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Abstract. The aim of this paper is to study of the non-trivial solutions of Fischer-Marsden conjecture

on K-paracontact manifolds and 3-dimensional quasi-para-Sasakian manifolds. We prove that if a semi-
Riemannian manifold of dimension 2n + 1 admits a non-trivial solution of Fischer-Marsden equation,

then it has constant scalar curvature. We give a comprehensive classification for a (2n+1)-dimensional

K-paracontact manifold which admits a non-trivial solution of Fischer-Marsden equation. We consider
3-dimensional quasi-para-Sasakian manifolds with β constant which admits Fischer-Marsden equation

and prove that there are two possibilities. The first one is the scalar curvature r = −6β2 and M3 is

Einstein. The second one is the manifold is paracosymplectic manifold and η-Einstein.
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1. Introduction

In modern physics, the general theory of relativity provides an interpretation of many cosmological
events, from the expansion of the universe to black holes. A significant global solution of Einstein equation
in general relativity is static space-times. A semi-Riemannian manifold (M2n+1, g) and positive function
λ, we say that (M̄2n+2, ḡ) = M2n+1 ×λ R endowed with the metric ḡ = g − λ2dt2 is a static space-time.
In this case, the Einstein equation with perfect fluid as a matter field over (M̄2n+2, ḡ) is given by

Sḡ −
rḡ
2
ḡ = T, (1)

where T = µλ2dt2 + ρg is the stress-energy-momentum tensor of perfect fluid, Sḡ and rḡ denotes the
Ricci tensor and scalar curvature for the metric ḡ, resp. Moreover, the smooth functions µ and ρ are
energy density and pressure of the perfect fluid, resp. Static perfect fluid space-times is a generalization
of the static vacuum spaces and solution of (1). Also, it provides models for black holes, galaxies and
stellars [7, 9]. Fischer-Marsden equation can be considered as a special case of the static perfect fluid
space-times [5, Remark 1.3].

On the other hand, Fischer-Marsden conjecture is closely related the conjecture that known as Cosmic
no-hair conjecture. We recall the Cosmic no-hair conjecture as ”the hemisphere Sn+ is the only possible
n-dimensional positive static triple with single-horizon and positive scalar curveture” [9].

Let (M2n+1, g) be a compact, orientable semi-Riemannian manifold. We denote the set of all unit
volume semi-Riemannian metrics on (M2n+1, g) by M. The linearization of the scalar curvature Lg(g

∗)
is given by

Lgg
∗ = −∆g(trgg

∗) + div(div(g∗))− g(g∗, S),
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where ∆g, div, g
∗ and S denotes the negative Laplacian of the semi-Riemannian metric g, divergence

operator, symmetric (0, 2) tensor field on M and the Ricci tensor, resp. The formal L2-adjoint Lgg
∗ of

the linearized scalar curvature operator Lg is defined by

L∗
g(λ) = −(∆gλ)g +Hessgλ− λS, (2)

where Hessgλ(U, V ) = ∇2
gλ(U, V ) = g(∇UDλ, V ) is the Hessian operator of the smooth function λ on M

andD is the gradient operator of g. We refer the equation L∗
g(λ) = 0 as Fischer-Marsden equation (FME).

The pair (g, λ) that satisfying L∗
g(λ) = 0 is called a solution of Fischer-Marsden equation. A solution with

λ = 0 is called a trivial solution. We note that a complete Riemannian manifold that admits a non-trivial
solution of Fischer-Marsden equation (λ ̸= 0) has constant scalar curvature [1,10]. Moreover, Corvino [8]
proved that a non-trivial solution of FME implies the warped product metric g∗ = g− λ2dt2 is Einstein.
Further, we recall Fischer-Marsden conjecture [10] as ”a compact Riemannian manifold that admits a
non-trivial solution of the equation L∗

g(λ) = 0 is necessarily an Einstein manifold”. In the case of g is
conformally flat, counter examples of this conjecture are given by Kobayashi [12] and Lafontaine [16].
This conjecture is investigated by various authors [2–4,19,20].

