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Order Vitally Dense Injectivity and Order Vitally
Essentiality
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Abstract. In this paper, we define a new closure operator on category of S-posets and
study some properties of this closure operator. Also, we define the class of order vitally
dense embeddings denoted by Mov, and we study the categorical properties such as
product, coproduct, pushout and pullback. Next, we investigate injectivity with respect
to this class of monomorphisms.

Key Words and Phrases: S-poset, order vitally dense subact, ov-injectivity.

2010 Mathematics Subject Classifications: 20M30, 20M50, 18A20

1. Introduction and preliminaries

The study on the category pos-S of partially ordered sets with actions of a
pomonoid S can be found in many papers (see, e.g., [1], [5], [2], and [3]). Also,
various kinds of closure operators are studied. In [8], Shahbaz investigates the
down set closure operator in pos-S and studies injectivity with respect to the class
of down closed embeddings (see [10] and [7]). We investigate the new closure
operator on a commutative pomonoid, namely, an order vitally dense closure
operator such that order vitally embedding emerges from this type of closure. We
study some properties of this closure operator and some categorical properties
of this kind of embeddings. The injectivity with respect to different classes of
monomorphisms has been studied in [6], [9], [8]. In [4], in the category of S-acts,
the researchers study vital dense subact and vitally dense monomorphisms and
injectivity with respect to this kind of monomorphisms. We study the injectivity
of S-posets with respect to the class of order vitally dense embeddings and call
it ov-injectivity.

Now let us briefly give some definitions and preliminaries needed in the sequel.
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Recall that a monoid S is said to be a pomonoid if it is also a poset partial
order ≤ of which is compatible with its binary operation, i.e. s ≤ t , s′ ≤ t′ imply
ss′ ≤ tt′. A right S-poset is a poset A which is also an S-act whose λ : A×S −→ A
is order-preserving, where A × S is considered as a poset with componentwise
order. An S-poset morphism is an action preserving monotone morphism between
S-posets. A regular monomorphism is exactly order embedding; i.e, S-poset
morphism f : A −→ B for which a ≤ a′ if and only if f(a) ≤ f(a′), for all
a, a′ ∈ A.

2. Order vitally dense closure operator

In this section, we introduce a closure operator and order vitally dense monomor-
phism. We study some properties of this kind of closure operators and some alge-
braic properties of order vitally dense embeddings such as composition, colimit,
coproduct, pullback, and pushout.

Let C be a category. Recall that a family C = (CB)B∈C , with CB : SubB →
SubB, taking any subobject A ≤ B to a subobject CB(A), is called a closure
operator on C if it satisfies the following:

1. (Extension) A ≤ CB(A),
2. (Monotonicity) A1 ≤ A2 implies CB(A1) ≤ CB(A2),
3. (Continuity) f(CB(A)) ≤ CD(f(A)), for all morphisms f : B → D.
Moreover, a closure operator C is said to be:
(a) Weakly hereditary if for every S-act B and every A ≤ B, A is C-dense in

CB(A).
(b) Hereditary if for every S-act B and A1 ≤ A2 ≤ B, CA2(A1) = CB(A1)∩A2.
(c) Additive if for every S-act B, CB(A1 ∪A2) = CB(A1) ∪ CB(A2).
(d) Productive if for every family of subacts Ai of Bi, taking A =

∏
iAi and

B =
∏
iBi, CB(A) =

∏
iCBi(Ai).

(e) Idempotent if CB(CB(A)) = CB(A) for every S-act B and A ≤ B.
(f) Discrete if CB(A) = A for every S-act B and A ≤ B.

Definition 1. Let S be a commutative pomonoid. A family Cov = (CovB )B∈pos−S
with CovB : Sub B −→ Sub B is defined as CovB (A) = {b ∈ B|∃a ∈ A, s ∈ S such
that bs ≤ a}, for any subact A of B.

