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ABSTRACT

The Homotopy Analysis Method (HAM) is an effective technique to achieve the analytical 
solution of a broad range of problems, mainly with nonlinear governing equations. The solu-
tion of Pennes’ bioheat equation in nonlinear form arising from the linear temperature-de-
pendent nature of specific heat capacity of a biological tissue using the Homotopy Analysis 
Method has been obtained analytically and validated with the numerical results obtained from 
the Finite Difference Method (FDM) the first time in this study. The analysis demonstrated 
that considering the various values of the convergence parameter and computing the Mean 
Squared Error (MSR) to achieve the optimum values ensures accurate results even at the 
low-order approximations of the solution. Investigating the effect of the nonlinear term’s mag-
nitude on the solution indicated a direct relationship; However, the effect was not remarkable 
even at the major values, thus it is possible to consider the specific heat capacity of a living tis-
sue, a constant value through thermal simulations. According to this research, the Homotopy 
Analysis Method can be a proper method to derive the analytical solution of either the linear 
or nonlinear form of Pennes’ bioheat equation.
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INTRODUCTION

Mathematical modeling of the heat transfer phenome-
non within biological tissues has been a fascinating prob-
lem to scientists and mathematicians for over seventy years, 
dating back to Harry H. Pennes’ attempt to formulate bio-
heat transfer along the human forearm for the first time 
in 1948 [1]. Various models have been suggested for the 

heat transfer phenomenon inside living tissues since then. 
However, Pennes’ equation has remained the most exten-
sively applied mathematical formulation to study the bioheat 
transfer phenomenon [2]. The solution of Pennes’ bioheat 
equation into a semi-infinite tissue was offered analytically 
by Shih et al. employing the Laplace transform. The heat flux 
followed a sinusoidal function. Shahnazari et al. found the 
solution of this equation for the skin exposed to a frequent 
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thermal flux. A procedure based on the Weighted Residual 
and Homotopy Perturbation Method (HPM) was applied 
to achieve the results [3,4]. Qin and Wu solved the Pennes’ 
bioheat equation fractional form numerically by applying 
the quadratic spline collection method, whereas Al-Humedi 
and Al-Saadawi introduced the answer numerically using 
the shifted Legendre polynomials. Liu and Tu suggested the 
numerical results for Pennes’ differential equation including 
transient blood temperature through the Laplace transform 
[5-7]. A mathematical model to present the space-fractional 
form of this equation was proposed by Singh et al. The solu-
tion was achieved using HPM after turning it into an IVP. 
Kumar et al. obtained the answer numerically utilizing the 
Finite Difference Method (FDM) and the Legendre wave-
let Galerkin procedure. In contrast, Wang et al. developed a 
model for the bioheat transfer during laser irradiation based 
on non-Fourier heat conduction. In the following, Kabiri 
and Talaee solved Pennes’ bioheat equation in hyperbolic 
form, subject to a mobile heat source analytically based 
on the Eigenvalue Method [8-11]. The Fibonacci wavelet 
method was applied to find the answer by Irfan et al. as a dif-
ferent approach. Time-fractional Pennes’ equation solution 
was offered using the Fibonacci wavelet method by Irfan 
and Shah subsequently [12,13].

Lakhssassi et al. proposed a simplified formulation 
according to the modified format of this bioheat equa-
tion at the steady state. The solutions were found using 
the Weierstrass elliptic function. Gupta et al. presented a 
model for heat transfer within thermal therapy using elec-
tromagnetic radiation. The solution was achieved by the 
Galerkin method with the B-polynomial, and the problem 
was solved by HPM [14,15]. Majchrzak offered the solu-
tion by the Boundary Element Method (BEM) for a dual-
phase-lag problem. Majchrzak and Turchan also obtained a 
three-dimensional solution to a similar problem by general 
BEM [16,17].

Numerous attempts have been made thus far in the 
pursuit of finding numerical and analytical solutions for 
nonlinear heat transfer equations [18-21]. Karimipour et al. 
conducted a study to investigate the effects of gravity on 
mixed convection heat transfer in a microchannel using 
the Lattice Boltzmann Method [22]. In similar research, 
the effects of magnetic field and slip were studied on the 
developing laminar forced convection of nanofluid in a 
microchannel [23]. Karimipour also conducted research on 
forced convection heat transfer of certain nanofluids in a 
microchannel using the Lattice Boltzmann Method (LBM) 
[24,25]. Menni et al. examined turbulent heat transfer 
and fluid flow over complex geometry fins [26]. Similarly, 
Menni et al. studied convection heat transfer in channels 
[27-29]. 

