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Abstract

This paper presents a comprehensive mathematical analysis of an unreliable single-server
retrial queue with general retrial times, serving two types of customer arrivals: high-
patience and low-patience customers. Customers arrive in the system following two Pois-
son processes with different service rates. In addition, the model incorporates essential
features such as service times, reserved times, and repair times, all following general dis-
tributions. The proposed model has practical applications in diverse domains, including
healthcare systems, web traffic management, and call centers. Using the supplementary
variable technique, we carry out an extensive analysis of the model. This approach allows
us to derive the ergodicity condition for this Markov chain and compute its stationary
distribution. The main performance measures of the system are expressed through the
stationary state probabilities. Numerical illustrations are presented. Finally, we conduct
an economic study to assess the impact of various system parameters on performance
measures and total cost, offering a visual overview of the system’s effectiveness and prof-
itability. A comparative analysis with existing models shows how our approach general-
izes traditional retrial queue models, which typically consider a single type of customer
arrival, by considering two distinct customer classes. This contributes to the advancement
of queueing theory and provides insight into optimizing real-world systems.
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1. Introduction
In a queueing scenario, such as a telecommunications system, a notable characteristic

is that, when all servers are occupied, an incoming customer must leave the service area
and return to the retrial group (orbit) after a specific period. Retrial queues provide an
effective solution to these situations [4,16,37]. For example, if a server is unavailable when
a customer arrives, they will join the orbit to attempt their requests in a random order and
at random intervals [7]. Retrial queues are widely used to model stochastic phenomena
in real-world systems, including wireless communications, IT, telephone networks, and
healthcare, facilitating access to central processing services [14,19,43].

In numerous practical scenarios, servers are susceptible to unpredictable breakdowns,
significantly impacting system performance [32, 40]. Consequently, the study of retrial
queues with unreliable servers has received considerable attention. Li and Zhang [29] ex-
amined an M/G/1 retrial G-queue with general retrial times where the server continues
to operate at a reduced service rate during breakdowns. They established stability con-
ditions for the system and developed generating functions for the number of customers
in the orbit. Gao et al. [18] analyzed an M/G/1 retrial queue with two types of break-
downs occurring during idle and busy periods, presenting stability conditions and utilizing
the supplementary variable method to determine the steady-state probabilities. Tian and
Zhang [39] investigated an unreliable M/M/1 queue with negative customers, where the
arrival of a negative customer causes server failure, prompting immediate repair attempts.
They provided steady-state probabilities and performance measures and discussed strate-
gic customer behavior. Ayyappan and Udayageetha [6] studied a retrial queue with priority
services, incorporating server breakdowns, startup/closedown times, and Bernoulli vaca-
tions. They derived the joint distribution of the server state and the number of customers
in the system using the supplementary variable technique. Jagannathan and Sivasubra-
maniam [22] studied an unreliable retrial queue with batch arrivals, Bernoulli vacations,
and impatient customer behavior. They assumed a delay before repair initiation after a
breakdown and used the supplementary variable technique to derive steady-state results.
Kumar et al. [27] addressed the Markovian machine interference problem and random
switching failure, considering working vacations under a threshold policy. They account
for synchronized impatience behavior and obtained steady-state probabilities and perfor-
mance measures using the Successive Over-Relaxation method. Kumar et al. [26] analyzed
a Markovian retrial queue where the server is subject to two types of breakdowns and re-
pairs. They provided explicit expressions for the partial probability-generating functions
of the server status and the number of customers in the orbit, along with key performance
measures. Dudin et al. [15] investigated a single-server, non-preemptive priority queueing
system with finite capacity and multiple customer types, considering batch arrivals and
dynamic priority changes. They analyzed the stationary behavior of the system using a
finite-state, multi-dimensional continuous-time Markov chain and computed key system
characteristics.

In recent years, research on retrial queues with impatient customers has gained more
attention. Impatience is the prominent characteristic, as customers often feel anxious
waiting for services in real-life situations [8–11, 13]. Customer behavior, such as queue-
ing and reverting, plays a crucial role in real-world queueing systems, where arrivals can
be discouraged by long queues [38]. Balking occurs when customers decide not to enter
the system upon arrival if they find the server unavailable [1, 30, 41, 44]. On the other
hand, reneging occurs when customers join the system but leave before being served [23].
Recently, researchers have shown significant interest in exploring various aspects of cus-
tomer flows entering the system, including different classes of customer arrivals [17,24,33],
two classes of batch arrivals [5], priority customers [25, 28, 42], negative customers [39],
impatient and persistent customers [38], two-way communication [2, 3] and batch arrival
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[12, 44]. Although these studies have provided valuable insights into specific aspects of
retrial queueing models with multiple types of customer arrivals, further investigations
are needed to explore other aspects of customer flow entering the system, notably the
impact of high-patience customers (those who are prepared to wait for longer periods of
time in orbit before going into service) and low-patience customers (those who have a
lower tolerance of waiting and are more inclined to become impatient and leave the queue
more quickly). The significance of considering these two customer flows (high-patience
and low-patience customers) is crucial in queueing modeling, as they influence customer
behavior and can have an impact on the performance and efficiency of the retrial queueing
system.

In the literature on retrial queues, several studies have addressed the management of
systems where customer patience varies and service interruptions play a key role in the
overall performance of the system. For instance, Hariom et al. [21] studied an inventory
model with linear demand and stock outs in a three-level production system, highlighting
the importance of managing replenishments based on customer patience levels. Similarly,
Singh [34] proposed an inventory model for deteriorated items with holding and selling
costs, where stockout management is also a critical factor. While their model is relevant,
it does not account for the specific dynamics of impatient customers who leave the system.
Singh et al. [35] then extended this analysis by proposing a model with quadratic demand,
incorporating multi-level production processes, which is crucial for studying systems where
customers return to the orbit after a service failure. Finally, Singh et al. [36] advanced the
topic by introducing a supply chain approach, addressing the demand for both finished
products and raw materials, while analyzing inventory management in production systems
with degradation rates and service interruptions. These studies highlight the evolution of
inventory and queueing models in complex environments, but they do not fully incorporate
the consideration of retrial queues with high-patience and low-patience customers, which
we address in this study.

In this paper, we examine a single-server retrial queue that incorporates two types of
customers (high-patience and low-patience), server breakdowns, corrective repairs, retrial
and reservation times, and distinct service rates. Such a model has practical applications
in communication networks, healthcare systems, and website management, where server
reliability and customer behavior significantly impact system performance. By jointly
considering these factors, we provide a comprehensive mathematical analysis of the retrial
queue’s dynamics and performance in real-world scenarios.

