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Peltier modules are thermoelectric devices that convert electric energy to thermal energy. The
cost of the cooling process by the module depends on the size of the module. The number of
modules is vital in deciding the system's performance. A Peltier module has a high value of the
coefficient of performance (COP) for the applied electrical power. The module finds many
applications because of its compact size, eco-friendly nature, high durability, noise and
vibration-free operation, and low maintenance. Despite these advantages, the Peltier module
faces constraints for large-scale applications. This work presents a computational analysis of
the temperature distribution of a fluid volume surrounded by four Peltier modules using
COMSOL Multiphysics software. Nine different cuboids with multiple Peltier modules are
analyzed. The temperature distribution as a function of time is presented. A Machine learning
algorithm is developed to predict the temperature of the fluid for varying cuboid sizes
surrounded by Peltier modules. The developed machine learning model can predict the average
temperature of the fluid domain with an accuracy of 97% for any given Peltier size, fluid
volume, applied current, and time. 
 

	

Peltier Modülleriyle Çevreli Bir Küpün İçindeki Akışkanın Termal Analizi 
 

M A K A L E  B İ L G İ S İ   Ö Z E T  

Anahtar	Kelimeler:	
Termoelektrik etki 
Peltier modülü 
Makine öğrenimi 
 
 

Peltier modülleri, elektrik enerjisini termal enerjiye dönüştüren termoelektrik cihazlardır.
Modül tarafından gerçekleştirilen soğutma işleminin maliyeti, modülün boyutuna bağlıdır.
Modül sayısı, sistemin performansına karar vermede hayati bir rol oynar. Bir Peltier modülü,
uygulanan elektrik gücü için yüksek bir performans katsayısı (COP) değerine sahiptir. Modül,
kompakt boyutu, çevre dostu yapısı, yüksek dayanıklılığı, gürültüsüz ve titreşimsiz çalışması ve
daha az bakım gerektirmesi nedeniyle birçok uygulama bulmaktadır. Bu avantajlara rağmen,
Peltier modülü büyük ölçekli uygulamalar için kısıtlamalarla karşı karşıyadır. Bu çalışma,
COMSOL Multiphysics yazılımını kullanarak dört Peltier modülüyle çevrili bir sıvı hacminin
sıcaklık dağılımının hesaplamalı analizini sunmaktadır. Birden fazla Peltier modülüne sahip
dokuz farklı küboid analiz edilmiştir. Sıcaklık dağılımı zamana bağlı olarak sunulmuştur. Peltier
modülleriyle çevrili çeşitli küboid boyutları için sıvının sıcaklığını tahmin etmek üzere bir
Makine Öğrenmesi algoritması geliştirilmiştir. Geliştirilen makine öğrenmesi modeli, herhangi
bir Peltier boyutu, sıvı hacmi, uygulanan akım ve zaman için sıvı alanının ortalama sıcaklığını
%97 doğrulukla tahmin edebilmektedir. 
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NOMENCLATURE	
a Coefficient of Absorption  u Vector-valued field variable 

C Calorific capacity ሺ𝐽/𝑘𝑔. 𝐾ሻ  V Voltage / Tension (V) 

c Coefficient of Diffusion  ∅ The specific flow of heat sources ሺ𝑊/𝑚ଷሻ 

D Density vector of the electrical flux  𝛺 Computational domain 

da  Damping term  𝜕𝛺 Computational domain boundary 

E Electric field  𝛼 
Seebeck Coefficient matrix Conservative flux 
convection coefficient 

Ea Mass matrix (or mass coefficient)  𝛽 Convection coefficient 

f Source term  𝛾 Conservative flux source term 

g Boundary source term  𝜀 Matrix of relative permittivity 

h 
Field variable coefficient in Neumann Boundary 
condition  𝜆 Thermal conductivity ሺ𝑊/𝑚. 𝐾ሻ 

hT Transpose of h  𝜇 Lagrange Multiplier 

J Electric current density vector  𝜋 Matrix of Peltier coefficient 

n Outward unit normal vector on ∂Ω  𝜌 Density ሺ𝑘𝑔/𝑚ଷሻ 

q Heat flow vector  𝜎 Electrical conductivity (S/m) 

r Coefficient in Neumann Boundary condition  𝜑 Rate of heat production 

T Absolute temperature (K)  𝛻, 𝛻ሬ⃗  Gradient, Vectoral Gradient operator 

INTRODUCTION	
	
The Peltier effect, discovered by Jean Charles Athanase Peltier 
in 1834, is a phenomenon in which an electric current flowing 
through a junction of two different conductive materials 
causes a temperature difference across the junction. Peltier 
modules, known as thermoelectric coolers or TECs, utilize 
this effect to achieve precise and efficient temperature 
control. The module finds applications including green 
buildings, air coolers, Light emitting diode (LED) cooling, 
polymerase chain reaction (PNA), small-scale refrigerators, 
and mini/micro heat exchangers. Various works have been 
reported in the literature related to the analysis of thermal 
characteristics of Peltier Modules.  
 
