (z,y) € D, with A, d[z4,y0; T, ¥] = d(7,¥) —
(@¥)~(T0.¥0)

& (7, ¥0) — d(70,¥) + d(T0, ¥0)-

The notation C,(Q) represents the set of all B-continuous functions on Q@ =1 x J while

C(Q) represents the set of all ordinary continuous and bounded functions on Q. The GBS

a,f,9,6

operator associated with the operator L5 >, . ¢

(d; 7, y) is defined as follows:

0(,339@ . — 77+H_Y m+q—5
GLn,m,u,v,y,s (b;T,y) = szo Zj:o Wn+u,p,y(T)Wm+v,j,s )

<o)+ o (rire) o (sl

o,B,9,8

The operator GLysy, ay.s

is well-defined on the space C,(Q) and acts on itself.

Additionally, ¢ € C,(Q) . L‘,;f,;fiﬁ,,y,s(q);r,y) is an evident linear positive operator that

reproduces linear functions.

We calculate the rate at which the sequences of operators (10) converge to ¢ in the space

of B-continuous functions on @, using the modulus of continuity in the Bogel sense. Let us start
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by reviewing the definition of the Bogel (mixed) modulus of smoothness for a function ¢ €
Cp(Q). The Bogel modulus of smoothness of a function f belonging to the space Cp, (Q) is defined
as

wB(q); 81'82) = Sup{|A(T,y)¢[tJS;TJ }’]l |T - tl < 81! |y - Sl < 82}!

for all (z,y), (t,s) € Q and for any (8,,8;) € (0, ) x (0, @) with wp: [0,0) X [0,0) > R,
[30]. This modulus has similar properties to the usual modulus of continuity. For example, if ¢ €
C,(Q) then ¢ is uniform B-continuous on Q and

lim  wg(d; 8y, 8,) = 0.

n,m-—oo

Theorem 4.1. For every ¢ € C,(Q), in each (z,y) € Q, the operators (9) satisfy the following
inequality,

|GLyESS, (@5 7,3) = ()| < 405 (03 8 81) (10)

where 8, = 3227 + (l;—")z,éim = 3y 4 ()’

Proof. From the definition of wg (f; 8y, Sm) and by the elementary inequality

@5 (D 285 A8 ) < (1 +24) (1 + ) 05 (3 8, 81 ) Ay Ay, > 0

we get,

< (1 N |18— tI) (1 N |y6;5|> w5 ((:5,,61) (11)

n

for every (7,y),(t,s) €Q and for any §,,6, >0. Using the definition of

Ay fIt, s; T, y], we may write,

O(1,5) + d(t,y) — d(t;s) = d(1;¥) — Ay OlEs s; T Y]

o,B,9,¢

When we apply the GL, 7 ')y s

(db; 7, y) operator to this equality we get
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9, B0,
GL% En p.cv Y,S (d;7,y) = d(5; y)L?;,En,u?v,y,s(eo,oi T, )’) -

8.5,
LB s(Baydlt: s Ty T,).

o,B,9,¢

Since Ln.m,u,v.y,s

(e0,0;7,¥) = 1, considering inequality (11), using the linearity of the

Dy, » operator and using Cauchy-Schwarz inequality we have,

|GL$](,,§7111,9|.'1?1/,y,s (b;1,y) — d(x, y)| < L%fffv,y,s(|ﬂ(r,y)¢[t: s; Tyl y)

B¢ . -1 |7aBIs 2,
S <Ln,m,u,v,y,s(eO,O'T' y ) + 80 | Lymavys (el,O - T) LY

+8m \/%rﬁn?u,cv,y,s (30,1_}/)2;‘[,}/)

+8 18 J Z‘Erfp?v,y,s (el,O - T)Z; T, }’) L%{',Er’li’[?v,y,s ((eO,l - }’)2; T, }’)> Wp (q): 81’]: 8m)

From Lemma 2, we can write,

Lymanys (£ = D% 1.y) =

NMUV,Y,S (- +wW+ @+ S)Z -y — 1)]72

1
(n+B)?

(u+4B) *
+n+p+2au—PB) +yly— DIt +a?} <t “+BB = Dy

and

aBﬁc ((l y)z T, y) < Ylv+ao) v(v+4¢) q)y,g,*

Ly mpv.y.s mic msy-

We obtain,

_p [m(p+4B)
|GL$7(,.TBY,11,9L’L§V,7',5(¢; 7,y) — ¢(, y)| <|l1+ 6771 PR EP)
n+B
v+ 49) n(u+ 4B) V(v + 4)
8_1 _— 8_16_1 5 s
+ijﬂ+ﬂ m\/ n+B m+c “OB(q)'n'm)

which gives the assertion of Theorem the desired inequality (9) by choosing &, = d),‘;‘fu and

9,6,%
m,s,v*

8= |
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Now, we study the degree of approximation for the operators GL:’,E&qu,r,s(d)F 7,y) by
means of the Lipschitz class for B-continuous functions. For f € C,(Q), we define the Lipschitz

class Lipy, (A, v) with  A,v € (0,1] as follows:

Lipy ) = {d € Cp(Q): [Ayydlt, 557, ¥1| < Mt —7]Ms — y[°}

for (t,s),(t,y) €Q, M > 0.