Building on previous research, this study presents a comparative review that highlights
the key contributions of our work. As shown in Table 1, we provide a structured compar-
ison of retrial queue models, particularly those incorporating unreliable servers, customer
impatience, and retrial behavior. Our work extends these models by proposing a compre-
hensive framework that includes (1) two customer types with distinct patience levels; (2)
server failures and repairs modeled using a corrective maintenance mechanism; (3) a reser-
vation process for low-patience customers; (4) a general retrial distribution that extends
beyond the commonly assumed exponential retrial rate; and (5) an economic analysis of
system costs. This framework addresses several limitations of previous studies and offers
a more realistic approach to retrial queues. To obtain the stability condition and the
explicit analytical solutions of this retrial queue, we employ the supplementary variables
technique. This technique enables us to derive mathematical equations for the steady-
state probability distributions that describe the behavior of the retrial queueing model as
well as its performance metrics. Furthermore, it allows us to evaluate the impact of key
parameters on system performance and conduct an economic study to analyze the total
cost. As summarized in Table 1, our model contributes to advancing queueing theory by
providing a more practical and versatile framework for analyzing retrial systems.
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Table 1. Comparative literature review of retrial queue models with unreliable
servers and impatient customers.
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The sections of the study are as follows: In Section 2, we provide the dynamics of the
retrial queue, emphasizing its practical applications in real-world scenarios. In Section 3,
we derive the stability condition and the steady-state distributions of the server states.
In Section 4, we discuss various significant system performance metrics. In Section 5,
we present numerical findings that demonstrate how certain parameters influence the
performance metrics of the system. In Section 6, we dive into the detailed analysis of the
total cost. In Section 7, we conclude the work done.

2. Formulation of the model
We consider an unreliable retrial queue denoted M1, M2/G1, G2/1. This system features

a repairable server that efficiently handles arrivals from high-patience and low-patience
customers. Furthermore, the system incorporates two distinct orbit structures. To improve
comprehension of the system’s dynamics, we provide a visual representation of this model
in Figure 1. The model is characterized by the following description:

                                                
   

                                                                       𝑅1 (𝑥)  

                                                                                                                                               
  𝐻𝑖𝑔ℎ − 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑅𝑒𝑡𝑟𝑖𝑎𝑙  𝑆1(𝑥) 𝑆2(𝑥)𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 (𝛬1)                    

 

                                                                                        𝐼𝑑𝑙𝑒    𝐿𝑜𝑤 − 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 𝛩 𝑀(𝑥)𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 (𝛬2) 𝜎
                                                                                                                                                                                                                                    𝑉(𝑥)                                                        

                                                                                                 𝟏 − 𝜎 

                                                                                                                                                                                                            
  

 

     

 

 

 

  
 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑜𝑟𝑏𝑖𝑡

𝑂𝑟𝑏𝑖𝑡
 

 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑙𝑜𝑠𝑠 

𝑺𝒐𝒖𝒓𝒄𝒆 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑠𝑒𝑟𝑣𝑒𝑟  

𝑆𝑒𝑟𝑣𝑒𝑟𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟
 

𝑫𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆 

 

Figure 1. Comprehensive diagram of our system

i) Arrival process: The two types of customers independently arrive in the system fol-
lowing a Poisson process with different rates. The arrival rate for high-patience customers
is denoted by Λ1 > 0, while the arrival rate for low-patience customers is denoted by
Λ2 > 0.

ii) Service process: When a customer arrives and finds the server idle, the service for
that customer begins immediately. However, if a high-patience customer encounters a
blocked server (busy, down, or reserved), they leave the service area and enter into the
orbit, becoming a source of repeated calls (retrial customers). In contrast, a customer
with low patience who encounters a blocked server permanently leaves the system. We
assume that the service policy follows the FCFS (First-Come, First-Served) discipline. The
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service time distributions for high-patience and low-patience customers are expressed by
S1(x) and S2(x) respectively. The Laplace-Stieltjes transform (LST) of the service times
distribution for high-patience customers is indicated by LS1 [z], while for low-patience
customers, it is indicated by LS2 [z]. Furthermore, we can compute the moments of the
service-time distributions as follows: for high-patience customers, β1j = (−1)jLj

S1
[0], for

low-patience customers, β2j = (−1)jLj
S2

[0], where j represents the order of the moment.
iii) Retrial process: The orbit is exclusively reserved for high-patience customers. When

a primary customer (a customer outside the system) arrives first in the system, the high-
patience secondary customer (retrial customers) opts to exit the service area and enter
into the orbit and attempt service again after a random interval of time. The retrial
time for high-patience customers follows a general distribution, denoted as R1(w). To
analyze this distribution, we use the LST, represented as LR1 [z]. Moreover, we define
α1j = (−1)jLj

R1
[0] as the jth moment of the retrial time distribution for customers with

high patience.
iv) Breakdown process: The server undergoes active breakdowns, which means that

it fails only while providing service. The duration of a failure follows an exponential
distribution with a mean of 1/Θ.

v) Repair process: When a failure occurs, repairs are started immediately. Repair times
follow a general distribution denoted by M(y) and the LST is denoted by LM [z]. The jth
moment of the repair time distribution is given by the expression Γj = (−1)jLj

M [0].
vi) Reservation process: When a service interruption occurs while a low-patience cus-

tomer is being served, there are two options: either the customer remains in the service
area with a probability σ, or the customer enters a service orbit with a complementary
probability (1 − σ). On the other hand, when a service interruption occurs while a high-
patience customer is being served, the latter remains in the service area. However, if a
customer with low patience enters the service orbit due to a server failure, the server must
wait for the customer to return after the repair. This period of time is referred to as
the reserved time. The reserved time follows a general distribution, characterized by the
function V (v) and its LST, LV [z]. The jth moment of the reservation time distribution
is indicated by ∆j = (−1)jLj

V [0].
We assume the following properties for various functions related to the system:

R1(0) = 0, R1(∞) = 1, S1(0) = 0, S1(∞) = 1, S2(0) = 0, S2(∞) = 1, M(0) = 0,
M(∞) = 1, V (0) = 0, V (∞) = 1. F (x) = 1 − F (x) is the complementary cumula-
tive distribution function of the probability distribution function (pdf) F (x) on [0, 1].
LF [s] =

∫∞
0 e−sxdF (x) is the LST of pdf . LF [s] =

∫∞
0 e−sx(1 − F (x)) dx = 1−LF [s]

s is
the complementary LST. We also assume the mutual independence of all the introduced
variables. The notation used to represent the conditional completion rates is as follows:
α1(w)dw is the conditional completion rate for repeated attempts by high-patience cus-
tomers, where w represents the waiting time, calculated as R1(w)dw

1−R1(w) , considering the sur-
vival function R1(w). β1(x)dx is the conditional completion rate of the service for high-
patience customers, with x representing the service time, calculated as S1(x)dx

1−S1(x) , considering
the survival function S1(x). β2(x)dx is the conditional completion rate of the service for
low-patience customers, with x representing the service time, calculated as S2(x)dx

1−S2(x) , con-
sidering the survival function S2(x). Γ(y)dy is the conditional completion rate for repair,
where y represents the repair time, calculated as M(y)dy

1−M(y) , considering the survival function
M(y). ∆(v)dv is the conditional completion rate for the reserved time, where v represents
the reserved time, calculated as V (v)dv

1−V (v) , considering the survival function V (v).
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2.1. Practical applications of the proposed model
Example 2.1. Effective patient flow management is essential for maintaining the efficiency
of the healthcare system, ensuring high-quality patient care, and optimizing resource uti-
lization. Our M1, M2/G1, G2/1 retrial queue provides a robust analytical framework that
enhances patient access to medical services while ensuring system stability and operational
resilience. By integrating retrial mechanisms and system failures, this model accurately
represents the complexities of real-world healthcare operations, particularly under fluctu-
ating demand and resource constraints.