Zaferani et al., (2021) discussed the various applications of 
Peltier cells in aviation and the military using advanced 
materials like polymers and fibers.  The applications include 
preparing flexible compounds and stretchable electronic 
devices such as nanogenerators, solar cells, supercapacitors, 
and carbon nanotube field effect transistors. Antonova and 
Aparicio et al., (2012) discussed the usage of thermoelectric 
coolers and calculated the Coefficient of performance. 
Convective and radiative modes of heat transfer were 
considered. The temperature sensitivity of the materials was 
discussed to understand the underlying physics. A tradeoff was 
found between selecting materials that have suitable electrical 
conductivity (γ), Seebeck coefficient (α), and thermal 
conductivity (κ). Seebeck coefficient must be high to have a 
pronounced Peltier effect. Electrical conductivity must be high 
to reduce Joule heating, and thermal conductivity must be low 
to reduce the heat transfer rate. Nasri et al., (2017) discussed 
the diverse designs of the thermoelectric generators that were 
flexible and dependent on parameters such as current Intensity 
and temperature difference. The module performed better 
with an increase in temperature. The module's energy 
consumption by cooling the hotter side was also determined.  
The application of thermoelectric generators in a condensing 
combi boiler was detailed by Zeki Yilmazoglu et al., (2013).  It 
was concluded that the TEG installation of the combi boiler 
reduced the electricity consumption. Thermo-electric heating 
and cooling units were proposed as an alternative for HVAC 
applications by Zeki Yilmazoglu (2016). 

Teffah et al., (2018) discussed using thermoelectric 
generators as a partial heat sink for the thermoelectric cooler 
by converting the lost heat into useful energy via the Seebeck 
effect. The performance of thermoelectric coolers at different 
input voltages was investigated via simulation and 
experiments. The results concluded that the electrical 
potential generation of the thermoelectric generator (TEG) 
was directly proportional to the input voltage to the 
thermoelectric cooler (TEC). The thermoelectric module was 
proposed as a cooling system and an electric power 
generator. Lyu et al., (2019) studied the thermal behavior of a 
single-cell battery subjected to different cooling methods, 
including forced convection using air and liquid cooling. A 
new design for a cooling system was proposed: a combination 
of liquid cooling, forced air cooling, and a thermoelectric 
module. A study was carried out using a hybrid TEC-liquid–
air cooling system. The hybrid system showed an improved 
cooling effect compared to the individual cooling methods in 
an electric vehicle's battery thermal management system.  
 
Villasevil et al., (2013) modeled a thermoelectric structure with 
pellets of non-standard geometry and materials. A correlation 
was proposed based on experiments and a numerical model. 
Material properties had a direct effect on the thermoelectric 
devices. For different current values, there was a 
corresponding shift in the temperature distribution, either 
above or below, depending upon the polarity of the current, i.e., 
heating or cooling. Looman (2005) proposed a finite element 
method to study thermoelectric devices using ANSYS Software. 
Steady-state and transient-state analyses were conducted in 
detail for TEGs and TECs. Jaegle (2008) proposed the adoption 
of thermoelectric multiphysics in the COMSOL Multiphysics 
library and detailed the governing equations. The temperature 
is fixed on one side and was commonly adopted in numerical 
models to quickly visualize the heating/cooling on a side. AB 
(2008) is a modeling guide used to study the modeling patterns 
and methods in the COMSOL Multiphysics software. It is used 
to understand the physical processes in the thermoelectric 
domain. Venkatesan and Venkataramanan (2020) proposed 
fixing the hot side temperature for Peltier modules. A fixed 
incremental value of 5K temperature was used in the study. 
The temperature difference increased with an increase in 
current.  There was an increased cooling effect with a small 
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temperature difference and decreased cooling with a very 
intense hot side for a particular temperature difference.  
 
Recent works report on using soft computing techniques for 
various thermal applications, including Peltier modules.  
Zhan et al., (2017) predicted the thermal boundary 
resistance for thermal management in high-power micro 
and optoelectronic devices. The concepts of phonon 
transport of heat transfer and the acoustic and diffuse 
mismatch models were proposed to calculate the resistance. 
The Gaussian process regression and Support Vector 
Regression models (SVRM) gave better results when 
calculating the regression coefficient. Machine learning 
models (ML) were suggested as an alternative to the 
computationally expensive molecular dynamics technique. 
It was found that the film thickness was one of the critical 
parameters that affect the thermal film resistance.  
 
Song et al., (2019) proposed using ultrasound to enhance 
the heat transfer in industrial evaporators. The universal 
heat transfer coefficient increased by 20%. The most critical 
controlling variable was the temperature difference 
between heating steam and evaporation. The prediction 
used machine learning models.  Lower root mean square 
error was reported by using SVM and NNet algorithms. Qian 
et al., (2019) predicted the performance of oscillating heat 
pipes during machining processes. A machine learning 
model was developed to predict the parameters to dissipate 
the heat generated during the machining process. Different 
machine learning algorithms were tested, and the extreme 
gradient boosting algorithms (XGBoost) performed well. 
Bassi et al., (2021) developed machine learning models to 
predict the energy utility of a building accurately. XGBoost, 
LightGBM, and CatBoost techniques were used to predict the 
power consumption. The performance characteristics of 
these algorithms with gradient-boosting regression trees 
were summarized.  It was found that XGBoost was the best 
algorithm for the considered dataset.  
 