It is easy to show that Cv is a closure operator on pos-S, which is called
an order vitally closure operator. Indeed, for any b ∈ CovB (A) and t ∈ S, there
exists s ∈ S and a ∈ A with bs ≤ a and so (bt)s = b(ts) = b(st) = (bs)t ≤ at
by commutativity of S. Then bt ∈ CovB (A), which means that CovB (A) is a sub-S-
poset of B. The extension and monotonicity properties are clear. For continuity,
take an S-poset morphism f : B → D and b ∈ C0v

B (A). Then bs ≤ a for some
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s ∈ S and a ∈ A. Then f(b)s = f(bs) ≤ f(a). Hence, f(b) ∈ COvD (f(A)), i.e.
f(CvB(A)) ≤ CvD(f(A)).

Clearly, if A ≤ B ≤ D, then CovB (A) ≤ CovD (A).
From now on, S stands for a commutative pomonoid.
A Cov-dense sub-S-poset A of an S-act B is called order vitally dense or ov-

dense for short, i.e. CovB (A) = B. An S-poset morphism f : A → B is said to
be order vitally dense or ov-dense if f(A) is an ov-dense sub-S-poset of B. The
class of all ov-dense monomorphisms of S-posets is denoted by Mov.

Definition 2. Let A be a sub-S-poset of B. We call A vitally dense in B, if for
any b ∈ B, there exists s ∈ S such that bs ∈ A.

Example 1. Consider Z and Q as (N, .)-posets with usual addition and order.
Clearly, Z is a vitally dense sub-S-poset of Q.

We recall from [8] that a sub-S-poset A of S-poset B is called order dense,
if for each b ∈ B there exists a ∈ A such that b ≤ a. Clearly any order dense
sub-S-poset is order vitally dense.

Example 2. Let S be a group. Then there is not any non-trivial sub-S-poset
of an S-poset. Moreover, on group, any order vitally dense sub-S-poset is order
dense.

Example 3. Any vitally dense sub-S-poset of an S-poset is order vitally dense
sub-S-poset, but the converse is not always true. For example, consider S-posets
A = {⊥} and B = {⊥,>}, with trivial action and ⊥ ≤ >. Clearly, A is ov-dense
in B, and it is not vitally dense in B.

Example 4. If A is an order vitally dense convex sub-S-poset of B, then A is
vitally dense sub-S-poset of B.

Now let us prove some properties of this closure operator.

Theorem 1. The closure operator Cov is hereditary, additive and idempotent.

Proof. First, let us prove that it is hereditary. For this, consider sub S-poset
A1 ≤ A2 of B and x ∈ CovA2

(A1). So, there exists s ∈ S and a1 ∈ A1 such that
xs ≤ a1. Obviously, x ∈ CovB (A1) ∩ A2. Now, suppose that x ∈ CovB (A1) ∩ A2.
Thus, we have x ∈ A2, and there exists s ∈ S and a1 ∈ A1 such that xs ≤ a1.
Clearly, we have x ∈∈ CovA2

(A1). For idempotency, take any b ∈ CvB(CovB (A)),
where A ≤ B. Then bs ∈ CovB (A) for some s ∈ S. This implies that there
exists t ∈ S and a ∈ A such that (bs)t ≤ a. Thus b(st) ≤ a, which means
that b ∈ CovB (A). For additivity, consider sub-S-poset A1 and A2 of B. Let us
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show that CovB (A1 ∪ A2) = CovB (A1) ∪ CovB (A2). Let x ∈ CovB (A1 ∪ A2), so there
exists s ∈ S and a ∈ A1 ∪ A2 such that xs ≤ a. Since a ∈ A1 ∪ A2, we have
x ∈ CovB (A1)∪CovB (A2). Now, consider x ∈ CovB (A1)∪CovB (A2). Thus, there exists
a1 ∈ A1 and t ∈ S such that xs ≤ a1 or there exists a2 ∈ A2 and t′ ∈ S such that
xs ≤ a2. In both cases, we have x ∈ CovB (A1 ∪A2). J

Lemma 1. Let A
f→ B

g→ C be two S-poset morphisms, where g is an embedding.
Then gf is an ov-dense morphism if and only if so are f and g. In particular,
Mov is closed under composition as well as right and left cancellable.