One of the key strengths of our model is its dynamic patient flow management. The
healthcare facility operates as a server where patients are classified according to their will-
ingness to wait. Patients with high patience continue to seek medical attention by retrying
service after an initial denial, while patients with low patience are more likely to leave the
system and seek alternative care if immediate service is unavailable. Patient arrivals are
modeled as a Poisson process, reflecting the inherent randomness of medical emergencies
and scheduled visits. The duration of service follows a general distribution that accounts
for the variability in the complexity of treatment. The model also incorporates facility
failures due to equipment malfunctions, resource shortages, or other operational problems.
These failures follow an exponential distribution for time until failure, whereas repair du-
rations are modeled using a general distribution.

A fundamental indicator of the effectiveness of the model is its adaptive response to
peak-hour congestion and facility downtimes. When system capacity is exceeded or tem-
porarily reduced, low-patience patients may permanently exit the system, while high-
patience patients enter a retrial orbit, attempting to access medical care after a random-
ized delay. Furthermore, if a breakdown occurs during ongoing treatment, two possible
outcomes are considered. With probability σ, the affected patient remains in the sys-
tem and resumes treatment immediately after recovery from the system. In contrast, with
probability σ, the patient exits the facility but joins the service orbit, seeking treatment at
a later stage. Upon system restoration, patients in the service area receive priority access
to medical care, minimizing service interruptions and ensuring continuity of treatment. In
addition, a reservation mechanism is implemented, allowing low-patience patients who en-
tered the service orbit to resume their treatment immediately after repair. This improves
system efficiency, promotes equitable resource allocation, and ensures a fair and effective
patient service process.

Example 2.2. Efficient website traffic management is essential to ensure a seamless user
experience, particularly during peak hours, when a surge in visitor requests can lead to
server congestion. To analyze and optimize this traffic flow, we use the M1, M2/G1, G2/1
retrial queue, which provides a robust framework for modeling user interactions and server
performance. In this model, the server represents the website’s processing unit, while visi-
tors are categorized into two distinct groups based on their patience levels. Visitor arrivals,
regardless of their patience category, follow a Poisson process, accurately capturing the
randomness of user traffic. Service times for high-patience and low-patience visitors are as-
sumed to follow general distributions, reflecting the variability in processing requirements
for different request types.

An important aspect of the model is its ability to incorporate reliability factors from
the server. The server may experience failures after a certain operational period, which
is modeled using an exponential distribution. When the server is operational but under
high demand, low-patience visitors may choose to leave the system, whereas high-patience
visitors enter a retrial orbit, attempting to reconnect after a randomly determined waiting
period. This retrial mechanism allows the system to regulate congestion effectively while
prioritizing users who are willing to wait for service.
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In the event of server failure and subsequent recovery, a priority-based service mech-
anism is implemented to accommodate low-patience visitors. This system designates a
reserved time period modeled as a random variable during which low-patience visitors
receive preferential access to the server. The primary objective of this priority mechanism
is to minimize service abandonment, ensuring that low-patience users can complete their
transactions efficiently upon server restoration.

3. Analysis of the steady-state probability distribution
The aim of this section is to establish the steady-state distributions of the retrial queue

using the supplementary variable method and generating functions. To achieve this goal,
we constructed a mathematical model for the retrial queueing system, incorporating the
notation and assumptions outlined in the preceding section. This model allows us to depict
the system’s behavior as a Markov process, where transitions between different states are
determined by transition probabilities. Figure 2 depicts the state transition diagram. To
describe the stochastic behavior of the retrial queue at time t, we define a set of variables,
denoted as {X(t), t ≥ 0}, as follows:

{X(t)}t≥0 = {Υ(t), Ψ(t), Φ(t), κ0(t), κ1(t), κ2(t), κ3(t), κ4(t)}.

The variable Υ(t) indicates the state of the server at time t, defined as follows:

Υ(t) =


0 7→ Idle,
1 7→ Busy by a high-patience customer,
2 7→ Busy by a low-patience customer,
3 7→ Under repair,
4 7→ Reserved by a low-patience customer.

The variable Φ(t) indicates the number of high-patience customers waiting for service in
the retrial group (orbit). The variable Ψ(t) represents the state of the customer in service
after an active breakdown and takes the following values:

Ψ(t) =


0 7→ the high-patience customer remains in service position,
1 7→ the low-patience customer remains in service position,
2 7→ the low-patience customer enters a service orbit.

The variable κi(t), i = 0, 1, 2, 3, 4, represents the supplementary variable at time t in
the retrial queue, where:
κ0(t): the elapsed retrial time of a high-patience customer,
κ1(t): the elapsed service time of a high-patience customer,
κ2(t): the elapsed service time of a low-patience customer,
κ3(t): the time taken to repair the server after a failure occurs,
κ4(t): the elapsed reserved time of a low-patience customer.

The transient state probabilities are denoted as follows: P0,0(t) = P (Υ(t) = 0, Φ(t) = 0)
is the probability that the system is empty. P0,n(t, w)∂w=P (Υ(t) = 0, Φ(t) = n, w ≤
κ0(t) < w+∂w), n ≥ 1 is the probability that the server remains idle throughout the retrial
period, since there are n high-patience customers in the orbit. P1,n(t, x)∂x =P (Υ(t) =
1, Φ(t) = n, x ≤ κ1(t) < x + ∂x) (resp. P2,n(t, x)∂x =P (Υ(t) = 2, Φ(t) = n, x ≤ κ2(t) <
x + ∂x)) is the probability that the server is occupied by a high-patience (resp. low-
patience) customer throughout the retrial period, since there are n high-patience customers
in the orbit. P3,0,n(t, x, y)∂x∂y=P (Υ(t) = 3, Ψ(t) = 0, Φ(t) = n, x ≤ κ1(t) < x + ∂x, y ≤
κ3(t) < y + ∂y) (resp. P3,1,n(t, x, y)∂x∂y=P (Υ(t) = 3, Ψ(t) = 1, Φ(t) = n, x ≤ κ2(t) <
x + ∂x, y ≤ κ3(t) < y + ∂y)) is the probability that the server is in repair and the high-
patience (resp. low-patience) customer in service remains in the service zone, as there are
n high-patience customers in the orbit. P3,2,n(t, x, y)∂x∂y=P (Υ(t) = 3, Ψ(t) = 2, Φ(t) =
n, x ≤ κ2(t) < x+∂x, y ≤ κ3(t) < y+∂y) is the probability that the server is in repair and
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that the low-patience customer occupying the server enters the service orbit, given that
there are n high-patience customers in the orbit. P4,n(t, x, v)∂x∂v=P (Υ(t) = 4, Φ(t) =
n, x ≤ κ2(t) < x+∂x, v ≤ κ4(t) < v+∂v) is the probability that the server is reserved by a
low-patience customer during the retrial period, since there are n high-patience customers
in the orbit.