The above literature details the works reported on the 
Peltier module and the application of soft computing for 
various related applications. Though Peltier modules have 
higher COP for lower power supply, their performance for 
larger-scale applications is limited.  The present work 
attempts to understand the effects of the Peltier module on 
fluid cooling and heating in varying volumes. A machine 
learning model is developed to predict the temperature 
accurately. The specific contribution of parameters (cooling, 
current, time, Peltier size, and fluid volume for predicting 
the output temperature is done with SHAP values.  The use 
of SHAP values by Lundberg & Lee (2017) was derived from 
Shapley's values based on Shapley's game theory (1953). 
The application of the machine learning model holds 
promise in predicting the average temperature of fluid 
bodies surrounded by large-sized Peltier modules, 
circumventing the need for computationally intensive 
simulations. By offering a rapid and reliable means of 
temperature prediction, the model stands to significantly 
expedite the design and optimization processes for systems 
incorporating large Peltier modules. The predicted 
technique can optimize cooling processes in applications 
such as electronic device cooling, automotive climate 
control, medical refrigeration, and industrial equipment 
thermal management. 
		

PROBLEM	DESCRIPTION		
 
In the present work, a fluid is filled in a cubical volume 
surrounded by four Peltier modules, as shown in Fig. 1(a). 
Water is considered as the working fluid. The fluid can be 
heated or cooled by changing the polarity of the Peltier 
module. A transient analysis is done using the COMSOL 
Multiphysics package. The variation of the average 
temperature of the fluid with respect to time is analyzed for 
different Peltier dimensions, fluid volume, and input 
current. The current is supplied to one of the highlighted 
terminals, as shown in Fig. 1(b), while the other terminal is 
grounded. If the polarity of the supply is reversed, the 
heating or cooling effect can be changed. One side of the 
Peltier module is kept constant at 293K, as shown in Figure 
1(a). It is assumed that the effect of rising and falling 
temperature on one side of the module is compensated by 
providing sufficient external resources, as mentioned in Teffah 
et al., (2018). It is done to keep the value of temperature 
difference (∆T) minimal to obtain the maximum rate of cooling 
and to maintain adiabatic conditions, as mentioned in 
(Venkatesan & Venkataramanan (2020), Jaegle (2008) and 
Nasri et al., (2017)). A detailed parametric study is carried 
out on the fluid body to find the effect of Peltier dimensions, 
fluid volume, and input current on the average fluid 
temperature. Figure 1(b) shows the model setup for Peltier 
dimension 27x37(mm). A machine learning model is trained 
with six different Peltier modules of dimensions (in mm) 
18x18, 18x27, 27x18, 27x27, 27x37 and 37x27. The model 
is tested with three datasets, each representing a unique 
Peltier module data. The testing dataset comprises Peltier 
modules of dimensions (in mm) 46x46, 56x46, and 46x56. 
 

 

Fig.	1(a). Peltier module of dimension 46x46 
 

 

Fig.	1(b). Individual Peltier modules 
 
MESHING	AND	GRID	INDEPENDENCE	STUDY	
	
The results shown in Fig. 2 are for a mesh generated for the 
Peltier module setup of dimension 27 x 27(mm).  Studies are 
carried out starting from extra course mesh to fine mesh 
elements. A grid independence test is performed to determine 
the optimal mesh size.  The temperature values are supposed to 
be independent of the mesh size.  The model is given a uniform 
normal meshing. When the number of domain elements exceeds 
106841, as shown in Fig. 2, the temperature recorded does not 
change much. The optimal mesh quality is found to be 0.03556. 
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Fig.	2.   Grid independence test 

	

GOVERNING	EQUATIONS	AND	BOUNDARY	CONDITIONS	
	
These governing equations considering thermoelectric effects 
and heat transfer for thermoelectric systems are given by Nasri 
et al., (2017). The Joule effect must be considered for effective 
modeling of the system. The equations are 

𝜌𝐶
𝜕𝑇
𝜕𝑡

 𝛻 ൌ ∅ ሺ1ሻ 

The equation of continuity of electric charge: 
 

𝛻 ቂ𝐽 
డ

డ௧
ቃ ൌ 0 ሺ2ሻ 

The electric field E can be obtained from an electric scalar 
potential as detailed in Antonova and Looman (2005) and is 
as follows: 

𝐸 ൌ െ𝛻𝜑 ሺ3ሻ 
 
The thermoelectric constitutive equations from Antonova 
and Looman (2005) are: 
 

𝑞 ൌ ሾ𝜋ሿ𝐽 െ ሾ𝜆ሿ𝛻𝑇 ሺ4ሻ 
𝐽 ൌ ሾ𝜎ሿሺ𝐸 െ ሾ𝛼ሿ𝛻𝑇ሻ           (5) 
 

The constitutive equation for a dielectric medium from 
Antonova and Looman (2005): 
 

𝐷 ൌ ሾ𝜀ሿ𝐸 ሺ6ሻ 
 

The coupled heat equation and Poisson's equation are 
extended by the thermoelectric effects and solved 
simultaneously to obtain the temperature and Voltage 
values from Jaegle (2008): 
 