Proof. Assume that gf is an ov-dense morphism. We will show that f(A)
and g(B) are ov-dense sub-S-posets of B and C, respectively. For any b ∈ B,
g(b) ∈ C. Since gf(A) is a v-dense sub-S-posets of C, there exist s ∈ S and
a ∈ A for which g(b)s ≤ gf(a). So g(bs) ≤ gf(a) and then bs ≤ f(a) ∈ f(A).
Now let c ∈ C. Then there exists s ∈ S with cs ≤ gf(a) for some a ∈ A. So
cs ≤ g(b), for some b ∈ B. Conversely, let f and g be ov-dense morphisms. It
must be shown that gf(A) is an ov-dense sub-S-poset of C. Let c ∈ C. Since
g(B) is ov-dense in C, there exist s ∈ S and b ∈ B such that cs ≤ g(b). Also,
since f(A) is ov-dense in B, there exist t ∈ S and a ∈ A for which bt ≤ f(a).
Now we have c(st) = (cs)t ≤ g(b)t = g(bt) ≤ gf(a) ∈ gf(A). J

It is clear that any epimorphism is an ov-dense morphism. So, the following
is obtained by using Lemma 1.

Corollary 1. The composition of an ov-dense morphism with an epimorphism
is an ov-dense morphism.

Proposition 1. The class Mov is closed under coproducts.

Proof. Consider the diagram

Ai

ui
��

fi // Bi

u′i
��∐

i∈I Ai
f
//
∐
i∈I Bi

where (fi : Ai → Bi)i∈I is a family of ov-dense embeddings. Let f :
∐
i∈I Ai →∐

i∈I Bi be the S-poset morphism satisfying f(ui(ai)) = u′ifi(ai), for ai ∈ Ai,
which exists by the universal property of coproducts. In fact, f(ai, i) = (fi(ai), i).
We claim that f is an ov-dense embedding. By [5], it is clear that f is an
embedding, so it is enough to show that f is ov-dense. Let b ∈

∐
i∈I Bi. Then

b ∈ Bi for some i ∈ I and b = u′i(bi). Since fi is ov-dense, there exist ai ∈ Ai
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and s ∈ S for which bs ≤ fi(ai), and hence bs ≤ u′ifi(ai) = fui(ai), which means
that f is ov-dense. J

Proposition 2. Let (fi : Bi → A)i∈I be a family of ov-dense morphisms. Then
f :

∐
i∈I Bi → A is an ov-dense morphism.

Proof. Consider the diagram

Bi

ui
��

fi // A

∐
i∈I Bi

f

;;

where f :
∐
i∈I Bi → A is the S-poset morphism obtained by the universal

property of coproducts. Since fi is ov-dense, for any a ∈ A, there exist bi ∈ B
and s ∈ S such that as ≤ fi(bi). So as ≤ fi(bi) = fui(bi) and hence f is an
ov-dense morphism. J

Recall that the sub pullback of a diagram

A

f
��

C
g
// B

in pos-S is the sub S-poset P = {(c, a) : c ∈ C, a ∈ A, f(a) ≤ g(c)} of A × B,
and sub pullback maps pC : P → C, pA : P → A are restrictions of the projection
maps.

A class of morphisms of a category is called pullback stable if pullbacks transfer
those morphisms. In the next result, we establish this property for ov-dense
monomorphisms of S-posets.

Proposition 3. The class Mov is sub pullback stable.