A Ricci soliton is a generalization of an Einstein metric [11]. A semi-Riemannian metric g on a semi-
Riemannian manifold M2n+1 is said to be Ricci soliton if there exist a real number µ and a vector field
V on M2n+1 satisfying

LV g + 2S + 2µg = 0, (3)

where LV g and S denote the Lie derivative along the vector field V and the Ricci tensor of g, resp. The
vector field V is also called the potential vector field. If soliton constant µ is zero, negative or positive,
then the Ricci soliton is said to be steady, shrinking or expanding, resp. Furthermore, if V is a gradient
of a smooth function f , namely, V = Df , then the Ricci soliton is called a gradient Ricci soliton and the
equation (3) becomes

Hess(f) + S = µg, (4)

where Hess(f) is the Hessian of f . In semi-Riemannian manifold M2n+1, the metric g is said to be
gradient η-Ricci soliton if it satisfies

Hess(f) + S = µ1g + µ2η ⊗ η, (5)

where f is a smooth function and µ1, µ2 are constants [6].
All of the mentioned works motivate us to study Fischer-Marsden conjecture on K-paracontact mani-

folds and 3-dimensional quasi-para-Sasakian manifolds. This paper is organized in the following way. In
section 2, we recall some notations required for this paper. In section 3, first, we prove the counter-part
of the theorem which was proved in 1975 [1, 10], namely, we show that in a semi-Riemannian manifold
which admits non-trivial solution of Fischer-Marsden equation, the scalar curvature is constant. After
that, we gave a comprehensive classification for a (2n + 1)-dimensional K-paracontact manifold which
admits a non-trivial solution of Fischer-Marsden equation. With this Theorem, we have shown one of the
difference between contact geometry and paracontact geometry. Also, we prove that if the Ricci operator
commutes for a K-paracontact manifold M2n+1 with a non-trivial solution of Fischer-Marsden equation,
then M2n+1 is an Einstein manifold. We show that if a 2n + 1-dimensional para-Sasakian manifold
admits a non-trivial solution of Fischer-Marsden equation, then it is Einstein. Moreover, for n = 1, the
Ricci tensor is parallel and the manifold is Ricci-semisymmetric. We also investigate the relation be-
tween Fischer-Marsden conjecture and gradient Ricci solitons on K-paracontact manifolds. In Section 4,
we consider 3-dimensional quasi-para-Sasakian manifolds with β constant which admits Fischer-Marsden
equation and prove that there are two possibilities. The first one is the scalar curvature r = −6β2 and
M3 is Einstein. The second one is the manifold is paracosymplectic manifold which is locally a product
of the real line R and a 2-dimensional para-Kaehlerian manifold, and η-Einstein. Finally, we give the
relation between Fischer-Marsden conjecture and gradient Ricci solitons and gradient η-Ricci solitons on
quasi-para-Sasakian manifolds M3.

2. Preliminaries

A (2n+1)− dimensional manifold M is called almost paracontact manifold if it admits triple (F, ξ, η)
satisfying the followings:
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η(ξ) = 1, F 2 = I − η ⊗ ξ (6)

and F induces on almost paracomplex structure on each fiber of D = ker(η), where F, ξ and η are
(1, 1)−tensor field, vector field and 1−form, resp. As a natural consequence, the tensor field F has rank
2n, Fξ = 0 and η ◦F = 0. Here, ξ denotes a certain vector field (referred to as the Reeb or characteristic
vector field) which is dual to η and satisfying dη(ξ, U) = 0 for all U ∈ χ(M). If the structure (M,F, ξ, η)
admits a pseudo-Riemannian metric such that

g(FU,FV ) = −g(U, V ) + η(U)η(V ), (7)

for all U, V ∈ χ(M), then we say that (M,F, ξ, η, g) is an almost paracontact metric manifold. It should
be noted that a pseudo-Riemannian metric with a given almost paracontact metric manifold structure
always have a signature of (n + 1, n). On an almost paracontant metric manifold, there always exists
an orthogonal basis {U1, . . . , Un, V1, . . . , Vn, ξ}, namely F−basis, such that g(Ui, Uj) = −g(Vi, Vj) = δij
and Vi = FUi, for any i, j ∈ {1, . . . , n}. Moreover, it is possible to establish the definition of a skew-
symmetric tensor field (a 2-form), commonly referred to as the fundamental form, denoted as Φ, by using
the equation

Φ(U, V ) = g(U,FV ).

Within the framework of almost paracontact manifolds, the tensor N (1) of type (1, 2) can be introduced
by

N (1)(U, V ) = [F, F ](U, V )− 2dη(U, V )ξ

where

[F, F ](U, V ) = F 2[U, V ] + [FU,FV ]− F [FU, V ]− F [U,FV ]

is the Nijenhuis torsion of F . The almost paracontact manifold is designated as normal, when N (1) = 0
[23].