െ𝛻ሬ⃗ ⋅ ቀሺ𝜎𝛼ଶ𝑇  𝜆ሻ𝛻ሬ⃗ 𝑇  𝜎𝛼𝑇𝛻ሬ⃗ 𝑉ቁ ൌ 

𝜎 ቀ൫𝛻ሬ⃗ 𝑉൯
ଶ

 𝛼𝛻ሬ⃗ 𝑇𝛻ሬ⃗ 𝑉ቁ  ሺ7ሻ 

𝛻ሬ⃗ ⋅ ൫𝜎𝛼𝛻ሬ⃗ 𝑇൯  𝛻ሬ⃗ ⋅ ൫𝛼𝛻ሬ⃗ 𝑉൯ ൌ 0                              (8) 

While implemented in the COMSOL Multiphysics interface, 
the equations can be written as partial differential equations 
of the variable u (dependent on T and V) in one to three 
dimensions. The general form of the equation, as detailed in  
Jaegle (2008) and AB (2008), are  
 

𝑒
𝜕ଶ𝑢
𝜕𝑡ଶ  𝑑

𝜕𝑢
𝜕𝑡

 𝛻 ⋅ ሺെ𝑐𝛻𝑢 െ 𝛼𝑢  𝛾ሻ  

𝛽 ∙ 𝛻𝑢  𝑎𝑢 ൌ 𝑓 𝑖𝑛 𝛺 ሺ9ሻ 

𝑛 ⋅ ሺെ𝑐𝛻𝑢 െ 𝛼𝑢  𝛾ሻ  𝑞𝑢 ൌ
𝑔 െ ℎ்𝜇 𝑖𝑛 𝜕𝛺 ሺ10ሻ

 
 

ℎ𝑢 ൌ 𝑟 𝑖𝑛 𝜕𝛺 ሺ11ሻ 

The first equation in this list is the PDE, which must be 
solved for thermoelectric systems.  
 
Equation 10 has a Neumann boundary condition that allows 
for a constant heat flux at the boundary. Equation 11 has a 
Dirichlet boundary condition in which a constant surface 
temperature is given. 
 
NUMERICAL	MODEL	AND	VALIDATION	
	
The model has been validated using the data reported by 
Villasevil et al., (2013).  A comparison between numerical 
values of surface temperature and the results of Villasevil et al., 
(2013) for different current values is shown in Fig. 3. It is 
observed that the simulation results follow the same pattern as 
reported by Villasevil et al., (2013).  The temperatures of the 
present numerical model match well with those of Villasevil et 
al., (2013) for 1A, 1.5A, and 2A.  Further analysis of other 
cubical volumes is done with the validated numerical model. 
 
RESULTS	AND	DISCUSSION			
	

Heat	transfer	characteristics	of	a	single	Peltier	module	
 
The temperature distribution for nine different Peltier 
geometries is simulated with varying volumes of fluid and 
five different current values (1 A, 1.5 A, 2 A, 2.5 A, 3 A). The 
heating and cooling effects are studied for all the Peltier 
geometries. The variation of temperature with respect to 
time follows a parabolic curve where the temperature 
increases or decreases based on the polarity and reaches a 
steady state after a specific time. A single Peltier module is 
modeled, and its temperature distribution is studied.  As a 
further extension, the cubical volume surrounded by four 
Peltier modules is modeled with a validated numerical 
model, and further analysis is done.  
 
Surface temperature (Single Peltier module): The variation 
of surface temperature for a single 46 x 46mm Peltier 
module at 100s at 2A current for both heating and cooling  
 
are shown in Fig. 4. The surface temperature variation for all 
the nine single modules is carried out. 
 

Fig.	3. Comparison of the temp. values with Villasevil et al., (2013)

It can be observed that there is a temperature rise or drop 
(based on the polarity) initially, and it settles down to a 
steady-state value depending upon the current and time. A 
steady temperature distribution is reached after the 
mentioned time.  Different modules require different times 
to reach the steady temperature distribution, and they are 
noted for all nine single modules. 
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Bulk	 fluid	 surface	 temperature	 distribution: The fluid 
domain has been introduced, and Peltier modules of varying 
sizes surround it.  The study carried out for the 27 x 27(mm) 
Peltier setup is shown in Fig. 5 (a), and its bulk surface 
temperature is also shown. The case is for the supply 1A, and 

the fluid surface temperature distribution in the 1800s is 
shown. Similar studies are done for other modules.  Fig. 5(b) 
shows the transient temperature distribution for a 46 x 46 
module at 100s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

Bulk fluid surface temperature variation with respect to time at 
different current values for the Peltier module 27 x 27(mm) has 
been plotted. It is shown in Fig. 6. Here, the temperature of the 
fluid increases or decreases based on the polarity and reaches 
a steady state after some time, depending on the current value. 
It is to be noted that a steady state has been achieved in all the 
conditions around 1250s. 
 
Training	dataset	
 
The temperature distribution is collected as a function of 
time for varying Peltier volume and current. The machine 
learning model is trained with six different Peltier 
geometries. The remaining three modules are used as test 
cases. The size of the model varies from 18mm to 46mm. 
The analysis is done for varying dimensions of length and 
breadth. The fluid volume depends upon the size of the 
module. The input current ranges from 1A to 3A, increasing 

in steps of 0.5A. Fig. 7 shows the six Peltier modules used to 
train the model. The parameters used as the input for the 
machine-learning model are 
 

(i) length of the Peltier module (in mm),  
(ii) breadth of the Peltier module (in mm),  
(iii) volume of the fluid (in cubic mm), 
(iv) polarity (1 for cooling and 0 for heating),  
(v) input current (in A) and  
(vi) time (in seconds). 