6 N. Dehamnia et al.
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Figure 2. State transition diagram
Figure 2. State transition rate diagram.

3.1. The steady-state solution
Theorem 3.1. Inequality ρ < 1 is a sufficient condition for ergodicity.

Proof. See Remark 3.3. �

Now, we introduce the following probability-generating functions:
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P0(z, w) =
∞∑

n=1
P0,n(w)zn,

Pi(z, x) =
∞∑

n=0
Pi,n(x)zn, i = 1, 2,

P3,j(z, x, y) =
∞∑

n=0
P3,j,n(x, y)zn, j = 0, 1, 2,

P4(z, x, v) =
∞∑

n=0
P4,n(x, v)zn,

which are convergent for each w ≥ 0, x ≥ 0, y ≥ 0, v ≥ 0 and for all |z| ≤ 1.

Corollary 3.2. If ρ < 1, the generating functions of the server states are expressed as
follows:

(i) If the server is idle, the generating function is given by

P0(z, w) =

{
zP0,0

[
Λ1 + Λ2

(
1 − LS2 [F (z)]

)]
e−(Λ1+Λ2)wR1(w)

}


LS1 [J(z)]
(

LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]
)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.1)

(ii) When the server is occupied by a high-patience customer, the generating function
equals to

P1(z, x) =


P0,0

[
Λ1 + Λ2

(
1 − LS2 [F (z)]

)][
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

]
× e−J(z)xS1(x)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.2)

(iii) When the server is occupied by a low-patience customer, the generating function is
defined as

P2(z, x) =



P0,0

[
z(Λ1 + Λ2)

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ2LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

− z

]
e−F (z)xS2(x)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.3)
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(iv) If the server is under repair and the high-patience customer in service chooses to
remain in the service area, we obtain the generating function as

P3,0(z, x, y) =


ΘP0,0

[
Λ1 + Λ2

(
1 − LS2 [F (z)]

)][
LR1 [Λ1 + Λ2]Λ1z

+ LR1 [Λ1 + Λ2]
]
e−J(z)xS1(x)e−Λ1zyM(y)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.4)

(v) When the server is under repair and the low-patience customer in service chooses
to remain in the service area, we have

P3,1(z, x, y) =



P0,0

[
(Λ1 + Λ2)z

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ2LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

− z

]
σΘe−F (z)xS2(x)e−Λ1zyM(y)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.5)

(vi) If the server is under repair and the low-patience customer currently in service
enters the service orbit, we define the generating function as

P3,2(z, x, y) =



P0,0

[
(Λ1 + Λ2)z

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ2LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

− z

]
σΘe−F (z)xS2(x)e−Λ1zyM(y)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.6)



Performance and economic analysis of an unreliable retrial queue 721

(vii) When the server is reserved by low-patience customer, the generating function can
be defined as

P4(z, x, v) =



P0,0

[
(Λ1 + Λ2)z

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ2LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

− z

]
σΘe−F (z)xS2(x)LM [Λ1z]e−Λ1zvV (v)


LS1 [J(z)]

(
LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]

)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.7)

Here, we have

J(z) = Λ1z + Θ − ΘLM [Λ1z],

F (z) = Λ1z + Θ − ΘLM [Λ1z]
(
σ + σLV [Λ1z]

)
.

Proof. The supplementary variable technique (SVT) and generating functions are em-
ployed to derive the following server state equations:

(i) Idle state of the server:

[2Λ1 + Λ2 + α1(w) + ∂

∂w
]P0(z, w) = 0. (3.8)

(ii) Busy state of the server:

[Θ + Λ1 + β1(x) + ∂

∂x
]P1(z, x) =

∫ ∞

0
Γ(y)P3,0(z, x, y) dy + Λ1zP1(z, x), (3.9)

[
Θ + Λ1 + β2(x) + ∂

∂x

]
P2(z, x) =

∫ ∞

0
Γ(y)P3,1(z, x, y) dy

+
∫ ∞

0
∆(v)P4(z, x, v) dv + Λ1zP2(z, x). (3.10)

(iii) Repair state of the server:[
Λ1 + Γ(y) + ∂

∂x

]
P3,0(z, x, y) = Λ1zP3,0(z, x, y), (3.11)

[
Λ1 + Γ(y) + ∂

∂x

]
P3,1(z, x, y) = Λ1zP3,1(z, x, y), (3.12)

[
Λ1 + Γ(y) + ∂

∂x

]
P3,2(z, x, y) = Λ1zP3,2(z, x, y). (3.13)

(iv) Reservation state of the server:[
Λ1 + ∆(v) + ∂

∂x

]
P4(z, x, v) = Λ1zP4(z, x, v). (3.14)

The following expressions are derived by solving Equations (3.8)–(3.14) with respect to
the provided boundary conditions as

P0(z, 0) =
∫ ∞

0
β1(x)P1(z, x) dx +

∫ ∞

0
β2(x)P2(z, x) dx − (Λ1 + Λ2)P0,0, (3.15)
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P1(z, 0) = Λ1

∫ ∞

0
P0(z, w) dw + 1

z

∫ ∞

0
α1(w)P0(z, w) dw, (3.16)

P2(z, 0) = (Λ1 + Λ2)
∫ ∞

0
P0(z, w) dw + Λ2P0,0, (3.17)

P3,0(z, x, 0) = ΘP1(z, x), (3.18)

P3,1(z, x, 0) = σΘP2(z, x), (3.19)

P3,2(z, x, 0) = σΘP2(z, x), (3.20)

P4(z, x, 0) =
∫ ∞

0
Γ(y)P3,2(z, x, y) dy. (3.21)

The normalization equation is given by

P0,0 +
∫ ∞

0
P0(1, w) dw +

∫ ∞

0
P1(1, x) dx +

∫ ∞

0
P2(1, x) dx

+
∫ ∞

0

∫ ∞

0
P3,0(1, x, y) dxdy +

∫ ∞

0

∫ ∞

0
P3,1(1, x, y) dxdy

+
∫ ∞

0

∫ ∞

0
P3,2(1, x, y) dxdy +

∫ ∞

0

∫ ∞

0
P4(1, x, v) dxdv = 1.

(3.22)

We obtain the following equation by substituting Equation (3.18) into (3.11) as

P3,0(z, x, y) = ΘP1(z, x)e−Λ1zy(1 − M(y)). (3.23)
Now, replacing Equation (3.19) in Equation (3.12), we get

P3,1(z, x, y) = σΘP2(z, x)e−zΛ1y(1 − M(y)). (3.24)
Then, substituting Equation (3.20) into Equation (3.13), we have

P3,2(z, x, y) = σΘP2(z, x)e−zΛ1y(1 − M(y)). (3.25)
We derive P4(z, x, v) substituting Equations (3.21) and (3.25) into Equation (3.14) as