Furthermore, an almost paracontact metric manifold is referred to as a paracontact metric manifold if
the following condition is satisfied for all vector fields U, V ∈ χ(M):

dη(U, V ) = g(U,FV ) = Φ(U, V ).

In a paracontact metric manifold, a symmetric, trace-free operator h is defined as h := 1
2LξF, where L

represents the Lie derivative. It is important to note that h equals zero if and only if the vector field
ξ is a killing vector. When ξ is a Killing vector, the paracontact metric manifold is referred to as a K-
paracontact manifold. A normal almost paracontact metric manifold is said to be para-Sasakian manifold
if Φ = dη. Furthermore, a para-Sasakian manifold is also K-paracontact, with the reverse holding true
solely in a three-dimensional [23]. An almost paracontact metric manifold is called quasi-para-Sasakian
when both the structure is normal and its fundamental 2-form is closed.

Actually, three dimensional quasi-para-Sasakian and para-Sasakian manifolds are normal almost para-
contact metric manifold in the type of (α, β) with (0, β) and (0,−1), resp. In the case of α = β = 0, the
manifold is paracosymplectic [21].

An almost paracontact metric manifold is said to be η-Einstein if its Ricci tensor S is of the form

S = µ1g + µ2η ⊗ η (8)

where µ1 and µ2 are smooth functions on the manifold. If M is para-Sasakian, then µ1 and µ2 are
constants ( [23, Proposition 4.7]). If µ2 = 0, then the manifold is said to be Einstein.

In a K-paracontact manifold, we have the following relations [23]:

∇Uξ = −FU, (9)

Qξ = −2nξ, (10)

R(ξ, U)V = (∇UF )V, (11)

(∇FUF )FV − (∇UF )V = 2g(U, V )ξ − (U + η(U)ξ)η(V ), (12)

for all U, V ∈ χ(M). On K-paracontact manifold, from (8) and (10), we have µ1 + µ2 = −2n. So
K-paracontact manifold is Einstein if and only if S(U, V ) = −2ng(U, V ) for all U, V ∈ χ(M). Moreover,
the following curvature identities holds for a three-dimensional quasi-para-Sasakian manifold with β
constant [14,15]:
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∇Uξ =βFU, (13)

R(U, V )W =(2β2 +
r

2
)(g(V,W )U − g(U,W )V )− (3β2 +

r

2
)(g(V,W )η(U)ξ

− g(U,W )η(V )ξ + η(V )η(W )U − η(U)η(W )V ), (14)

S(U, V ) =(β2 +
r

2
)g(U, V )− (3β2 +

r

2
)η(U)η(V ), (15)

QU =(β2 +
r

2
)U − (3β2 +

r

2
)η(U)ξ, (16)

Qξ =− 2β2ξ, (17)

where R,S and r are respectively Riemannian curvature, Ricci tensor and scalar curvature of M .

3. K-Paracontact Manifolds Satisfying Fischer-Marsden Equation

Theorem 1. If a semi-Riemannian manifold (Mn, g) admits a non-trivial solution (g, λ) of Fischer-
Marsden equation, then it has constant scalar curvature.

Proof. Let (Mn, g) be a semi-Riemannian manifold and {ei|1 ≤ i ≤ n} be a local frame on a normal
coordinate system at any point p ∈ M . Therefore, from [18, Proposition 33, p. 73], we have

∇eiej = 0 (18)

and

∇Uei =

n∑
i=1

xj∇ejei = 0 (19)

for vector field U =
∑n

i=1 xjej on a neighborhood of p ∈ M . We also know that

div(Hessλ)(U) =

n∑
i=1

εi(∇eiHessλ)(U, ei), (20)

where εi = g(ei, ei). Computing this covariant derivative, using (18), we have

(∇eiHessλ)(U, ei) =∇eiHessλ(U, ei)−Hessλ(∇eiU, ei)−Hessλ(U,∇eiei)

=∇eig(∇UDλ, ei)− g(∇∇ei
UDλ, ei)

=g(∇ei∇UDλ, ei)− g(∇∇ei
UDλ, ei). (21)

On the other hand, using the Riemannian curvature tensor and (19), we obtain

g(R(ei, U)Dλ, ei) =g(∇ei∇UDλ, ei)− g(∇U∇eiDλ, ei)− g(∇[ei,U ]Dλ, ei)