 
Testing	dataset	
 
The testing dataset comprises Peltier modules of 
dimensions 46mm x 46mm, 46mm x 56mm, and 56mm x 
46mm, varying from the training dataset's sizes. Input 
current ranges from 1A to 3A in 0.5A increments, akin to the 
training dataset. These dimensions ensure diversity, while 
fluid volume adjusts accordingly. Fig. 8 depicts the three 

 
Fig.	4.			Surface temperature of module for current value 2 Amps (Time = 100s) 

 

	
Fig.	5 Surface temperature distribution 

 

 
 
 
 

Fig.	6.   Variation of Fluid Temperature for different current values (Peltier module, size: 27x27mm) 
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Peltier modules utilized for testing to evaluate the model's 
generalization to new dimensions. This dataset aims to 
assess the generalization capability of the machine learning 

model trained on the six Peltier geometries, extending its 
applicability to previously unseen dimensions.

 

                                
(a)           (b)                 (c) 

 
                               (d)                            (e)                 (f) 
 

Fig.	7 Peltier module, size: (a) 18x18mm, (b) 18x27mm, (c) 27x18mm, (d) 27x27mm, (e) 27x37mm, (f) 37x27mm 
 

 
(a)         (b)              (c) 

Fig.	8 Peltier module, size: (a) 46x46mm, (b) 46x56mm, (c) 56x46mm 
 

Machine	Learning	Models	
 
Machine learning algorithms are essential for temperature 
prediction of varying Peltier modules (Vipin et al., 2024). 
These algorithms enable prediction and thermal 
management with nonlinear mapping functions with a fair 
amount of data. This study examines four popularly 
demonstrated machine learning models to predict the 
average temperature of fluid domains at varying Peltier 
modules.  Based on the diverse working nature of the 
models, Decision Tree, Gradient Boosting, Random Forest, 
and XGBoost are considered for comparison. Using open-
source Python libraries like Scikit-Learn and Keras, the 
implementation for all four models has been done. The 
investigation of utilized learning algorithms is given below. 
 
Decision	Tree	
 
A decision tree is a visual representation of the cognitive 
strategies employed in various decision-making processes 
(Dang et al., 2022). The decision tree has three types of 
nodes: the root, internal, and leaf nodes. The root nodes 
initiate the decision-making process, whereas the internal 
nodes segment the input space into subspaces guided by the 
discriminant function f(x), which begins at the root. 
 

𝑓ሺ𝑥ሻ ൌ 𝑊ሺ𝑥ሻ  𝜃 
 
In the neural network, g(x) is the activation function of each 
neuron, and f(x) is its output function. The decision tree can 
be categorized into nonlinear and linear based on the form 
of g(x). Sometimes, an internal node within a decision tree 
may not necessitate branching to a leaf node. Therefore, 
these internal nodes are designated leaf nodes if conditions 
are met. The method employs a local search approach to 
train decision trees. Nevertheless, this approach may result 
in local optima and not guarantee global optimization. 

Random	Forest	
 
 In machine learning, Random Forest is an algorithm derived 
from baseline decision trees. It is designed to overcome the 
drawbacks using a single decision tree, namely overfitting and 
instability. Random forest algorithm aims to generate more 
reliable outcomes by aggregating predictions from multiple 
decision trees (Carvalho et al.,2019). Additionally, it does not 
require assumptions regarding the statistical distribution of 
the data, so it can be utilized even in scenarios where the 
relationships between variables are non-linear. Each decision 
tree in the forest has its unique training set generated from the 
original training dataset using bootstrap sampling in the RF 
formulation. The final output is constructed by the determining 
average over predictions of all decision trees: 
 

𝐴𝑣𝑔ோிሺ𝑥ሻ ൌ
∑ 𝑝𝑟𝑒𝑑ሺ𝑥ሻே

ୀଵ

𝑁
 

 
Gradient	Boosting	
 
 A boosting algorithm is a type of learning algorithm that 
combines multiple sampler models to fit models. Models used 
in sampling are usually base models that have been trained 
using weak or base learners (Park et al., 2023). When a 
boosting technique is applied, the accuracy of these models is 
significantly enhanced compared to random guessing. With 
Gradient Boosting (GB), retrieving importance scores for each 
feature (attribute) is relatively straightforward. Based on these 
scores, assessing the significance of boosted decision trees in 
constructing a model is possible. In order to facilitate the 
ranking and comparison of attribute values, each feature in the 
dataset is ranked and compared based on its importance. The 
importance of a split point in a decision tree is determined 
based on how many observations are associated with that 
node. The performance measure can be the purity score or 
another error function for selecting split points.  
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XGBoost	
 