Proof. Consider the pullback diagram

P

pB
��

pA // A

f
��

B
g
// C

where P = (c, a) : c ∈ C, a ∈ A, f(a) ≤ g(c) and pC : P → C and pA : P → A
are restrictions of the projection maps. Assume that f, g ∈ Mov. Let us show
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that pA, ρB ∈ Mov. By [5], it is known that pA and ρB are order embeddings.
Let us show that pB is ov-dense. Let b ∈ B. Then g(b) ∈ C, and so it follows
from the ov-density of f that there exist s ∈ S and a ∈ A such that g(b)s =
g(bs) ≤ f(a). Now, since g is ov-dense, there exist t ∈ S and b′ ∈ B such that
f(a)t ≤ g(b′). So, we have g(bst) = g(b)st ≤ f(a)t ≤ g(b′)t = g(b′t), and since g
is order embedding, we have bst ≤ b′t = ρB(at, b′t). It follows that ρB is ov-dense
embedding. Similarly, we can show that ρA is ov-dense embedding. J

For a class M of morphisms of a category, it is said that pushouts transfer
M-morphisms if for a pushout diagram

A

f
��

g
// C

h
��

B
k // D

if g ∈M, then so is k.
The pushout of a given diagram

A
f
//

g

��

C

B

in pos-S is the factor S-poset Q = (BtC)/θ, where θ is the congruence relation
on B t C generated by all pairs (uBf(a), uCg(a)), a ∈ A, where uB : B →
B t C, uC : C → B t C are the coproduct injections. Also, the pushout maps
are given as h = γuB : C → Q, k = γuC : B → Q, where γ : B t C → Q is the
canonical epimorphism.

Proposition 4. In pos-S, pushouts transfer ov-dense embeddings.

Proof. Consider the pushout diagram

A

g

��

f
// C

h
��

B
k // Q

where g is an ov-dense embedding. Let us show that k is also an ov-dense
embedding. By [5], k is a regular monomorphism. So, it remains to prove
that k is ov-dense. Let [x]θ ∈ Q. If x = uB(b) for some b ∈ B, since f is
ov-dense, there exist a ∈ A and s ∈ S such that bs ≤ f(a). So, we have
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[x]θs = h(bs) ≤ h(f(a)) = kg(a). If x = uC(c) for some c ∈ C, then for any
s ∈ S we have [x]θs ≤ k(cs), as required. J

For a class M of morphisms of a category, we say that multiple pushouts

transfer M-morphisms if in the multiple pushout (Q, (Bi
d′i→ Q)i∈I) of a family

{di : A→ Bi | i ∈ I} of M-morphisms, d′i ∈M, for every i ∈ I.
Similar to the pushouts, we have the following result.

Proposition 5. Multiple pushouts transfer ov-dense embeddings.

Proof. Let {di : A → Bi | i ∈ I} be a family of ov-dense embeddings. Recall
that the multiple pushout of this family is (

∐
i∈I Bi)/θ, where θ is a congruence

on
∐
i∈I Bi generated by all pairs H = {(uidi(a), ujdj(a)) : i, j ∈ I, a ∈ A},

where for each i ∈ I, ui : Bi →
∐
i∈I Bi is the i-th coproduct injection map.

Also, the multiple pushout maps are d′i = γui : Bi → (
∐
i∈I Bi)/θ, where γ :∐

i∈I Bi → (
∐
i∈I Bi)/θ is a natural epimorphism. By [5], d′i is an embedding for

each i ∈ I. To show that each d′idi (and hence each d′i by Lemma 1) is ov-dense,
let b ∈ (

∐
i∈I Bi)/θ. Then there exist j ∈ I and bj ∈ Bj such that b = [uj(bj)]θ.

Since dj is ov-dense, there exist a ∈ A and s ∈ S such that bjs ≤ dj(a). Now
we get bs = [uj(bj)]θs = [uj(bjs)]θ = d′j(bjs) ≤ d′jdj(a) = d′idi(a) ∈ Im(d′idi), as
required. J

Definition 3. For a class M of morphisms of category A, we say that A has
M-bounds if for each set indexed family {mi : A→ Ai | i ∈ I} of M-morphisms
there is an M-morphism m : A → B which factors over all mi’s; that is, there
are di : Ai → B with dimi = m. In addition, if di’s belong to M, it is said that
A has M-amalgamation property.