Theorem 4.2. Letd € Lipy (A, w), then we have,

8,9, A
GL%(,En,u,cv,y,s (q): T, Y) - (1)(‘[, y)| < MSn/ZSIr)r{Z,

where 8, 8,, are as given in the proof of the previous theorem  and ALV E(01]
(1,y) €Q.
Proof. By the definition of GLyo~S, operator and by linearity of the Livbrs, ¢

operator, we may write,

B9, B9,
GL(;;,En,u?v,y,s (CI), T, y) = Lg],[rgn,u,cv,y,s ((I)(T: s) + d)(t, Y) - d)(t; 5); T, Y)

,B,09, ,B,9,
= L300 (DY) = By ol s; Tyl 1Y) = dm LTRSS, | (e T,y)

B9,
—L5B0S (B dlt ;T Y] T, Y).

And, by using the hypothesis, we have,

B9, 8.9,
GL%,i,u?v,y,s ((I)i T, Y) - (I)(T; Y) < L%(fn,u,cv,y,qu(T,y)q)[t; ST, }’] |; X, )I)
- nmwv,y,s r

J— alBlﬂrC . (X,B,ﬂ,c .
= MLymvys(It =T T y) Lol s (s — v 7, 9).

Applying the Holder's inequality with p; =2/A,q; =2/(2—2) and p, = 2/v,q, =
2/(2 —v), we get

A v Av
8,9, A v
GLynis, s (@5 7,) — o y)| < MD, (It = 1% 12Dy (Is — y17;y)2 < MEZ8Z,
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5. Graphical Examples

Here, we examine the theoretical findings from the preceding parts via the use of graphical

illustrations and a numerical demonstration.

Example 5.1. For the changing values of n as n = 20(red),n = 50(green), n = 100(blue), the
convergence of L%;ﬁ,y(dx 7) to ¢(t) = sin(2mt) (black) is illustrated as the first example in the

Figure 1.

0.08
0.06
0.04+

0.02+

—0024 .7
—0.04-

—0.064

— e plop [op) .= pl=P)
| Loy Loy Loty

(b, 7) to (1) = sin(2mt) forn = 20,50,100.

L]

Figure 1: The convergence of L‘;‘]“ﬁ,y

Example 5.2. For the changing values of n as = 20(red), n = 50(green), n = 100(blue), the
convergence of Lﬁ;:ﬁ,y(qb, 7)to (1) = (r—%) sin(mt) (black) is illustrated in the coming

figure.
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Figure 2: The convergence of Li® (4,7)to (1) = (t—1)sin(nt) (black) is illustrated for n =
20,50,100.

Example 5.3. For the changing values of n as n = 20(red), n = 50(green), n = 100(blue), the

convergence of Lf;’_ﬁ’y(¢, T) to ¢(1) = cos(2mt) + 2 sin(mt) (black) is illustrated in the figure

showing that the expression leans toward both sides as n increases.

0 01 02 03 04 05 0§ 07 08 05
.

— . pl=p) (op) _ . _ pl=p)

| Lo Loy Lo

L

Figure 3: The convergence of L‘;"ﬁ'y(q), T) to p(t) = cos(2mt) + 2 sin(nt) (black) forn = 20,50,100.

a'ﬁ

.y (@, T) operators are given in comparison

In the next table, the error estimation of the L

with the L‘,’;;ﬁ,},(qb, T) operators. The absolute value of the difference of both operators with the

¢ () = tan(t? + 2t + 10) function is given according to the increasing n values and the value

of t. Accordingly, as n values increase in multiples of 10, the approximation of the ngﬁ_y(dx 7)

ap

operators to the ¢ () function is better than the L,’,, .

(¢, T) operators.
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Table 1: Error estimation for operators L‘Zz'ﬁ,y (¢, 7).

T =0.5
1 Loy (.0 — (D) Loy (6,0 — (@)
10 4.918308847 4.030402557
102 0.022928159 0.091543553
103 0.120741290 0.095097202
10* 0.010993630 0.008609165
10° 0.001090463 0.000853504

. . . a,p
Finally, here we visualized the approach of the new type operators L,’, ..(¢,7) for the

changing values of T where a = 3,3 = 5,y = 1 values are taken.

Example 5.4. Visualization of the convergence of L‘,’,‘;fiy (¢, T) with varying values of t for the

2_
valuen = 80, to ¢ (1) = (2_1;2 (black) is illustrated in the figure. The u values here are chosen

as 1,5,10,15 respectively and the colors in which each value is represented can be seen in the

figures' legend.

|_._ (=) . f(=p) (=P (=P

n, Ly n:é 1, 10,7 1, 15,7

; . B — i
Fl?ure 4: The convergence of Lf‘]yu‘y(cb,r)operators to ¢(1) = (2 — 1) /(1 — 1)? (black) for changing p
values.

Now we give some graphics comparing the approximation of the bivariate and GBS

operators of corresponding operators.

Example 5.5. Visualization of the convergence of GLf,‘f;lifvly,S to function ¢(z,y) =

sin(4nt) + sin(my). Here ¢ function is blue colored and GBS operators are yellow forn,m =
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2 and red for changing n,m =5 values. A better approximation is observed as n,m values

increase.

0.050.1(00.150.200.250.300.35

y X

Figure 5: The convergence of GL?{.ES?LEV.%S operators to ¢(t,y) = 212 + 3y? (blue) for changing n, m
values.

Example 5.6. Visualization of the convergence of GL%(',E):LﬁfV,Y,S to function ¢(z,y) = 272 + 3y2.
Here function is blue colored and GBS operators are yellow one, so as red is present the bivariate

operators. It is clear that GBS operators have a better approach.

0.1 e
05 04 03 02 o)

Figure 6: The convergence of GL‘f,’f,’lﬁfvyyys operators and bivariate operators to ¢(z,y) = 272 + 3y?

(blue) for GBS and bivariate operators.
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