A prominent implementation of boosting algorithms is 
Extreme Gradient Boosting (XGBoost). It is a free and open-
source toolkit developed by the Distributed Machine Learning 
Community (DMLC) and distributed by the DMLC (Gao et al., 
2024). It enhances transparency and facilitates 
straightforward tree visualization, thus fostering a vibrant and 
engaged community. There are several notable differences 
between XGBoost and other boosting solutions, including the 
proportionally shrinking of leaf nodes, the penalization of trees, 
and adding randomization parameters. As part of an ensemble 
machine learning framework based on decision trees, the 
XGBoost uses gradient to construct regression and 
classification models. This algorithm was developed by Chen et 
al., (2016) as an efficient implementation of the gradient-
boosting methodology. It should be noted that XGBoost offers 
several advantages over gradient boosting, including more 
intelligent tree partitioning, shorter leaf nodes, random hidden 
node generation, and the ability to make predictions outside of 
the core. As a result of its seamless integration with the Python 
programming language and its widespread use in Kaggle 
competitions, the regression method has become increasingly 
popular in recent years. XGBoost outperformed four 
prominent machine learning models for predicting fluid 
domain temperatures across various Peltier modules. The next 
step may be to conduct sensitivity analyses, tune the 
parameters, and optimize XGBoost's predictive capabilities. 
With continuous optimization possibilities, the dynamic nature 
of machine learning algorithms is highlighted, and the potential 
of XGBoost in temperature prediction and thermal 
management for Peltier modules is encouraged. The XGBoost 
model is used to predict the temperature distribution curves 
for various combinations of the parameters. 
 
The graph in Fig 9 shows a 56 x 46 module for a 1A current.  
Similar graphs are obtained for all combinations, and the 
prediction accuracy is 97%. 

 
Fig.	9. Comparison between the numerical model and XGBoost model 
 
Model	Optimization	
	
This section explains comprehensive insight into the 
intricacies of the hyperparameter tuning process for 
machine learning models, namely, XGBoost, Gradient 
Boosting, Random Forest, and Decision Tree (Cotorogea et 
al., 2022). These models are implemented to predict the 
fluid domain's average temperature with varying Peltier 
module sizes. Bayesian optimization efficiently identifies 
optimal hyperparameter values by iteratively selecting the 
most promising parameter configuration. This optimization 
technique effectively explores the set of hyperparameter 
spaces to search for optimal values. In selecting 
hyperparameters, objective functions of Bayesian 
optimization techniques such as Expected Improvement 
(EI) and Upper Confidence Bound (UCB) play a significant 
role in balancing exploration and exploitation of the 
hyperparameter space. The objective oversees estimating 
the potential improvement at any given point while 
evaluating the objective function given its existing state. As 
the proposed work is evaluated on three datasets, the table 
below consists of hyperparameters for each machine-
learning model with its corresponding optimal values.

 
Table	1. List of optimal hyperparameter values using Bayesian Optimisation 

Datasets	 Models	with	their	optimal	hyperparameter	values	
1st dataset 
 

XGBRegressor (gamma = 1, learning_rate = 0.05, max_depth = 5, min_child_weight = 9, n_estimators=38, reg_alpha=180)

GradientBoostingRegressor (learning_rate=0.08, max_depth=4,max_features='sqrt', min_samples_leaf=50, 
min_samples_split=50,n_estimators=84) 
RandomForestRegressor (max_depth=6, max_features=0.72, min_samples_leaf=1, min_samples_split=10) 

DecisionTreeRegressor(max_depth=12,min_samples_split=12,max_leaf_nodes=19, max_features='auto') 

2nd dataset XGBRegressor (gamma = 8, learning_rate =0.08, max_depth = 5, min_child_weight =5, n_estimators=53, reg_alpha=28)

GradientBoostingRegressor (learning_rate= 0.15, max_depth=4, max_features='sqrt', min_samples_leaf=34, 
min_samples_split=2,n_estimators=75) 
RandomForestRegressor (max_depth=6, max_features=0.7097968171311817, min_samples_leaf=6, min_samples_split=5)

DecisionTreeRegressor (max_depth=5,max_leaf_nodes=20,min_samples_split=20)

3rd dataset XGBRegressor(gamma = 8, learning_rate =0.08, max_depth = 5, min_child_weight =5, n_estimators=53, reg_alpha=28)

GradientBoostingRegressor (learning_rate= 0.108, max_depth=6, max_features = 'sqrt', min_samples_leaf=8, 
min_samples_split=2,n_estimators=75) 
RandomForestRegressor(max_depth=6, max_features=0.721, min_samples_leaf=5, min_samples_split=4) 

DecisionTreeRegressor(max_depth=5,max_leaf_nodes=20,min_samples_split=6)

 
RESULTS	AND	DISCUSSIONS	
 
The proposed machine learning models are implemented 
in hardware comprising a Windows 11 operating system 
and an Intel Core i5 processor with 8 GB RAM. The 
experimentations are performed using Jupyter Notebook, 
and the models are evaluated in terms of performance 

metrics, including accuracy (Acc), Mean Squared Error 
(MSE), and Mean Absolute Error (MAE). The following 
sections examine the evaluation of proposed machine 
learning models for temperature prediction. The 
experimental findings indicate the performance of each 
machine learning model with respect to three different 
datasets. 
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Performance	comparison	
 
Four diverse machine learning models have been chosen to 
compare the effectiveness of prediction tasks: XGBoost, 
gradient boosting, random forest, and decision tree.  
 