P4(z, x, v) = σΘLM [zΛ1]P2(z, x)e−zΛ1v(1 − V (v)). (3.26)
P1(z, x) is obtained by substituting Equations (3.23) and (3.16) into Equation (3.9) as

P1(z, x) =
[
Λ1

∫ ∞

0
P0(z, w) dw + 1

z

∫ ∞

0
α1(w)P0(z, w) dw

]
e−J(z)xS1(x). (3.27)

Substituting Equations (3.24), (3.26) and (3.17) into Equation (3.10), we get

P2(z, x) =
[
(Λ1 + Λ2)

∫ ∞

0
P0(z, w) dw + Λ2P0,0

]
e−F (z)xS2(x). (3.28)

From Equations (3.23) and (3.27), we get

P3,0(z, x, y) = Θ
[
Λ1

∫ ∞

0
P0(z, w) dw + 1

z

∫ ∞

0
α1(w)P0(z, w) dw

]
e−J(z)xS1(x)

× e−Λ1zyM(y). (3.29)
Using Equations (3.24) and (3.28), we find

P3,1(z, x, y) = σΘ
[
(Λ1 + Λ2)

∫ ∞

0
P0(z, w) dw + Λ2P0,0

]
e−F (z)xS2(x)

× e−Λ1zyM(y). (3.30)



Performance and economic analysis of an unreliable retrial queue 723

According to Equations (3.25) and (3.28), we obtain

P3,2(z, x, y) = σΘ
[
(Λ1 + Λ2)

∫ ∞

0
P0(z, w) dw + Λ2P0,0

]
e−F (z)xS2(x)

× e−Λ1zyM(y). (3.31)
From Equations (3.26) and (3.28), we have

P4(z, x, v) = σΘLM [Λ1z]
[
(Λ1 + Λ2)

∫ ∞

0
P0(z, w) dw + Λ2P0,0

]
e−F (z)xS2(x)

× e−Λ1zvV (v). (3.32)
From Equations (3.15), (3.27) and (3.28), we obtain

P0(z, 0) =

{
zP0,0

[
Λ1 + Λ2

(
1 − LS2 [F (z)]

)]}


LS1 [J(z)]
(

LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]
)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.33)

Next, by substituting Equation (3.33) into Equation (3.8), we find

P0(z, w) =

{
zP0,0

[
Λ1 + Λ2

(
1 − LS2 [F (z)]

)]
e−(Λ1+Λ2)wR1(w)

}


LS1 [J(z)]
(

LR1 [Λ1 + Λ2]Λ1z + LR1 [Λ1 + Λ2]
)

+ LS2 [F (z)]
(

1 − LR1 [Λ1 + Λ2]
)

z − z



. (3.34)

�

Remark 3.3. The quantity P0,0 can be found using Equation (3.22), which is given by

P0,0 = 1 − lim
z→1

(
P0(z) + P1(z) + P2(z) + P30(z) + P31(z) + P32(z) + P4(z)

)
.

Thus, P0,0 is obtained by

P0,0 =

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)}


(
2Λ1

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ1β11

[
1 + ΘΓ1

][
Λ1 + Λ2LR1 [Λ1 + Λ2]

]

+ β21

[
1 + ΘΓ1 + σΘ∆1

][(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+ (Λ1 + Λ2)

(
Λ2LR1 [Λ1 + Λ2] − 1

)])



. (3.35)

To ensure the stability of the system under study, condition ρ < 1 must be satisfied.
Here, ρ = (1 − P0,0) represents the traffic intensity of the system. Maintaining a traffic
intensity of ρ < 1 prevents the system from being overwhelmed by arrivals and allows it
to handle incoming workload efficiently. This condition ensures that the system operates
within its capacity and avoids excessive congestion or delays. When condition ρ < 1 is
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met, the system has a positive probability P0,0 for the initial state, indicating that the
system can start in an empty state and transition between different states. This allows
for a balanced distribution of probabilities among the states, promoting stability and
preventing the system from remaining in a single state indefinitely.

From Equation (3.35), we derive the expression for ρ as

ρ =



(
Λ1
(
1 − LR1 [Λ1 + Λ2]

)
+ Λ1β11

[
1 + ΘΓ1

][
Λ1 + Λ2LR1 [Λ1 + Λ2]

]

+ β21

[
1 + ΘΓ1 + σΘ∆1

][(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+ (Λ1 + Λ2)

(
Λ2LR1 [Λ1 + Λ2] − 1

)])



(
2Λ1

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ1β11

[
1 + ΘΓ1

][
Λ1 + Λ2LR1 [Λ1 + Λ2]

]

+ β21

[
1 + ΘΓ1 + σΘ∆1

][(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+ (Λ1 + Λ2)

(
Λ2LR1 [Λ1 + Λ2] − 1

)])



. (3.36)

4. System performance measures
The main objective of this section is to derive explicit formulas for the probabilities of

state of the server, as well as some performance measures.

Corollary 4.1. The server state probabilities are expressed as follows:
(i) If the server is idle, we have

P0 =

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)}


(
2Λ1

(
1 − LR1 [Λ1 + Λ2]

)
+ Λ1β11

[
1 + ΘΓ1

][
Λ1 + Λ2LR1 [Λ1 + Λ2]

]

+ β21

[
1 + ΘΓ1 + σΘ∆1

][(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+ (Λ1 + Λ2)

(
Λ2LR1 [Λ1 + Λ2] − 1

)])



. (4.1)

(ii) When the server is busy by a high-patience customer, we define

P1 =

{
P0,0Λ1β11

(
Λ1 + Λ2LR1 [Λ1 + Λ2]

)}
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.2)

(iii) If the server is busy by a low-patience customer, the probability is given by

P2 =


P0,0β21

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)]
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.3)
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(iv) When the server is under repair and the high-patience customer in service remains
in the service area, we have

P3,0 =

{
P0,0ΘΓ1Λ1β11

(
Λ1 + Λ2LR1 [Λ1 + Λ2]

)}
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.4)

(v) If the server is under repair and the low-patience customer in service remains in the
service area, the probability is given by

P3,1 =


σΘP0,0β21Γ1

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)]
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.5)

(vi) If the server is under repair and the low-patience customer who occupies the server
enters into the service orbit, we obtain

P3,2 =


σΘP0,0β21Γ1

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)]
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.6)

(vii) When the server is reserved by a low-patience customer, the probability is given by

P4 =


σΘP0,0β21∆1

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)]
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.7)

(viii) If the server is busy, the probability is given by

ΠBusy =



P0,0

(
Λ1β11

(
Λ1 + Λ2LR1 [Λ1 + Λ2]

)

+ β21

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)
+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)])

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.8)

(ix) When the server is blocked by a high-patience customer, we have

ΠBlockedHP
=

{
P0,0Λ1β11

(
Λ1 + Λ2LR1 [Λ1 + Λ2]