=g(∇ei∇UDλ, ei)− g(∇U∇eiDλ, ei)− g(∇∇ei
UDλ, ei). (22)

Using (21) and (22), one can get

(∇eiHessλ)(U, ei) = g(R(ei, U)Dλ, ei) + g(∇U∇eiDλ, ei). (23)

By the help of (19) and writing (23) in (20), we derive

div(Hessλ)(U) =

n∑
i=1

εig(R(ei, U)Dλ, ei) +

n∑
i=1

εig(∇U∇eiDλ, ei)

=

n∑
i=1

εig(R(ei, U)Dλ, ei) +

n∑
i=1

εiU(g(∇eiDλ, ei))

=S(U,Dλ) + U(∆λ), (24)

for all vector field U . From (24), we have

div(Hessλ) = Q(Dλ) + d(∆λ). (25)

Again, computing the divergence of λS, we obtain

div(λS)(U) =

n∑
i=1

εi(∇eiλS)(U, ei)
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=

n∑
i=1

εi[ei(λ)S(U, ei) + λ(∇eiS)(U, ei)],

which gives

div(λS) = Q(Dλ) +
λ

2
dr. (26)

At the end, by the parallelity of the semi-Riemannian metric g, we get

div(∆λ.g)(U) =

n∑
i=1

εi(∇ei∆λ.g)(U, ei)

=

n∑
i=1

εi[ei(∆λ.g)(U, ei)−∆λ.g(∇eiU, ei)−∆λ.g(U,∇eiei)]

=

n∑
i=1

ε[ei(∆λ)g(U, ei) + ∆λ{eig(U, ei)− g(∇eiU, ei)− g(U,∇eiei)}]

=

n∑
i=1

εiei(∆λ)g(U, ei)

=

n∑
i=1

εig(U, ei(∆λ)ei)

=g(U, d(∆λ)),

which implies

div(∆λ.g) = d(∆λ). (27)

If (g, λ) is a non-trivial solution of the Fischer-Marsden equation, i.e. λ ̸= 0, then from (2), we have

−(∆gλ)g +Hessgλ− λS = 0. (28)

Taking the divergence in (28), and using (25), (26) and (27), we have

λ

2
dr = 0. (29)

Since λ ̸= 0, from (29), the scalar curvature r is constant. □

Proposition 1. [4] If (g, λ) is a non-trivial solution of the Fischer-Marsden equation on a (2n + 1)-
dimensional paracontact metric manifold M , then the Riemanian curvature tensor and Fischer-Marsden
equation can be expressed as

R(U, V )Dλ =U(λ)QV − V (λ)QU + λ{(∇UQ)V − (∇V Q)U}+ U(f)V − V (f)U, (30)

and

∇UDλ = λQU + fU, (31)

where f = −λr
2n , λ is a function of Fischer-Marsden equation and U, V ∈ χ(M).

On a K-paracontact manifold, we have LξQ = 0 [22]. Then using LξQ = 0 and (9), we have the
following result.

Lemma 1. On a (2n+ 1)-dimensional K-paracontact manifold, we have

∇ξQ = QF − FQ. (32)

Theorem 2. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a K-paracontact manifold
M of dimension (2n+ 1). Then either

(1) ξ(λ) = ±λ, or
(2) the manifold is an Einstein manifold, or
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(3) the C ̸= 0 tensor defined by C = Q + 2nI and 1 ≤ rank(Cp) ≤ n for all p ∈ M , where Cp ̸= 0.
Further, there exists a basis {U1, V1, . . . , Un, Vn, ξ} of TpM such that

gp(ξ, ξ) = 1, gp(Ui, Vi) = ±1

and

C|<Ui,Vi> =

(
0 0
1 0

)
or C|<Ui,Vi> =

(
0 0
0 0

)
,

where there are exactly rank(Cp) submatrices of the first type.
If n = 1, such a basis {ξ, U1, V1} satisfies that FU1 = ±U1, FV1 = ∓V1, and the tensor C can

be written as

C|<Ui,Vi> =

0 0 0
1 0 0
0 0 0

 .

Proof. From (9) and (10), we derive

(∇UQ)ξ = 2nFU +QFU. (33)

Letting U = ξ in (30), we get

R(ξ, V )Dλ =ξ(λ)QV − V (λ)Qξ + λ{(∇ξQ)V − (∇V Q)ξ}
+ ξ(f)V − V (f)ξ.