Corollary 2. The category pos-S hasMov-bounds andMov-amalgamation prop-
erty.

Proof. Let {hi : A → Bi | i ∈ I} be a set indexed family in Mov and
h : A→ B = (

∐
i∈I Bi)/θ be the multiple pushout of hi’s. Then h factors over all

hi’s, and is an ov-dense monomorphism by Proposition 5. The second assertion
also follows from Proposition 5. J

A directed system of S-posets and S-poset morphisms is a family (Ai)i∈I of S-
posets indexed by an up-directed set I endowed by a family (gij : Ai → Aj)i≤j∈I
of S-poset morphisms such that given i ≤ j ≤ k ∈ I, we have gijgjk = gik, and
also gii = id. Note that the pair (lim−→Ai, {fi : Ai −→ lim−→Ai}, abbreviation lim−→Ai
is called the directed colimit of the directed system ((Ai)i∈I , (gij)i≤j), where i ≤
j ∈ I and fjgij = fi, and for every (B, hi : Ai −→ B) with hjgij = hi, i ≤ j ∈ I,
there exists a unique map such that ν : lim−→Ai −→ B such that νhi = fi.
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We recall that, by [5], the directed colimit of the directed system ((Ai)i∈I , (ψij)i≤j)

of S-posets exists, and may be represented as (
A

θ
, (ψi = γθui : Ai −→

A

θ
)i∈I),

where γθ :
∐
Ai −→

∐
Ai
θ

is a natural epimorphism, ui is a coproduct injection

and
(i) A =

∐
Ai;

(ii) aθa′(a ∈ Ai, a′ ∈ Aj) if and only if ∃k ≥ i, j : ψik(a) ≤ ψjk(a′);
(iii) for each i ∈ I and a ∈ A, ψI(A) = [a]θ.

Theorem 2. The category pos-S has Mov- directed colimit.

Proof. Consider directed system ((Bα)α∈I , (gαβ)α≤β∈I of S-posets and S-
poset morphisms, and the colimit S-poset morphisms gα : Bα −→ lim−→αBα =∐

αBα
ρ

. Take ov-dense monomorphisms hα : A −→ Bα, α ∈ I with gαβhα = hβ

for α ≤ β ∈ I. Let h : A −→ lim−→αBα be the directed colimit of hα for α ∈ I.

That is, h = lim−→αhα = gβhβ. By [5], h is an order embedding. Let us show that h

is on-dense. For this, let b ∈ lim−→Bβ, so there exists yα ∈ Bα such that b = [yα]ρ.

Now, since hα is ov-dense, there exist s ∈ S and a ∈ A such that yαs ≤ hα(a).
Then, bs = [yα]ρs = gα(yα)s ≤ gα(xα) ≤ gαhα(a) = h(a) and so h is ov-dense. J

Definition 4. For a classM of morphisms of category A, we say that A satisfies
M-chain condition if for any directed system ((Aα)α∈I , (fαβ)α≤β∈I), whose index
set I is a well-ordered chain with the least element 0 and f0α ∈ M for all α,
there is a (so called “upper bound”) family (gα : Aα → A)α∈I with g0 ∈ M and
gβfαβ = gα.

Proposition 6. The category pos-S fulfills the Mov-chain condition.

Proof. Take A = lim−→αAα and let gα : Aα → A be a colimit map. Then,
applying Proposition 2, we get the validity of the assertion. J

3. v-dense essentiality and v-dense injectivity

In this section, we proceed to study three different definitions of essentiality
with respect to the class Mov. Also, we investigate the relationship between
ov-injectivity, ov-injectivity and these three essentialities.