A practical technique of calculating the analytical 
results based on a power series named the Homotopy 
Analysis Method (HAM), was introduced by Liao in 1997 
[30]. Being independent of small parameters is a signif-
icant superiority of this technique in comparison with 

perturbation methods. This method combines the classic 
perturbation and the homotopy of topology [31]. HAM was 
utilized to find the answer of nonlinear heat transfer prob-
lems by Abbasbandy. To validate the results, the solutions 
were compared with the results from Runge-Kutta and 
HPM [32]. 

Hariharan found the solution of some partial differen-
tial equations relevant to engineering problems, including 
linear non-homogeneous Cauchy differential equations by 
this method. A similar attempt was made to apply HAM to 
solving some nonlinear parabolic-hyperbolic Cauchy prob-
lems by Gupta and Gupta [33,34]. Lu and Liu investigated 
the application of HAM to investigate the results for the 
variable-coefficient form of the KdV-Burgers. Hesameddini 
and Latifizade also used this method to find the numerical 
solution for Painlevé equations with several initial condi-
tions. HAM was used to study Magnetohydrodynamics 
(MHD) for free convection of a thin plate, which goes into 
a viscous fluid with low-heat resistance by Hammouch et 
al. [35-37]. Odibat presented an  optimized kind of HAM. 
Biswal and Chakraverty studied the Jeffery-Hamel flow 
arising from the movement of a nanofluid inside a mag-
netic field by OHAM, and Obalalu et al. studied a Casson 
fluid flow applying HAM [38-40]. Rabbani introduced a 
modified HPM to obtain the answer for nonlinear inte-
gral equations. Jbr and Al-Rammahi used q-HAM to 
solve the Fredholm integral equation in nonlinear form. 
Abdulkhaleq applied a combination of HAM and the Harris 
Hawks method to solve several PDEs [41-43]. 

In this study, Pennes’ bioheat equation with a nonlinear 
term arising from the linear temperature-dependent nature 
of the specific heat capacity of biological tissue has been 
solved using HAM for the first time. The accuracy was eval-
uated by comparing the results with the numerical answers 
derived from the Finite Difference Method (FDM) and cal-
culating the Mean Squared Error.

PENNE’S BIOHEAT EQUATION

As it was mentioned in the introduction section, Penne’s 
bioheat equation is the most common mathematical for-
mulation for studying bioheat transfer. The Pennes’ bioheat 
equation in general is shown in the form [44]:

  (1)

By assuming a fixed thermal conductivity and blood 
perfusion rate for the biological tissue (k, ωp = cte) the 
one-dimensional form of (1) is derived as:

  
(2)

which x denotes the spatial variable of this equation. The 
initial condition of the equation is considered as: 
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  (3)

Defining the dimensionless groups below will result in 
the nondimensional form of (2).

  

(4)

The nondimensional form of (2) regarding the intro-
duced dimensionless groups is:

  (5)

and the nondimensional initial condition is expressed as:

  (6)

Considering the tissue’s specific heat capacity as the 
temperature’s linear function, namely [45]: 

  (7)

and substituting it into (2) with the consideration of (8) 
results in (9). Here c0 denotes the tissue’s pecific heat capac-
ity at core body temperature, and β(Θ-1)  is a constant.

  (8)

  
(9)

Homotopy Analysis Method (HAM)
Let us consider nonlinear Pennes’ bioheat equation as 

follows [46]: 

  (10)

which N denotes the nonlinear operator, X and τ are the 
dimensionless spatial and temporal variables, and θ(X, τ) 
is the unknown solution respectively. Assuming θ0(X, τ) as 
the initial guess, h ≠ 0  the convergence-control parameter, 
H(X, τ) ≠ 0 the axillary function, and L the linear axillary 
operator with the character:

  (11)

and assuming q ∈ [0,1], a homotopy is constructed as 
below:

  (12)

 When q = 0:

  (13)

Referring to (11):

  (14)

When q = 1:

  (15)

Since h, H(X, τ) are nonzero items, consequently:

  (16)

and this means:

  (17)