In above equation, using (10), (32) and (33), we obtain

R(ξ, V )Dλ = ξ(λ)QV + 2nV (λ)ξ − λFQV − 2nλFV + ξ(f)V − V (f)ξ. (34)

Taking the inner product of (34) with the vector field U , we get

−g(R(V, ξ)Dλ,U) = ξ(λ)S(V,U) + 2nV (λ)η(U) + λS(FU, V )

− 2nλg(FV,U) + ξ(f)g(V,U)− V (f)η(U). (35)

From (11) and (35), we have

g((∇V F )U,Dλ) + ξ(λ)S(V,U) + [2nV (λ)− V (f)]η(U)

− 2nλg(FV,U) + ξ(f)g(V,U) + λS(FU, V ) = 0. (36)

Letting U = FU and V = FV in (36), we obtain

g((∇FV F )FU,Dλ) + ξ(λ)S(FV, FU) + ξ(f)g(FV, FU)− 2nλg(F 2V, FU) + λS(F 2U,FV ) = 0. (37)

By substracting (37) from (36) and using the equations (6), (7), (10) and (12), we get

2ξ(λ− f)g(U, V )− V ((2n+ 1)λ− f)η(U)− ξ(λ− f)η(U)η(V )− ξ(λ)S(V,U)

+ 4nλg(FV,U) + λg(U,QFV + FQV ) + ξ(λ)g(QFV, FU) = 0. (38)

Since S is a symmetric tensor, we also have

2ξ(λ− f)g(U, V )− U((2n+ 1)λ− f)η(V )− ξ(λ− f)η(U)η(V )− ξ(λ)S(V,U)

+ 4nλg(FU, V ) + λg(V,QFU + FQU) + ξ(λ)g(QFU,FV ) = 0. (39)

The equations (38) and (39) implies

0 =U((2n+ 1)λ− f)η(V )− V ((2n+ 1)λ− f)η(U) + 8nλg(FV,U) + 2λg(U,QFV + FQV ). (40)

Putting U = FU and V = FV in (40), we obtain

4nλg(FV,U) = −λ[g(U,QFV ) + g(U,FQV )].

Since λ ̸= 0 on M , we derive

−4nFV = (QF + FQ)V, (41)

for all V ∈ χ(M). Let {ei, F ei, ξ}, (i = 1, 2, . . . , n) be a local orthonormal F -basis. Using (7), we get

g(FQei, F ei) = −g(Qei, ei). (42)
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By the definition of the scalar curvature, (41) and (42), we have

r = S(ξ, ξ) +

n∑
i=1

εi{S(ei, ei) + S(Fei, F ei)}

= g(Qξ, ξ) +

n∑
i=1

εi{g(QFei + FQei, Fei)}

= −2n(2n+ 1). (43)

Therefore, from the Proposition 1 the following equation is valid

f = (2n+ 1)λ. (44)

Taking the inner product of (34) with Dλ and using in (44), we obtain

ξ(λ)[QDλ+ 2nDλ] + λ[QFDλ+ 2nFDλ] = 0. (45)

Letting Dλ = V in (41) implies QFDλ = −4nFDλ − FQDλ. Hence, using the last equation, (45)
becomes

ξ(λ)[QDλ+ 2nDλ] + λ[−2nFDλ− FQDλ] = 0. (46)

Finally, applying F to (46) and using (6), we have

ξ(λ)[FQDλ+ 2nFDλ] + λ[−2nDλ−QDλ] = 0.

After some calculations, the last two equations imply

[(ξ(λ))2 − λ2][QDλ+ 2nDλ] = 0.

Then, either ξ(λ) = ±λ or QDλ+2nDλ = 0. Assume that ξ(λ) ̸= ±λ. Hence, QDλ+2nDλ = 0. Taking
the covariant derivative of QDλ+ 2nDλ = 0 along the vector field U and using (31), we get

(∇UQ)Dλ+ λQ2U + (2nλ+ f)QU + 2nfU = 0.

Contracting above equation over U with respect to a local orthonormal F -basis, we obtain

n∑
i=1

εi[g((∇eiQ)Dλ, ei)+g((∇FeiQ)Dλ,Fei)] + g((∇ξQ)Dλ, ξ) + λ|Q|2 + (2nλ+ f)r + 2n(2n+ 1)f = 0.