)(
1 + ΘΓ1

)}
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.9)
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(x) We obtain the probability when the server is blocked by a low-patience customer as
follows:

ΠBlockedLP
=


P0,0β21

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LR1 [Λ1 + Λ2]

)

+
(
Λ1 + Λ2

)(
Λ2LR1 [Λ1 + Λ2] − 1

)][
1 + ΘΓ1 + σΘ∆1

]
{

Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.10)

(xi) If the server is under repair, we obtain

ΠRepair =



ΘΓ1P0,0

[
Λ1β11

[
Λ1 + Λ2LA1 [Λ1 + Λ2]

]

+ β21

[(
(Λ1 + Λ2)2 + Λ1Λ2

)(
1 − LA1 [Λ1 + Λ2]

)
+ (Λ1 + Λ2)

(
Λ2LA1 [Λ1 + Λ2] − 1

)]]

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)} . (4.11)

(xii) When the server is blocked, the probability is given by

ΠBlocked = ΠBlockedHP
+ ΠBlockedLP

. (4.12)

Proof. After a few algebraic manipulations and the application of l’Hôpital’s rule, we
obtain the desired result. In fact, we have

Pl = Pl(1), l = 0, 1, 2, 4; P3,m = P3,m(1), m = 0, 1, 2; ΠBlockedHP
= P1 + P3,0,

ΠBusy = P1 + P2, ΠBlockedLP
= P2 + P3,1 + P3,2 + P4, ΠRepair = P3,0 + P3,1 + P3,2,

ΠBlocked = P1 + P2 + P3,0 + P3,1 + P3,2 + P4.

�

Corollary 4.2. The generating functions of the number of customers in the orbit (Πo(z))
and in the system (Πs(z)), are given by

Πo(z) = P0,0 + P0(z) + P1(z)
(

1 + ΘLM [Λ1(1 − z)]
)

+ P2(z)
(

LM [Λ1(1 − z)]

+ σΘLM [Λ1(1 − z)]LV [Λ1(1 − z)] + 1
)

,

(4.13)

Πs(z) = P0,0 + P0(z) + zP1(z)
(

1 + ΘLM [Λ1(1 − z)]
)

+ zP2(z)
(

LM [Λ1(1 − z)]

+ σΘLM [Λ1(1 − z)]LV [Λ1(1 − z)] + 1
)

.

(4.14)

Proof. The previous results are based on the following relationships
Πo(z) = P0,0 + P0(z) + P1(z) + P2(z) + P3,0(z) + P3,1(z) + P3,2(z) + P4(z),

Πs(z) = P0,0 + P0(z) + z

(
P1(z) + P2(z) + P3,0(z) + P3,1(z) + P3,2(z) + P4(z)

)
.

�
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Corollary 4.3. The mean performance measures can be expressed as follows:
(i) The mean number of high-patience customers in the orbit (Lo) is given by

Lo = P
′
0(1) + P

′
1(1)

(
1 + ΘΓ1

)
+ ΘP1η1(1) + P

′
2(1)

(
1 + Γ1 + (1 − σ)Θ∆1

)
+ P2

(
η1(1) + (1 − σ)Θη2(1)

)
.

(4.15)

(ii) The mean waiting time of high-patience customers in the orbit (Wo) is defined as

Wo = Lo

λ1
. (4.16)

(iii) The mean number of customers in the system (Ls) is obtained as

Ls = P
′
0(1) +

(
P1 + P

′
1(1)

)(
1 + ΘΓ1

)
+ ΘP1η1(1) +

(
P2 + P

′
2(1)

)
×
(

1 + Γ1 + (1 − σ)Θ∆1

)
+ P2

(
η1(1) + (1 − σ)Θη2(1)

)
.

(4.17)

(iii) The mean waiting time of high-patience customers in the system (Ws) is given by

Ws = Ls

λ1
. (4.18)

where, we define

P
′
1(1) = K

′
1(1)β11 + K1(1)

((ΘΓ1 + 1)Λ1β12
2

)
,

P
′
2(1) = K

′
2(1)β21 + K2(1)

((ΘΓ1 + 1)Λ1β22
2

)
,

P
′
0(1) =



P0,0

(
β21Γ1LA1 [Λ1 + Λ2]ΘΛ2

1 + 2β21Γ1LA1 [Λ1 + Λ2]ΘΛ1Λ2

− β11Γ1LA1 [Λ1 + Λ2]ΘΛ1Λ2 − β21Γ1ΘΛ2
1 − 2β21Γ1ΘΛ1Λ2

− β11Γ1ΘΛ2
1 + β21LA1 [Λ1 + Λ2]Λ2 + 2β21LA1 [Λ1 + Λ2]Λ1Λ2

− β11LA1 [Λ1 + Λ2]Λ1Λ2 − β21Λ2
1 − 2β21Λ1Λ2 − β11Λ2

1 + LA1 [Λ1 + Λ2]Λ1

+ LA1 [Λ1 + Λ2]Λ2

)

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)} ,

η1(1) = Λ1Γ2
2 , η2(1) =

Λ1

(
2∆1Γ1 + ∆2

)
2 ,

K1(1) = P0,0

(
LA1 [Λ1 + Λ2]Λ2 + Λ1(

1 − LA1 [Λ1 + Λ2]
) ),

K2(1) =


P0,0

(
(Λ1 + Λ2)

(
1 − LA1 [Λ1 + Λ2]

)

+ Λ2

(
Λ1LA1 [Λ1 + Λ2] + LA1 [Λ1 + Λ2]

)
− 1

)
{

Λ1
(
1 − LA1 [Λ1 + Λ2]

)} ,



728 N. Dehamnia, M. Boualem, D. Aïssani

K
′
1(1) =



P0,0

(
(LA1 [Λ1 + Λ2])2β21Γ1ΘΛ2

1Λ2 + 2(LA1 [Λ1 + Λ2])2β21Γ1ΘΛ1Λ2
2

− (LA1 [Λ1 + Λ2])2Γ1β11 ΘΛ1Λ2 + LA1 [Λ1 + Λ2]β21Γ1ΘΛ3
1

+ LA1 [Λ1 + Λ2]β21Γ1ΘΛ2
1Λ2 − 2LA1 [Λ1 + Λ2]β21Γ1ΘΛ1Λ2

2

− 2LA1 [Λ1 + Λ2]Γ1β11ΘΛ2
1Λ2 + (LA1 [Λ1 + Λ2])2β21Λ1Λ2

2

+ 2(LA1 [Λ1 + Λ2])2β21Λ1Λ2
2 − (LA1 [Λ1 + Λ2])2β11Λ1Λ2

2

− β21Γ1ΘΛ3
1 − 2β21Γ1ΘΛ2

1Λ2 − Γ1β11ΘΛ3
1 + LA1 [Λ1 + Λ2]β21Λ3

1

+ LA1 [Λ1 + Λ2]β21Λ2
1Λ2 − 2LA1 [Λ1 + Λ2]β21Λ1Λ2

2

− 2LA1 [Λ1 + Λ2]β11Λ2
1Λ2 + (LA1 [Λ1 + Λ2])2Λ2

1

+ 2(LA1 [Λ1 + Λ2])2Λ1Λ2 + (LA1 [Λ1 + Λ2])2Λ2
2 − β21Λ3

1

− 2β21Λ2
1Λ2 − β11Λ3

1

)