As it was demonstrated above, when q grows from 0 to 
1, Φ(X, τ; q) continuously converts from the initial guess 
into the analytical solution of nonlinear Pennes’ bioheat 
equation which was introduced in (9). Expanding Φ(X, τ; 
q)into the Tylor series respecting q results in the following 
equation:

  
(18)

By defining the m-th order deformation derivative in 
the form: 

  
(19)

Φ(X, τ; q) is expanded in the following form, according 
to the Taylor expansion of Φ(X, τ; q), which was shown in 
(18):

  
(20)

Regarding (17) by setting q = 1 in (20), the solution of 
nonlinear Pennes’ bioheat equation emerges as:

  
(21)

The following vector is considered:

  (22)
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To determine θm(X, τ), the m-th order derivative of the 
zero-order deformation (12) with respect to q is computed, 
then the result is divided by m ! and finally q is set to 0. 
Through following this process, the high-order deforma-
tion appears in the form:

  (23)

and θm(X, τ) is calculated as:

   (24)

By introducing χm in the following form: 

  
(25)

and  in the form:

  
(26)

besides substituting (25) and (26) into (24), θ(X, τ) is 
calculated by (21). The m-th order approximation of θ(X, 
τ) is presented as:

  (27)

The Analytical Solution Built on Homotopy Analysis 
Method

The analytical solution of (9) obtained by HAM has 
been investigated in this section. The boundary conditions 
in this article are defined as:

  (28)

  (29) 

The linear operator is chosen ,  the nonlinear one 

is selected in the form , 

and H(X, τ) = 1 for simplification purposes here. 
The initial guess is selected according to the boundary 

conditions (28), (29) as well as the right side of (9).

  (30)

The m-th order approximation of the solution can be 
calculated referring to (24) with the boundary conditions 
below:

  (31)

A Maple code was written to implement the elaborated 
procedure and obtain the Pennes’ nonlinear bioheat equa-
tion’s analytical solution using HAM in this study.

RESULTS AND DISCUSSION

Assuming ε = 1, αi = 1 (i = 1,2,3), and following the 
described process will result in the m-th order approximate 
solution of (9) with the relevant boundary conditions. The 
zero and the first-order approximations are in the form:

  (32)

   

(33)

Repeating this algorithm will result in higher-order 
deformations and more accurate approximations. It is evi-
dent that the first-order analytical solution and the numer-
ical one achieved by the Finite Difference Method (FDM) 
converge at h = 1.0 with a remarkable level of accuracy as 
illustrated through Figure 1. 

It is clear that the answer of (5) can be obtained by set-
ting ε = 0. For the high computational cost of HAM in find-
ing the higher-order approximate solutions of (9), the effect 
of the convergence parameter has only been studied on the 

Figure 1. The first-order approximation of (9) at τ =1 with ε = 
1, αi = 1 (i = 1,2,3) at various values of h in comparison with 
the answer derived from the Finite Difference Method (FDM).



J Ther Eng, Vol. 10, No. 3, pp. 613−621, May, 2024 617

first and second-order approximations at αi = 1 (i = 1,2,3), 
ε = 1, τ =1. The results have been noted in Tables 1 and 2. 
The Mean Squared Error (MSE) has been calculated in the 
following form for each h values [47]: 

  
(34)

MSE for the first and second-order approximations 
of the solution regarding the different h values has been 
depicted in Figure 2. It is easily recognized that with the 
increase of h, the error decreases gradually, and after a spe-
cific value, the error rises again. As can be observed, the 
optimum h values to achieve the least MSE for the first 
and second-order approximations, are 1.0 and 0.6 in order 
for the studied case. It demonstrates that by selecting an 

appropriate value for the convergence parameter, achieving 
accurate results even at low-order approximations is possi-
ble, and it is the superiority of HAM in comparison to other 
power- series-based analytical techniques. 

The effect of ε on the second-order approximate solu-
tion with h = 1.0, τ =1 has been investigated and shown 
in Figure. 3. Since the small values of ε do not affect the 
solution remarkably, the results for the minor values have 
been indicated in Table 3. As can be recognized through 
the graph and table, the results grow with the increase in 
ε. The second-order approximate solutions of nonlinear 
Pennes’ bioheat as a function of X, τ  at ε = 0, 20, 50, 100, αi 
= 1 (i = 1,2,3), h = 1.0 for 0 ≤ X ≤ 1 and 0 ≤ τ ≤ 1 have been 
displayed in Figure 4.