(47)

Using the well-known formula divQ = 1
2dr and (43), since λ ̸= 0, from (47) we derive |Q|2 = 4n2(2n+1).

Finally, using the last equation and (43), we compute

|Q− r

2n+ 1
I|2 = |Q|2 − 2r2

2n+ 1
+

r2

2n+ 1
= 0. (48)

From (43) and (48), we have |C|2 = 0, where the tensor C = Q+ 2nI. Then, there are two possibilities.
If C = 0, then Q = −2nI. In the case of C ̸= 0, since C is self-adjoint and Ker(η) is C-invariant we have
from [18, p.260] that, at each point p ∈ M , Ker(ηp) = W1 ⊕ · · · ⊕Wl for some (1 ≤ l ≤ 2n), where Vk

are mutually orthogonal subspaces that are C-invariant and on C|Wk
has matrix of either type:

γ̄
1 γ̄ 0

1 γ̄
. . .

. . .

0 1 γ̄


relative to a basis U1, . . . , Ur of Wk, r ≥ 1, such that the only non-zero products are gp(Ui, Uj) = ±1 if
i+ j = r + 1, or of type
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a b
−b a 0
1 0 a b
0 1 −b a

1 0 a b
0 1 −b a

. . .
. . .

0
1 0 a b
0 1 −b a


(b ̸= 0)

relative to a basis U1, V1, . . . , Um, Vm of Wk, such that the only non-zero products are gp(Ui, Uj) = 1 =
−gp(Vi, Vj) if i+ j = m+1. For n = 1, the rest of the proof is similar to the proof of Theorem 3.2 in [17].
This completes the proof. □

Theorem 3. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a K-paracontact manifold
of dimension (2n + 1) that Ricci operator commutes, i.e. QF = FQ. Then the manifold is an Einstein
manifold.

Proof. From the assumption, (41) returns

−4nFV = 2FQV. (49)

Applying F to the (49) and using (6) and (10), we obtain QV = −2nV . Hence, the manifold is an
Einstein manifold. □

Remark 1. In a (2n + 1)-dimensional para-Sasakian manifold M satisfies the relation S(FU,FV ) =
−S(U, V ) − 2nη(U)η(V ) [23, Lemma 3.15]. Letting V = FV in the last equation, one can observe that
the Ricci tensor commutes.

With the help of the Theorem 4.1 in [13], Theorem 3 and Remark 1, we can state the following
corollary.

Corollary 1. If a (2n+1)-dimensional para-Sasakian manifold admits a non-trivial solution of Fischer-
Marsden equation, then it is an Einstein manifold. Moreover, for n = 1, the Ricci tensor is parallel and
the manifold is Ricci-semisymmetric.

Corollary 2. If (M2n+1, g) is a K-paracontact manifold admitting a non-trivial solution of the Fischer-
Marsden equation with QF = FQ, then g is a gradient Ricci soliton.

Proof. Since the Ricci operator commutes with F , we have Q = −2nI from Theorem 3. Then using this
and (44), the equation (31) becomes

∇UDλ = λU,

which gives
Hess(λ)(U, V ) = λg(U, V ). (50)

In the view of (50) and Q = −2nI, we have

Hessλ+ S − (λ− 2n)g = 0. (51)

It follows from (4) and (51), g is a gradient Ricci soliton.
□

4. 3-Dimensional Quasi-para-Sasakian Manifolds Admitting Fischer-Marsden Equation

In this section, we will consider 3-dimensional quasi-para-Sasakian manifolds with β constant which
admits Fischer-Marsden equation. The general form of the following proposition is given in [14].

Proposition 2. For a 3-dimensional quasi-para-Sasakian manifold M3, the following equation holds

(∇V Q)ξ − (∇ξQ)V = −β(3β2 +
r

2
)FV,

for any vector field V .
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Proof. Taking the covariant derivative of (17) along the vector field V and using the equations (13), (16)
and (17), we get

(∇V Q)ξ = −β(3β2 +
r

2
)FV. (52)

Let {e, Fe, ξ} be a local orthonormal F -basis. Using the well-known formula divQ = dr
2 and contracting

(52) over V with respect to a local orthonormal F -basis, we obtain

ξ(r) = 0.

