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ALMOST INNER DERIVATIONS OF LEIBNIZ ALGEBRAS

Nil MANSUROĞLU1 and Mücahit ÖZKAYA2
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Abstract. This work is presented the study on almost inner derivations of

Leibniz algebras. In this note, we demonstrate the natural extensions of some
general properties on derivations given for Lie algebras to Leibniz algebras

with finite dimension, and also we investigate which statements a mapping

have to hold to be an almost inner derivation.

1. Introduction

Leibniz algebras which were first initiated by Loday [10] are as a generalization
of Lie algebras. Loday and Pirashvili in [11] investigated such algebras by using
homological algebras. In literature, many papers have consisted of the results which
show the similarities and the differences between Lie and Leibniz algebras. In the
paper [9] M. Ladra and et al. studied the derivations of Leibniz algebras and they
extended several common properties of derivations and automorphisms given for
Lie algebras to Leibniz algebras with finite dimensions over C. The paper [16] of
C. Zargeh is proved that if Leibniz algebra L has a derivation δ : L → L satisfying
Lm ⊂ δ(L) for some m > 1 where Lm is the m-th terms of lower central series
of L, then L is solvable. The derivations of Leibniz algebras are studied in many
papers including [4, 5]. There exist still several open natural questions. One of
those questions is on the almost inner derivations which were not considered for
Leibniz algebras.
The principal goal of this note is to demonstrate the important consequences on
almost inner derivations of Leibniz algebras which are analogs to the consequences
in Lie algebras. Our fundamental starting point is presented by the papers [3,7,14,
15] which studied on almost inner derivations of Lie algebras.
This paper is planned as follows. Several definitions and notations are introduced
in Section 2. Section 3 is presented to the notion of almost inner derivation. First,

2020 Mathematics Subject Classification. 17A32, 17A60.
Keywords. Leibniz algebra, derivation, almost inner derivation.
1 nil.mansuroglu@ahievran.edu.tr-Corresponding author; 0000-0002-6400-2115
2 ogr.m.ozkaya@ahievran.edu.tr; 0000-0002-6436-8360.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

969



970 N. MANSUROĞLU, M. ÖZKAYA

we examine some special types of derivations, this concerns the almost inner ones
which form a generalization of the inner derivations. Then we derive a procedure
to figure out the set of all almost inner derivations, and we also give an example for
this method. In Section 4, we investigate which statements a general mapping have
to hold to be an almost inner derivation by using the structure constants. In the
concluding Section 5, we focus on fixed basis vectors for an arbitrary derivation.
In particular, we prove that if any basis vector for all almost inner derivations is
fixed, then the set of all almost inner derivations is equal to the set of all inner
derivations.

2. Preliminaries

This section introduces the concepts of Lie algebra and Leibniz algebra which
will be used in later sections. The material in this section is based on [1,2,8,10,13].
Given a field K with characteristic zero. Recall that an algebra L over K is Lie
algebra if the algebra satisfies the following properties

(i) pp = 0, (anti-commutativity)

(ii) (pq)r + (qr)p+ (rp)q = 0 (Jacobi identity)

for all p, q, r ∈ L. Let L be a Lie algebra and I be a subspace of L. If xy ∈ I for
all x ∈ I and y ∈ L, I is said to be a Lie ideal of L. The set of all linear maps on
L, gl(L), becomes a Lie algebra with Lie product given by [h1, h2] = h1h2 − h2h1

for every h1, h2 ∈ gl(L).
An algebra L over K with an operation [, ] : L×L → L is said to be a left Leibniz
algebra if L holds Leibniz identity

[[p, q], r] = [p, [q, r]]− [q, [p, r]]

for every p, q, r in L. Similarly, we say a right Leibniz algebra if L holds Leibniz
identity

[p, [q, r]] = [[p, q], r]− [[p, r], q].

We use left Leibniz algebra the rest of this paper. We give the left normed conven-
tion for Leibniz brackets, that is,

[p1, p2, p3, . . . , ps] = [[. . . [[p1, p2], p3], . . .], ps]

for all p1, p2, . . . , ps ∈ L.