Table 1. MSE for the first-order approximate solution of (9) using HAM at the various h values

MSEX4 = 0.8X3 = 0.6X2 = 0.4X1 = 0.2h
0.00685000910.25159192700.46913425850.66135773240.83597695210.1
0.00545682200.25888933300.48000859080.67223206480.84327435840.2
0.00423513830.26618673900.49088292300.68310639690.85057176460.3
0.00318495770.27348414600.50175725500.69398072910.85786917090.4
0.00230628040.28078155200.51263158800.70485506100.86516657730.5
0.00159910630.28807895900.52350592100.71572939500.87246398470.6
0.00106343540.29537636700.53438025300.72660372700.87976139100.7
0.00069926780.30267377400.54525458600.73747806000.88705879800.8
0.00050660350.30997117800.55612891800.74835239200.89435620300.9
0.00048544240.31726858700.56700325100.75922672500.90165361101.0
0.00063578460.32456599300.57787758300.77010105700.90895101801.1
-0.34899507590.56923538310.73934597030.8785241309Finite Difference 

Solution

Table 2. MSE for the second-order approximate solution of (9) using HAM at the various h values

MSEX4 = 0.8X3 = 0.6X2 = 0.4X1 = 0.2h
0.00552886010.25849465240.47941166840.67162923130.84286943480.1
0.00340070220.2719054240.49936956360.69156939460.85624947470.2
0.00192629100.2845268340.51813361380.71030388880.86881966580.3
0.00100792920.2963588810.53570381580.72783271580.88058000780.4
0.00055415550.3074015680.5520801730.74415587480.89153050080.5
0.00047974600.3176548910.5672626820.75927336360.90167114460.6
0.00070571330.3271188560.5812513460.77318518640.91100194040.7
0.00115930680.3357934570.5940461650.78589134100.91952288800.8
0.00177401270.3436786970.60564713560.79739182660.92723398460.9
0.00248955410.35077457500.61605426200.80768664440.93413523381.0
0.00325189070.35708109340.62526754000.81677579400.94022663321.1
-0.34899507590.56923538310.73934597030.8785241309Finite Difference 

Solution
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Figure 3. The second-order approximate solutions of (9) at h = 1.0, αi = 1 (i = 1,2,3), τ =1 with various ε values.

Figure 2. MSE for the first and second-order approximations according to the h values.

Table 3. The solution of (9) at h = 1.0, τ =1 with the minor values of ε

X = 0.8X = 0.6X = 0.4X = 0.2ε
0.3473720480.611156350.8033798250.931757074ε = 0.0
0.3477123040.611646140.8038105060.931994893ε = 0.1
0.3480525540.612135930.8042411890.932232706ε = 0.2
0.3490733120.613605310.8055332360.932946156ε = 0.5
0.3507745750.616054260.8076866450.934135235ε = 1.0
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CONCLUSION

The comparison between the analytical answer of 
Pennes’ equation arising from the Homotopy Analysis 
Method and the numerical solution demonstrates a very 
good agreement. It is not easy to obtain the high-order 
deformations of nonlinear Pennes’ bioheat equation for the 
high computational cost of HAM; However, achieving the 
acceptable accuracy by applying the convergence-control 
parameter’s optimum values even at the low-order approx-
imations is possible. Analyzing the effect of ε on the solu-
tion indicates that the increase in this parameter’s value will 
increase the temperature. Nevertheless, the effect is incon-
siderable even for the large values of  ε, thus it is reasonable 
to consider the specific heat capacity of a living tissue inde-
pendent of its temperature (a constant value). Referring to 
this study, HAM is considered an appropriate analytical 

technique to compute the solution of Pennes’ equation in a 
nonlinear form.

NOMENCLATURE

T Temperature
t Time
ρt Density of tissue
ct Specific heat capacity 
k Thermal conductivity
ρb Density of blood
cb Specific heat capacity of blood
ωp Blood perfusion rate
Ta Core body temperature
qm Volumetric metabolic heat generation

Figure 4. The second-order approximate solutions of nonlinear Pennes’ bioheat equation at ε = 0, 20, 50, 100, αi = 1.0 
(i = 1,2,3), h = 1.0.
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