Table 2 consists of an error metrics comparison over three 
considered datasets. It is observed that XGboost outperforms 
all other prediction models with the highest accuracy of 97% 
when trained on the first dataset, with the lowest average 
absolute error of 2.04. As XGboost exhibits superior 
performance, it can be concluded that it is the most suitable 
temperature prediction model for varying Peltier sizes.  

	
Table	2.	Performance comparison of four machine learning models using error metrics 

ML	models	
/Error	metrics	

1st	Dataset 2nd Dataset 3rd	Dataset
Acc	 MSE	 MAE Acc MSE MAE Acc	 MSE MAE

XGBoost 0.97 7.65 2.04 0.97 6.5 1.97 0.97 5.60 1.78
Gradient Boosting 0.96 8.01 2.16 0.96 6.9 2.05 0.96 977 2.20

Random Forest 0.94 13.07 2.83 0.95 12.52 2.65 0.95 2.57 12.01
Decision Tree 0.90 22.58 3.64 0.94 13.52 2.58 0.95 2.61 12.15

 
SHAP	analysis	
 
The SHAP (SHapley Additive exPlanations) analysis graphs 
are concerned with the feature’s importance for model 
prediction. It consists of horizontal bars representing typical 
feature importance scores; notably, longer bars indicate 
more significant importance. By observing the direction of 
the bars, it can be stated that the positive SHAP values 
contribute towards increasing the model’s prediction.  

 
Fig.	10	(a) Illustration of SHAP values for XGBoost model using 
Peltier size of 46 × 46 

 
Fig.	10	(b) Illustration of SHAP values for XGBoost model using 
Peltier size of 56 × 56 

 
Fig.	10	(c) Illustration of SHAP values for XGBoost model using 
Peltier size of 46 × 56 
 

Figure 10 shows the feature-based SHAP analysis of the 
best-proposed prediction model,  XGBoost, for varying 
Peltier sizes. It is inferred from the graph that the “cooling” 
feature has longer bars, which is identified as the most 
influential feature that contributed to accurate predictions. 
 
CONCLUSION	
 
The effect of Peltier modules of varying sizes on cooling and 
heating fluid is detailed in the study.  Peltier parameters 
such as width, height, input current, polarity, and the 
volume of the fluid body are varied. A machine learning 
model has been developed based on the collected data to 
predict the average temperature of the fluid body.  The 
results show that the XGBoost algorithm predicted the fluid 
temperature well with an average accuracy of 97% across 
the three different testing datasets. The present study 
emphasizes the computational analysis of temperature 
distribution using COMSOL Multiphysics software. The 
approach addresses the computational expense of varying 
module sizes, ensuring accurate and efficient modeling.  By 
developing a machine learning algorithm to predict fluid 
temperatures, the study highlights significant time savings 
and enhances the ability to evaluate different configurations 
quickly. This predictive mechanism reduces the need for 
extensive computational resources and allows rapid 
optimization. This ML model serves as a memory map, 
providing a valuable resource for expanding into other 
applications involving Peltier modules. The study will help 
to reduce the overall cost, time, and simulation efforts 
required to select the appropriate setup for Peltier-based 
devices. The research contributes to more economically 
viable and time-efficient solutions in thermoelectric 
systems by streamlining the evaluation process. 
 
REFERENCES	
	

AB, C., (2008). COMSOL Multiphysics Modeling Guide. 
 

Antonova, E. E. & Looman, D. C., (2005). Finite Elements for 
Thermoelectric Device Analysis in ANSYS. Canonsburg,	USA. 
https://doi.org/10.1109/ICT.2005.1519922 
 

Aparicio, J. L. P., Palma, R. & Taylor, R. L., 2012. Finite element 
analysis and material sensitivity of Peltier thermoelectric cells 
coolers. International Journal of Heat and Mass Transfer, pp. 
1363-1374.  
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.031 
 
Bassi, A., Anika S., Arjun S., Hanna S., Connor G., and Jonathan 
H. Chan. (2021). Building Energy Consumption Forecasting: 



9 

A Comparison of Gradient Boosting Models. Bangkok, 
Thailand, 12th International Conference on Advances in 
Information Technology. 
https://doi.org/10.1145/3468784.3470656 
 
Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. 
P., & Alcalá, S. G. (2019). A systematic literature review of 
machine learning methods applied to predictive maintenance. 
Computers & Industrial Engineering, 137, 106024.  
https://doi.org/10.1016/j.cie.2019.106024 
 
Chen, T.,  Guestrin, C. (2016). Xgboost: A scalable tree 
boosting system. In Proceedings of the 22nd acm sigkdd 
international conference on knowledge discovery and data 
mining (pp. 785-794).  
https://doi.org/10.1145/2939672.293978 
 
Cotorogea, B. P. F., Marino, G., & Vogl, S. (2022). Data driven 
health monitoring of Peltier modules using machine-
learning-methods. SLAS technology, 27(5), 319-326.  
https://doi.org/10.1016/j.slast.2022.07.002 
 
Dang, W., Guo, J., Liu, M., Liu, S., Yang, B., Yin, L., & Zheng, W. 
(2022). A semi-supervised extreme learning machine 
algorithm based on the new weighted kernel for machine 
smell. Applied Sciences, 12(18), 9213.  
https://doi.org/10.3390/app12189213 
 
Gao, X., Zhang, K., Zhang, Z., Wang, M., Zan, T., & Gao, P. 
(2024). XGBoost-based thermal error prediction and 
compensation of ball screws. Proceedings of the Institution 
of Mechanical Engineers, Part B: Journal of Engineering 
Manufacture, 238(1-2), 151-163. 
https://doi.org/10.1177/095440542311571 
 
Jaegle, M., 2008. Multiphysics Simulation of Thermoelectric 
Systems - Modeling of PeltierCooling and Thermoelectric 
Generation. Hannover, s.n. 
 