It is clear that Leibniz algebra is obvious a generalization of Lie algebra. Given
a subspace I of a Leibniz algebra L, I is a subalgebra if [p, q] ∈ I for every
p, q ∈ I. If [p, q] ∈ I and [q, p] ∈ I for every p ∈ L and q ∈ I, then we say
I an ideal of L and we denote by I ⊴ L. The left centre of L is denoted by
Cl(L) = {p ∈ L|[p, q] = 0 for every q ∈ L} and the right centre of L is represented
by Cr(L) = {p ∈ L|[q, p] = 0 for every q ∈ L}. The centre of L is represented
by C(L) = Cl(L) ∩ Cr(L). Given two Leibniz algebras L1 and L2 over K, a
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linear mapping θ : L1 → L2 is said to be a homomorphism if it satisfies that
θ([p, q]) = [θ(p), θ(q)] for every p, q ∈ L1. The series of ideals

L = L1 ⊇ L2 ⊇ . . . ⊇ Lk ⊇ Lk+1 ⊇ . . .

where for positive integer m, Lm+1 = [L,Lm] is called the lower central series of
L. We say nilpotent of class c if a Leibniz algebra holds that Lc+1 = 0 but Lc ̸= 0.
Hence, if L is nilpotent of class c, we have Lc ⊆ Cr(L). We also have Lc ⊆ Cl(L).
Therefore, Lc ⊆ Cl(L) ∩ Cr(L) = C(L) and C(L) ̸= 0.

3. Derivations of Leibniz Algebras

Definition 1. Given a Leibniz algebra L over a field K. A derivation of L is
a K-linear mapping δ : L → L given by δ([p, q]) = [δ(p), q] + [p, δ(q)] for every
p, q ∈ L.

By derL, we represent the set of all derivations in L. This set with the following
multiplication

[, ] : derL × derL → derL
by [δ1, δ2] = t(δ1)δ2 − δ2t(δ1) where t is a linear operator with t2 = t is an algebra,
it is called derivation algebra. Indeed, for any δ1, δ2 ∈ derL and p, q ∈ L we obtain

[δ1, δ2]([p, q]) = (t(δ1)δ2 − δ2t(δ1))([p, q])

= f(δ1)([δ2(p), q] + [p, δ2(q)])− δ2([t(δ1)(p), q] + [p, t(δ1)(q)])

= [t(δ1)δ2(p), q]− [δ2t(δ1)(p), q] + [p, t(δ1)δ2(q)]− [p, δ2t(δ1)(q)]

= [[δ1, δ2](p), q] + [p, [δ1, δ2](q)].

It means that [δ1, δ2] is a derivation of L. In addition, derL is a Leibniz algebra.
Clearly, derL is a Lie algebra if t is the identity map.
For any element a in L, the left multiplication operator La : L → L given by
La(p) = [a, p] for p ∈ L. Given a left multiplication La, by Leibniz identity we
obtain

La([p, q]) = [a, [p, q]]

= [[a, p], q] + [p, [a, q]]

= [La(p), q] + [p,La(q)]

for all p, q ∈ L. This shows that La is a derivation of L and it is said to be inner
derivation. The set of all such derivations is represented by id(L).

Lemma 1. Given a Leibniz algebra L over K. Then id(L) is a Lie subalgebra of
derL with Lie product. Also id(L) is a Lie ideal of derL.

Proof. Let La and Lb two inner derivations of L. For all p, q ∈ L we obtain

[La,Lb]([p, q]) = (LaLb − LbLa)([p, q])

= La([Lb(p), q] + [p,Lb(q)])− Lb([La(p), q] + [p,La(q)])
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= [L[a,b](p), q] + [p,L[a,b](q)]

= [[[a, b], p], q] + [p, [[a, b], q]]

= [[a, b], [p, q]]

= L[a,b]([p, q]).

Hence id(L) is a Lie subalgebra of derL. Moreover, for each element La ∈ id(L)
and δ ∈ derL, we obtain

[La, δ]([p, q]) = (Laδ − δLa)([p, q])

= La([δ(p), q] + [p, δ(q)])− δ([a, [p, q]]

= −[δ(a), [p, q]]

= L−δ(a)[p, q],

as required. □

Definition 2. A derivation δ ∈ derL of a Leibniz algebra L is called an almost
inner derivation if δ(p) ∈ [L, p] for all p ∈ L.