Similarly, taking the covariant derivative of (16) along ξ, we have

(∇ξQ)V = 0, (53)

which completes the proof. □

Theorem 4. Let (g, λ) be a non-trivial solution of Fischer-Marsden equation on a 3-dimensional quasi-
para-Sasakian manifold M3 with β constant. Then either

(1) the scalar curvature is −6β2 and M3 is Einstein, or
(2) M3 is a paracosymplectic manifold which is locally a product of the real line R and a 2-dimensional

para-Kaehlerian manifold, and η-Einstein.

Proof. Letting U = ξ in (30) and taking the inner product with E, we have

g(R(ξ, V )Dλ,E) =ξ(λ)S(V,E)− V (λ)S(ξ, E) + λ{g((∇ξQ)V − (∇V Q)ξ, E)}
+ ξ(f)g(V,E)− V (f)g(ξ, E). (54)

After some calculations, using the equations (16), (17) and (53) in (54), we get

g(R(ξ, V )Dλ,E) =ξ(λ)S(V,E) + 2β2V (λ)η(E) + λβ(3β2 +
r

2
)g(FV,E) + ξ(f)g(V,E)− V (f)η(E).

(55)

We recall that the scalar curvature r is constant from Theorem 1. Putting E = ξ in (55) and using the
equation (15) and f = −λr

2 , we obtain

g(R(ξ, V )Dλ, ξ) = (
r

2
+ 2β2)(V (λ)− η(V )ξ(λ)). (56)

From (14), one can get

g(R(ξ, V )Dλ,E) = −β2(V (λ)η(E)− ξ(λ)g(V,E)). (57)

For E = ξ in (57), we obtain

g(R(ξ, V )Dλ, ξ) = −β2(V (λ)− ξ(λ)η(V )). (58)

Therefore, the equations (56) and (58) imply

(
r

2
+ 3β2)(V (λ)− η(V )ξ(λ)) = 0. (59)

From the above equation, two cases occur. We now check, case by case, whether (59) give rise to a local
classification.

Case I: If r
2 + 3β2 = 0, then scalar curvature r is −6β2.

Case II: If

V (λ)− η(V )ξ(λ) = 0, (60)

then the gradient of λ is colinear with ξ, i.e. Dλ = ξ(λ)ξ. Taking the covariant derivative of the last
equation along the vector field U implies

∇UDλ = ∇U (ξ(λ))ξ + ξ(λ)∇Uξ. (61)

Taking the inner product of (61) with V and using (13), we obtain

g(∇UDλ, V ) = U(ξ(λ))η(V ) + βξ(λ)g(FU, V ). (62)

Interchancing U and V in (62), we get

g(∇V Dλ,U) = V (ξ(λ))η(U) + βξ(λ)g(FV,U). (63)
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Since the Hessian operator is symmetric, the equations (62) and (63) imply

U(ξ(λ))η(V )− V (ξ(λ))η(U) = 2βξ(λ)g(U,FV ). (64)

Putting U = FU and V = FV in (64), we have

2βξ(λ)g(FU, V ) = 0.

If β = 0, then the manifold is paracosymplectic which is locally a product of the real line R and a
2-dimensional para-Kaehlerian manifold and η-Einstein from (15). Let ξ(λ) = 0 and β ̸= 0. Then, from
(60), λ is constant. Therefore, from (2), the Ricci operator S is zero. Hence, the manifold is Ricci flat.
Using (15), we get β = 0, which is a contradiction of our assumption. So, this case does not occur. □

Corollary 3. Let (M3, g) is a quasi-para-Sasakian manifold that admitting non-trivial solution of Fischer-
Marsden equation. Then either g is a gradient Ricci soliton or is a gradient η-Ricci soliton.

Proof. From the assumption and Theorem 4, there are two possibilities.
Case I: If r = −6β2, then the equations (16), (31) and f = −λr

2 implies

∇UDλ = λβ2U.

With similar idea in the proof of Corollary 2, we have

Hessλ+ S − β2(λ− 2)g = 0.

It means that g is a gradient Ricci soliton.
Case II: If β = 0, then we have S(U, V ) = r

2 [g(U, V )− η(U)η(V )]. On the other hand, using (16) and
(31), we get Hessλ = −λ r

2η ⊗ η. In the view of the last two equations, we obtain

Hessλ+ S − r

2
g +

r

2
(1 + λ)η ⊗ η = 0,

which shows that from (5), g is a gradient η-Ricci soliton.
□
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