{
Λ1
(
1 − LR1 [Λ1 + Λ2]

)} ,

K
′
2(1) =



P0,0(Λ1 + Λ2)
(

β21Γ1ΘΛ3
1 + Γ1β11ΘΛ3

1 − 5LA1 [Λ1 + Λ2]β21Λ2
1Λ2

− LA1 [Λ1 + Λ2]β21Λ1Λ2
2 + LA1 [Λ1 + Λ2]β11Λ2

1Λ2 + LA1 [Λ1 + Λ2]β11Λ1Λ2
2

+ β21Γ1LA1 [Λ1 + Λ2]Λ1Λ2Θ − Γ1β11LA1 [Λ1 + Λ2]Λ1Λ2Θ
+ 2β21Γ1(LA1 [Λ1 + Λ2])2Λ2

1Λ2Θ − Γ1β11(LA1 [Λ1 + Λ2])2Λ2
1Λ2Θ

− 5LA1 [Λ1 + Λ2]β21Γ1ΘΛ2
1Λ2 − LA1 [Λ1 + Λ2]β21Γ1ΘΛ1Λ2

2

+ LA1 [Λ1 + Λ2]Γ1β11ΘΛ2
1Λ2 + LA1 [Λ1 + Λ2]Γ1β11ΘΛ1Λ2

2

− β21Γ1Λ2
1Θ − Γ1β11Λ2

1Θ + 2(LA1 [Λ1 + Λ2])2Λ2
1Λ2β21

− β11(LA1 [Λ1 + Λ2])2Λ2
1Λ2 + β21LA1 [Λ1 + Λ2]Λ1Λ2

− β11LA1 [Λ1 + Λ2]Λ1Λ2 − β21Λ1Λ2 + (LA1 [Λ1 + Λ2])2Λ1Λ2

+ β21(LA1 [Λ1 + Λ2])2Λ3
1 − β11Λ3

1LA1 [Λ1 + Λ2]β21LA1 [Λ1 + Λ2]Λ2
1

− 2LA1 [Λ1 + Λ2]β21Λ3
1 + 3β21Λ2

1Λ2 + β21Λ1Λ2
2 + β11Λ2

1Λ2

− 2Λ1Λ2LA1 [Λ1 + Λ2] − β21Γ1Λ1Λ2Θ − Γ1β11LA1 [Λ1 + Λ2]Λ3
1Θ

+ β21Γ1LA1 [Λ1 + Λ2]Λ2
1Θ + β21Γ1(LA1 [Λ1 + Λ2])2Λ3

1Θ
− 2Γ1β21LA1 [Λ1 + Λ2]ΘΛ3

1 + 3β21Γ1ΘΛ2
1Λ2 + β21Γ1ΘΛ1Λ2

2

+ Γ1β11ΘΛ2
1Λ2 − β21Λ2

1 − β11Λ2
1 + (LA1 [Λ1 + Λ2])2Λ2

1

+ Λ1LA1 [Λ1 + Λ2] + LA1 [Λ1 + Λ2]Λ2 + β21Λ3
1 + β11Λ3

1

− LA1 [Λ1 + Λ2]Λ2
1 − LA1 [Λ1 + Λ2]Λ2

2

)

{
− Λ2

1(
(
1 − LA1 [Λ1 + Λ2])2

} .

Proof. By definition and through the application of l’Hôpital’s rule, we obtain the fol-
lowing results

Lo = Π′
o(1), and Ls = Π′

s(1).
The quantities Ws and Wo are calculated using Little’s formula. �
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5. Numerical results
Numerical analysis is employed as a means to validate the precision and reliability of

retrial queueing models. This analysis involves evaluating crucial performance metrics
such as the mean number of customers in the system (Ls) and the probability that the
system is empty (P0,0). The objective is to provide valuable information that informs
decision making within the systems under examination. Furthermore, MATLAB can be
used to encode essential elements, streamlining the validation of these models. We assume
that all introduced distribution functions follow exponential distributions and the values of
the system parameters have been chosen arbitrarily to ensure the stability of the system.
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Figure 3. P0,0 vs. Λ1 and Λ2,
when σ = 0.45 and α1 = β1 =
β2 = Θ = Γ = ∆ = 1
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Figure 4. P0,0 vs. β1 and β2,
when σ = 0.2, Λ1 = Λ2 = 0.35
and α1 = Θ = Γ = ∆ = 1

Figures 3–5 illustrate how variations in system parameters, such as different arrival
rates, service rates, failure and repair rates, and reserved rates, impact the probability of
the system being empty (P0,0). Upon analyzing the figures, we observe that as the arrival
rates (Λ1 and Λ2) and the failure rate (Θ) increase, the probability P0,0 decreases. On
the other hand, when the service rates (β1 and β2), the repair rate (Γ) and the reserved
rate (∆) increase, the probability P0,0 increases. These observations suggest that higher
arrival rates and failure rates decrease the probability P0,0, while higher service rates,
repair rates, and reserved rates increase it.

Figures 6 and 7 provide valuable information on the relationship between the perfor-
mance metric Ls and the parameters Γ, Θ, σ and ∆. According to Figure 6, an increase in
the reservation rate (∆) and the parameter (σ) results in a noticeable upward trend in the
characteristic Ls. This suggests that higher values of ∆ and σ lead to more time allocated
to customers with low patience, both in the waiting state and in the service orbit. In
addition, customers with greater patience in the orbit also benefit from increased time
allocation. Consequently, the total number of customers in the system increases. Figure
7 shows that a higher repair rate (Γ) corresponds to a decrease in Ls. This indicates
that when the repair rate is higher, the system can quickly address failures, resulting in
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fewer customers being present within the system. Furthermore, the failure rate (Θ) signif-
icantly impacts Ls. A higher failure rate leads to an increase in Ls, indicating that more
customers are present in the system due to the increased frequency of failures.
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Figure 5. P0,0 vs. Θ, Γ and ∆, when σ = 0.35, Λ1 = Λ2 = 0.3 and α1 = β1 =
β2 = 1.
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6. Economic analysis
This section presents a cost model for our retrial queueing system. The total cost of

the system, denoted as CT , is determined using the following formula
CT = CI(P0,0 + P0) + CW Lo + CBΠBlocked, (6.1)
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where CI is the cost of server preparation work when the system is empty; CB is the
cost per unit time when the server is blocked; CW is the cost per unit of time that a
customer spends waiting in the orbit. These notations enable us to measure different
cost elements in the system, including preparation work costs, waiting costs, service costs,
repair costs, and reservation costs. By incorporating these elements, we can assess the
overall economic impact of the queueing system and make informed decisions about re-
source allocation, service level agreements, and system optimization. The cost coefficients
were chosen to maintain the stability of the system while reflecting the economic impact
of different states of the system. Specifically, we set CI = 150, CB = 500, and CW = 20
to balance operational costs and service efficiency. The value of CB is relatively high
because server blockages generate significant inefficiencies and disrupt service continuity.
In contrast, the waiting cost CW is lower since waiting in orbit does not directly affect
system performance but still contributes to customer dissatisfaction. The setup cost CI