By aid(L), we represent the set of all almost inner derivations of L. Since
[L, p] = {[q, p]|q ∈ L}, it is obvious that the set of all inner derivations, id(L), is a
subset of aid(L).

Lemma 2. Given a Leibniz algebra L over K. Then aid(L) is a Lie subalgebra of
derL with Lie product. Also aid(L) is a Lie ideal of derL.

Proof. Let δ1, δ2 ∈ aid(L) and p ∈ L. Then there are q1, q2 ∈ L with δ1(p) = [q1, p]
and δ2(p) = [q2, p]. By applying the derivation condition and Leibniz identity, we
have

[δ1, δ2](p) = (δ1δ2 − δ2δ1)(p)

= δ1([q2, p])− δ2([q1, p])

= [δ1(q2), p] + [q2, δ1(p)]− [δ2(q1), p]− [q1, δ2(p)]

= [δ1(q2)− δ2(q1) + [q2, q1], p] ∈ [L, p].

Hence we obtain [δ1, δ2] ∈ aid(L). So aid(L) is a Lie subalgebra of derL. Moreover,
given δ ∈ derL and h ∈ aid(L). Since h ∈ aid(L), there is an element q ∈ L
satisfying h(p) = [q, p]. Then

[h, δ](p) = (hδ − δh)(p)

= [q, δ(p)]− δ([q, p])

= −[δ(q), p].

Therefore we obtain that aid(L) is a Lie ideal of derL. □

Definition 3. We say an almost inner derivation δ a central almost inner deriva-
tion if there is an element p ∈ L with δ − Lp maps L to C(L).
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The set of all central almost inner derivations of L is denoted by caid(L). We
have the following inclusions of Lie subalgebras

id(L) ⊆ caid(L) ⊆ aid(L) ⊆ derL.
Clearly, caid(L) is a Lie subalgebra of derL. To see that this subalgebra is a Lie
ideal of aid(L) we give the next lemma.

Lemma 3. Given a Leibniz algebra L over a field K. Then caid(L) is a Lie ideal
of aid(L).

Proof. Let δ1 ∈ caid(L) and δ2 ∈ aid(L). Then there is an element p ∈ L satisfying
δ1 − Lp = δ3 maps L to C(L) and there is an element q ∈ L with δ2(p) = [q, p] ∈
[L, p]. To prove that caid(L) is a Lie ideal of aid(L), we need to show that [δ2, δ1] ∈
caid(L). Since aid(L) is an ideal of derL for every derivations of L, it is clear that
[δ2, δ1] ∈ aid(L). Suppose that δ4 = [δ2, δ1]− Lδ2(p). For any element r ∈ L,

Lδ2(p)(r) = L[q,p](r) = [[q, p], r] = [δ2,Lp](r).

Then we get

Lδ2(p) = [δ2,Lp]. (1)

By (1), we have

δ4 = [δ2, δ1]− [δ2,Lp] = [δ2, δ1 − Lp] = [δ2, δ3].

It follows that δ3 maps L to C(L) and δ2 maps C(L) to C(L). Hence δ4 maps L
to C(L). Since there is δ2(p) ∈ L such that [δ2, δ1]− Lδ2(p) = δ4 maps L to C(L),
[δ2, δ1] ∈ caid(L). □

The results obtained for the derivations of Leibniz algebras are given in the next
theorem.

Theorem 1. Given a Leibniz algebra L. Then the following statements satisfy

(i) Let δ ∈ aid(L). Then δ(L) ⊆ [L,L], δ(C(L)) = 0 and δ(I) ⊆ I for any
ideal of L.

(ii) Let δ ∈ caid(L). Then there is an element p ∈ L such that δ|[L,L] = Lp|[L,L].
(iii) If L is a Leibniz algebra with the nilpotency class 2, then caid(L) = aid(L).
(iv) If the centre of L is zero, then caid(L) = id(L).
(v) If L is a nilpotent Leibniz algebra, then aid(L) is also nilpotent.