Consider subclass Mono of monomorphisms of the category pos-S and A
m→

B ∈ Mov. One usually uses one of the following definitions to say that m is
called:
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(M1ov-essential) A
m→ B

f→ C ∈Mov ⇒ f ∈Mov

(M2ov-essential) A
m→ B

f→ C ∈ Mono ⇒ f ∈ Mono (essential
monomorphism)

(M3ov-essential) A
m→ B

f→ C ∈Mov ⇒ f ∈Mono

Lemma 2. The composition of Mov-essentials is a Mov-essential.

Proof. Let f : A→ B and g : B → C beMov-essentials. We will show that so
is gf . By Lemma 1, gf is an ov-dense monomorphism. Suppose that h : C → D
is a homomorphism for which h(gf) = (hg)f is a monomorphism. It must be
shown that h is a monomorphism. Since f is a Mov-essential, hg and hence h is
a monomorphism because g is a Mov-essential. J

Theorem 3. The category pos-S fulfills Banaschewski’s Mov-condition, in the
sense that for any Mov-monomorphism f : A→ B there exists an S-poset mor-
phism g : B → C such that gf is Mov-essential.

Proof. By [5], the category pos-S fulfills Banaschewski’s condition for reg-
ular essential monomorphisms. Now consider S-poset morphism h : C −→ D
such that hgf is an ov-embedding. Since gf is regular essential, h is an order
embedding, and so h is ov-dense. J

Definition 5. Let A be an S-poset. Then A is said to be ov-dense injective
if it is injective with respect to all ov-dense monomorphisms. Also, A is called
an ov-dense absolute retract if A is an ov-dense retract of each of its ov-dense
extensions. Clearly, an ov-dense retract of any ov-dense injective S-poset is ov-
dense injective. Clearly, S-poset A is ov-dense absolute retract if and only if it
is ov-dense injective.

By [8], an S-poset A is od-injective if it is injective with respect to the class
of order dense embeddings.

Theorem 4. Let A be an S-poset. It is od-injective and vitally dense injective if
and only if it is an order vitally dense injective.

Proof. Sufficiency is clear. For necessity, let B be an order vitally dense
sub-S-poset of C and f : B −→ C be an S-poset morphism. We will show that
there exists an S-poset morphism h : C −→ A such that h|B = f . Clearly, B
is an order dense sub-S-poset of ↓ B and ↓ B is a vitally sub-S-poset of C. So,
there exists S-poset morphism g :↓ B −→ A and h : C −→ A such that g|B = f
and h|↓B = g, since A is od-injective and vitally dense injective. Thus, we have
h|B = f , as required. J
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Theorem 5. Let S be a pomonoid. Then the following assertions are equivalent
for each S-poset A:
(i) A is ov-dense injective.
(ii) A is an ov-dense absolute retract.
(iii) A has no proper M3ov-essential extensions.
(iv) A has no proper M2ov-essential extensions.
(v) A has no proper M1ov-essential extensions.

Proof. We will only prove the assertions (ii) ⇒ (iii) and (v) ⇒ (ii). Let B
be an M3ov-essential extension of A. By (ii), there exists an ov-dense retraction
g : B −→ A such that g|A = idA. Since A is a M3ov-essential in B, g is a
monomorphism. So, for any b ∈ B, we have g(b) ∈ A, and so g(g(b)) = g(b).
Thus g(b) = b, and we have b ∈ A. Therefore B = A.

Now, let us show the implication (v) ⇒ (ii). For this, suppose that B is an
ov-dense extension of A. By Proposition 3, there exists an S-poset morphism
g : B −→ A such that g|A is a M1ov-essential. Now, g|A is an isomorphism by
(v). So, g(g|A)−1 is a retraction, and thus A is an ov-dense retract of B. J

Definition 6. Let A be an S-poset. Then S-poset B is called:
(i) a maximal Miov-essential extension of A, i = 1, 2, 3 if B is a Miov-

essential extension of A and for any S-poset morphism h : B −→ C, where C is
a Miov-essential extension of A and h|A is an inclusion map, is an isomorphism.