Lundberg, S. M. & Lee, S. I., 2017. A unified approach to 
interpreting model predictions. Advances in neural 
information processing systems, p. 30. 
https://doi.org/10.48550/arXiv.1705.07874 
 
Lyu Y,  Siddique A.R.M, Majid S.H., Biglarbegian M, Gadsden 
S.A., Mahmud S., (2019). Electric vehicle battery thermal 
management system with thermoelectric cooling. Energy 
Reports, 5, 822-827. 
 https://doi.org/10.1016/j.egyr.2019.06.016 
 
Nasri W, Djebali R, Dhaoui S, Abboudi S, Kharroubi H, 
(2017). Finite Elements Multiphysics Investigation of 
Thermoelectric Systems for Electricity and Cooling 
Generation. International Journal of Modern Studies in 
Mechanical Engineering, 3(4), pp. 1-13. 
 http://dx.doi.org/10.20431/2454-9711.0304001 
 
Park, H. I., Cho, T. J., Choi, I. G., Rhee, M. S., & Cha, Y. (2023). 
Object classification system using temperature variation of 
smart finger device via machine learning. Sensors and 
Actuators A: Physical, 356, 114338. 
https://doi.org/10.1016/j.sna.2023.114338 

Qian N ,  Wang X, Fu Y, Zhao Z,  Xu J, Chen J, (2019). Predicting 
heat transfer of oscillating heat pipes for machining 
processes based on extreme gradient boosting algorithm. 
Applied Thermal Engineering, 164, 114521. 
https://doi.org/10.1016/j.applthermaleng.2019.114521 
 
Shapley, L. (1953) A Value for n-Person Games. In: Kuhn, H. 
and Tucker, A., Eds., Contributions to the Theory of Games 
II, Princeton University Press, Princeton, 307-317. 
https://doi.org/10.1515/9781400881970-018 
 
Song J, Tian W, Xu X, Wang Y, Li Z, (2019). Thermal 
performance of a novel ultrasonic evaporator based on 
machine learning algorithms. Applied Thermal Engineering, 
148, pp. 438-446. 
 https://doi.org/10.1016/j.applthermaleng.2018.11.083 
 
Teffah, K., Zhang, Y. & Mou, X., (2018). Modeling and 
Experimentation of New Thermoelectric Cooler–
Thermoelectric Generator Module, Energies, 11(3), 576. 
 https://doi.org/10.3390/en11030576 
 
Venkatesan, K. & Venkataramanan, M., (2020).  
Experimental and Simulation Studies on Thermoelectric 
Cooler: A Performance Study Approach. International 
Journal of Thermophysics, 41, Article number 38. 
https://doi.org/10.1007/s10765-020-2613-2 
 
Villasevil, F., López, A. & Fisac, M., (2013). Modeling and 
Simulation of a Thermoelectric Structure with Pellets of 
Non-Standard Geometry and Materials. International 
Journal of Refrigeration, 36 (5), 1570-1575. 
https://doi.org/10.1016/j.ijrefrig.2013.02.014 
 
Vipin, K. E., & Padhan, P. (2024). Machine-Learning Guided 
Prediction of Thermoelectric Properties of Topological 
Insulator Bi2Te3-xSex. Journal of Materials Chemistry C, 12, 
7415-7425. 
https://doi.org/10.1039/D4TC01058B 
 
Zaferani, S., Sams, M., Ghomashchi, R. & Chen, Z.-G., (2021). 
Thermoelectric Coolers as Thermal Management Systems 
for Medical Applications: Design, Optimization, and 
Advancement. Nano Energy, Volume 90, Part A, 106572 
https://doi.org/10.1016/j.nanoen.2021.106572 
 
Zhan, T., Fang, L. & Xu, Y., (2017). Prediction of thermal 
boundary resistance by the machine learning method. 
Scientific Reports, 7(7109).  
https://doi.org/10.1038/s41598-017-07150-7 
 
Zeki Yilmazoglu, M., (2016). Experimental and numerical 
investigation of a prototype thermoelectric heating and 
cooling unit, Energy and Buildings, 113, 51–60. 
 https://doi.org/10.1016/j.enbuild.2015.12.046 
 
Zeki Yilmazoglu, M., Salih K., Tamer C., Turgut O. Y., and 
Senol B., (2013). Experimental Study on Thermoelectric 
Generator Performance Applied to a Combi Boiler, 13th UK 
Heat Transfer Conference, UKHTC2013/143, 2 - 3 
September 2013, Imperial College London, 143-1-8. 

 
 