Proof. (i) If δ ∈ aid(L), then for every element p ∈ L we have

δ(p) ∈ [L, p] ⊆ [L,L]. (2)

Therefore, for each ideal I of L and p ∈ I we have

δ(p) ∈ [L, I] ⊆ I and δ(p) ∈ [I,L] ⊆ I.
Thus δ(I) ⊆ I. By (2), we obtain that for all p ∈ C(L), δ(p) = 0, that is,
δ(C(L)) = 0.
(ii) If δ ∈ caid(L), then there is an element p ∈ L such that δ1 = δ−Lp maps L to
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the centre of L. Namely, δ1(L) ⊆ C(L). Since δ1 is a derivation of L and for every
a, b ∈ L,

δ1([a, b]) = [δ1(a), b] + [a, δ1(b)] = 0.

(iii) We know that from the inclusions of Lie subalgebras caid(L) ⊆ aid(L). Now we
must only show that aid(L) ⊆ caid(L). Suppose that δ ∈ aid(L). Then there is an
element p ∈ L such that δ(p) ∈ [L, p] ⊆ [L,L]. Moreover, if L is a nilpotent Leibniz
algebra of class m, then Lm ⊆ Cl(L). By Proposition 4.2 in [6], Lm ⊆ Cr(L).
Hence we obtain Lm ⊆ Cl(L) ∩ Cr(L) = C(L) ̸= 0. Since L is a nilpotent of class
2, we can write from (2)

δ(L) ⊆ [L,L] = L2 ⊆ C(L).
This means that δ maps L to the centre of L, that is, δ ∈ caid(L) and aid(L) ⊆
caid(L). Therefore aid(L) = caid(L).
(iv) We know that from the inclusions of Lie subalgebras id(L) ⊆ caid(L). Now we
need only to show that caid(L) ⊆ id(L). Suppose that δ ∈ caid(L) and C(L) = 0.
Then there is an element p ∈ L satisfying δ −Lp maps L to the centre of L. Since
C(L) = 0, we have (δ − Lp)(q) = 0 for all q ∈ L. Namely δ − Lp = 0. Thus
δ = Lp. This shows that δ ∈ id(L) and caid(L) ⊆ id(L). Therefore, we obtain
caid(L) = id(L).
(v) Suppose that L is a Leibniz algebra with the nilpotency class m (Lm+1 =
0,Lm ̸= 0). For δ ∈ aid(L) and p ∈ L, from (2) we can define nilpotent operator,

δ1(p) ∈ [L, p] ⊆ [L,L] = L2

δ2(p) ∈ [L, [L, p]] ⊆ [L, [L,L]] = [L,L2] = L3

...

δm(p) ∈ [L, [. . . , [L, p] . . .]] ⊆ [L, [. . . , [L,L] . . .]] = [L,Lm] = Lm+1.

Since L is nilpotent of class m, then Lm+1 = 0, so δm = 0. Therefore δ is a
nilpotent. By Engel theorem [ [6], Theorem 4.5], aid(L) is nilpotent. □

Example 1. Given a Leibniz algebra L over a field K with the basis {e1, e2, e3, e4, e5}
by the following multiplication

[e1, e2] = e2, [e2, e1] = −e2, [e4, e1] = e5,
[e1, e4] = e4, [e2, e3] = e4, [e5, e1] = −e5,
[e1, e5] = e5, [e3, e2] = e5, [ei, ej ] = 0

for other multiplications. We will compute id(L), aid(L) and caid(L). Since every
derivation δ of L is of the following form δ(e1) = α1e2+α2e5, δ(e2) = β1e2+β2e5,
δ(e3) = γ1e3 + γ2e4, δ(e4) = σ1e4, δ(e5) = τ1e5, we obtain

derL = {δ|δ(e1) ∈ Span{e2, e5}, δ(e2) ∈ Span{e2, e5}, δ(e3) ∈ Span{e3, e4},
δ(e4) ∈ Span{e4}, δ(e5) ∈ Span{e5}}.

By using the definition of inner derivation of L. We obtain the following results
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Le1(e1) = 0, Le2(e1) = −e2, Le3(e1) = 0, Le4(e1) = e5, Le5(e1) = −e5,
Le1(e2) = e2, Le2(e2) = 0, Le3(e2) = e5, Le4(e2) = 0, Le5(e2) = 0,
Le1(e3) = 0, Le2(e3) = e4, Le3(e3) = 0, Le4(e3) = 0, Le5(e3) = 0,
Le1(e4) = e4, Le2(e4) = 0, Le3(e4) = 0, Le4(e4) = 0, Le5(e4) = 0,
Le1(e5) = e5, Le2(e5) = 0, Le3(e5) = 0, Le4(e5) = 0, Le5(e5) = 0.