was set to a moderate value to balance operational readiness without excessive overhead.
The remaining parameters Λ1, Λ2, α1, β1, β2, Θ, Γ, ∆ and σ were chosen in a way that
ensures the stability of the model. These parameter values are selected on the basis of
the specific characteristics and requirements of our retrial queueing system. Furthermore,
Figures 8 and 9 provide insight into the impact of key system parameters on total cost.
These figures illustrate how variations in the breakdown rate (Θ), the repair rate (Γ)
and the reservation parameter (σ) influence CT . They indirectly reflect how cost-related
factors affect overall expenses.
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Figure 8 shows the relationship between the total cost (CT ) and the repair rate (Γ).
As the parameter Γ increases, the total cost decreases. This inverse relationship can be
explained by the fact that a higher repair rate results in a reduced number of customers
in the system. Consequently, overall cost decreases, indicating improved system efficiency
and lower maintenance expenses. Furthermore, the figure examines the impact of the
breakdown rate (Θ) on CT . It demonstrates that an increase in the parameter (Θ) results
in a higher total cost. This suggests that a higher breakdown rate leads to increased costs
as a result of the resulting increase in the number of customers in the system. Figure 9
shows an inverse relationship between the total cost (CT ) and the reservation parameter



732 N. Dehamnia, M. Boualem, D. Aïssani

(σ). As σ increases, CT decreases. This effect is due to σ influencing the reserved time:
When low-patience customers choose to remain in the service area after a server failure,
reserved time is reduced, leading to lower costs.

The retrial queueing model also presents following managerial insights:
(i) Understanding cost dynamics: The model allows managers to analyze various

cost elements such as preparation work costs, waiting costs, service costs, repair
costs, and reservation costs. By quantifying these costs, managers can gain a
comprehensive understanding of the economic impact of the queueing system.

(ii) Resource allocation: By assessing different cost components, managers can make
informed decisions regarding resource allocation. For example, they can allocate
resources to minimize waiting costs or optimize repair processes to reduce repair
costs.

(iii) Service level agreements: Managers can use the insights from the model to establish
effective service-level agreements. Understanding the relationship between system
parameters and costs can help set realistic service-level targets while balancing
cost considerations.

(iv) System optimization: The model provides insights into how the parameters of the
system affect overall costs. Managers can use this information to optimize system
performance by adjusting parameters such as repair rates or reservation policies
to minimize total costs while maintaining service quality.

(v) Predictive maintenance: By analyzing the impact of breakdown rates on total
costs, managers can develop predictive maintenance strategies. Identifying pat-
terns in breakdown rates can help anticipate failures and schedule preventive main-
tenance activities, thereby reducing downtime and repair costs.

(vi) Customer service strategy: Understanding the behavior of different types of cus-
tomers, such as highly patient and low-patience customers, enables managers to
tailor customer service strategies. For example, they can implement strategies to
reduce wait times for high-patience customers or minimize customer attrition for
low-patience customers.

In general, the queueing model provides valuable information that can inform decision-
making processes, leading to improved system efficiency, cost savings, and improved cus-
tomer satisfaction.

7. Conclusion and future scope
In this paper, we presented a single-server retrial queue with customers exhibiting differ-

ent levels of patience (high-patience and low-patience). This model is relevant for various
applications, including healthcare systems, web traffic management, and telecommunica-
tion networks. It integrates several realistic features such as active server breakdowns,
corrective repairs, retrial times, reserved times, customer balking, and distinct service
rates for both customer types. Using the supplementary variable technique, we derived
probability-generating functions for different system states, including idle, busy (with high-
patience and low-patience customers), under repair and in reservation. We also established
the stability condition and obtained closed-form expressions for steady-state probabilities
and key performance measures. Furthermore, we conducted an economic analysis to assess
the impact of system parameters on performance metrics and total expected cost.

7.1. Comparative contribution and study limitations
Our study advances the understanding of retrial queueing systems by explicitly incor-

porating heterogeneous customer patience, an aspect often neglected in classical models.
Unlike previous research that assumes uniform customer behavior, our approach provides
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a more refined analysis of impatience and its effects on system performance. Furthermore,
while most studies focus on queueing dynamics under stable conditions, our model explic-
itly accounts for server breakdowns and corrective repairs, enhancing its applicability to
real-world service systems.

A key contribution of this study is its economic optimization framework, which evalu-
ates trade-offs between performance measures and operational costs. This aspect is rarely
addressed in retrial queueing models, yet it provides valuable insights into cost-effective
system management. Most existing research primarily examines performance indicators
such as queue length, waiting time and system stability, often overlooking the financial
consequences of service interruptions and retrial dynamics. By integrating economic con-
siderations, our study bridges this gap and emphasizes the importance of balancing effi-
ciency with cost constraints. This perspective is particularly relevant for service providers
who must optimize system performance while ensuring financial sustainability. However,
our model has certain limitations that suggest directions for future research. One key
limitation is the assumption of single-customer arrivals, which simplifies the analysis but
does not fully capture scenarios where customers arrive in groups. Extending the model to
batch arrivals, where both high-patience and low-patience customers may arrive simultane-
ously, would increase its applicability to large-scale telecommunication and manufacturing
systems.

Our model does not incorporate priority-based queuing disciplines, which are critical in
systems where certain customers require immediate service, such as healthcare and emer-
gency call centers. Future research could investigate how priority mechanisms influence
system stability, performance, and cost optimization. Another important extension would
be to consider a general arrival process beyond the traditional Poisson assumption, as
non-exponential inter-arrival times may better reflect dynamic environments such as web
traffic and smart grid networks. Additionally, integrating service control policies, such as
the N -policy (where the server activates or deactivates based on system occupancy levels),
could significantly improve resource utilization and provide deeper insight into balancing
performance and cost efficiency in unreliable queueing systems. Finally, our model does
not explicitly account for complex customer behaviors, such as strategic decision-making,
patience thresholds, or adaptive retrial strategies. Investigating how customers adjust
their retrial attempts based on queue length, service delays, or past experiences would
enhance the model’s realism and practical applicability.

7.2. Future research directions
For future research, an interesting extension would be to explore the same model with

batch arrivals, where some groups consist of high-patience customers, while others include
low-patience customers. This modification would broaden the model’s applicability to
large-scale service systems, such as manufacturing and telecommunications, where arrivals
typically occur in clusters rather than individually. Additionally, incorporating priority-
based queuing, more sophisticated customer behavior models, service control policies,
and generalized arrival processes would further strengthen the model’s robustness and
practical relevance. These enhancements would contribute to the theoretical advancement
of retrial queueing systems while offering practical solutions to optimize real-world service
operations.
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