(ii) a minimal Miov-essential extension of A, i = 1, 2, 3 if B is a Miov-
essential extension of A and for any S-poset morphism h : C −→ B, where C is
a Miov-essential extension of A, which maps A identically, is an isomorphism.

Lemma 3. If B is aMiov-essential extension of an S-poset A, i = 1, 2, 3, and A
is order vital dense embedded into some regular injective S-poset Q, then B can
also be order vital dense embedded into Q.

Proof. Straightforward. J

Theorem 6. Every S-poset has a maximal Miov-essential extension, for i =
1, 2, 3.

Proof. Let A be an S-poset, and P be the set of allMiov-essential extensions
of an S-poset A, i = 1, 2, 3. Consider P as a partially ordered set under inclusion.
For any chain (Ai)i∈I in P ,

⋃
i∈I Ai ∈ P is an upper bound. By Zorn’s lemma,

P has a maximal element M which is in fact a maximalMiov-essential extension
of an S-poset A, i = 1, 2, 3. J
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Lemma 4. Let A be an order vitally dense sub-S-poset of S-poset B and B be
an order vitally dense sub-S-poset of C. Then A is a Miov-essential, i = 1, 2, 3
in C if and only if A is a Miov-essential in B, and B is a Miov-essential in C.

Proof. It’s clear. J

Definition 7. S-poset B is a Miov-injective hull of A, for i = 1, 2, 3 if B is
a Miov-essential extension of A as well as ov-injective. Clearly, Miov-injective
hull of an S-poset, if it exists, is unique up to isomorphism.

Theorem 7. Let A be an S-act and B be an ov-dense extension of A. The
following assertions are equivalent:
(i) B is a M1ov-injective hull of A.
(ii) B is a M3ov-injective hull of A.
(iii) B is a M2ov-injective hull of A.
(iv) B is a maximal M1ov-essential extension of A.
(v) B is a maximal M3ov-essential extension of A.
(vi) B is a maximal M2ov-essential extension of A.
(vii) B is a minimal ov-injective extension of A.

Proof. Let us show the validity of the assertions (i)⇒ (iv), (iv)⇒ (i), (iv)⇒
(vii), (vii)⇒ (i). The rest are clear.

(i)⇒ (iv), it is obtained by 4 and 5.
(iv) ⇒ (i), let B be a maximal M1ov-essential extension of A. Then, by

Lemma 4, it has no proper M1ov-essential extension, and by Theorem 3, the
result holds.

(iv) ⇒ (vii), let B be a maximal M1ov-essential extension of A. Then, by
Lemma 4, it has no properM1v-essential extension. So, it is an ov-dense injective,
by Theorem 5. Let f : C −→ B be an ov-dense embedding from an ov-dense
injective order vitally dense extension C of A, which maps A identically. Since A
is aM1ov-essential in B, by Lemma 4, it follows that f(C) is aM1ov-essential and
so f(C) ∼= C is an ov-dense injective. Now, by Theorem 5, we have B = f(C).
So, f is an isomorphism.

(iv)⇒ (vii), it is obtained by Theorem 6 and Theorem 5. J

The next corollary is obtained by Theorem 6 and Theorem 7.

Corollary 3. For every S-poset, there exists aMiov-injective hull, for i = 1, 2, 3.

Similar to Theorem 2.42 [9], we can prove the next Theorem.

Theorem 8. In the category pos-S, M1ov-essential ⇒ M2ov-essential ⇔ M3ov-
essential.
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Example 5. Consider N and Z as (N0,+)-posets with usual addition and usual
partial order. It is clear that Z is an ov-dense extension of N. Similarly to [4],
we can prove that Z is an M2ov-injective hulll of N.
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