It is clear to see that Le5 = −Le4 = L−e4 . Hence we have

id(L) = Span{Le1 ,Le2 ,Le3 ,Le4}.
To obtain aid(L) we must calculate [L, ei] for all 1 ≤ i ≤ 5,

[L, e1] = Span{e2, e5}, [L, e2] = Span{e2, e5},
[L, e3] = Span{e4} = [L, e4], [L, e5] = Span{e5}.

Hence we obtain

aid(L) = {δ|δ(e1) ∈ Span{e2, e5}, δ(e2) ∈ Span{e2, e5}, δ(e3) ∈ Span{e4},
δ(e4) ∈ Span{e4}, δ(e5) ∈ Span{e5}}.

To determine the set of all of the central almost inner derivation we need the centre
of L, C(L) = 0. Take δ ∈ aid(L) such that δ(e1) = 0, δ(e2) = e2, δ(e3) = 0, δ(e4) =
e4 and δ(e5) = e5. Now we need to show that there exists an element p in L such
that δ − Lp maps L to the centre of L. Then we have for e1 ∈ L

(δ − Le1)(e1) = δ(e1)− Le1(e1) = 0− [e1, e1] = 0− 0 = 0,

(δ − Le1)(e2) = δ(e2)− Le1(e2) = e2 − [e1, e2] = e2 − e2 = 0,

(δ − Le1)(e3) = δ(e3)− Le1(e3) = 0− [e1, e3] = 0− 0 = 0,

(δ − Le1)(e4) = δ(e4)− Le1(e4) = e4 − [e1, e4] = e4 − e4 = 0,

(δ − Le1)(e5) = δ(e5)− Le1(e5) = e5 − [e1, e5] = e5 − e5 = 0.

It follows that δ − Le1 maps L to the centre of L. For e2, e3, e4 we have a similar
result, that is why, aid(L) consists of only inner derivations. Therefore, caid(L) =
id(L). As a result, δ ∈ caid(L).

Definition 4. Let L1 and L2 be two Leibniz algebras over K. The direct sum of
the Leibniz algebras L1 and L2 which is denoted by L1⊕L2 is the vector space direct
sum with [L1,L2] = 0 and [L2,L1] = 0.

Theorem 2. Let G and T be two Leibniz algebras over K. Then aid(G ⊕ T ) =
aid(G)⊕ aid(T ).

Proof. Let δ ∈ aid(G ⊕ T ) and p ∈ G ⊕ T . Then p = p1 + p2, where p1 ∈ G, p2 ∈ T .
By the definition of almost inner derivation, δ(p) ∈ [G⊕T, p] and there is an element
q = q1+ q2 ∈ G⊕T , where q1 ∈ G, q2 ∈ T satisfying δ(p) = [q, p] ∈ [G⊕T, p]. Doing
some calculations we get

δ(p) = [q, p] = [q1 + q2, p1 + p2]

= [q1, p1] + [q1, p2] + [q2, p1] + [q2, p2]
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= [q1, p1] + [q2, p2].

So δ(p) ∈ G ⊕ T . We say δ1 = δ|G ∈ aid(G), similarly δ2 = δ|T ∈ aid(T ). Hence δ
can be written as δ = δ1 + δ2, which is defined as

δ : G ⊕ T → G ⊕ T

p1 + p2 7→ (δ1 + δ2)(p1 + p2) = δ1(p1) + δ2(p2).

Furthermore, let p = p1 + p2 ∈ G ⊕ T, δ1 ∈ aid(G)⊕ 0 and δ2 ∈ 0⊕ aid(T ). Then

[δ1, δ2](p) = [δ1, δ2](p1 + p2)

= (δ1δ2 − δ2δ1)(p1) + (δ1δ2 − δ2δ1)(p2)

= (δ1δ2)(p1)− (δ2δ1)(p1) + (δ1δ2)(p2)− (δ2δ1)(p2)

= 0.

This means that [aid(G), aid(T )] = 0 and [aid(T ), aid(G)] = 0. Thus, aid(G ⊕T ) ⊆
aid(G)⊕ aid(T ). Conversely, let δ1 + δ2 ∈ aid(G)⊕ aid(T ), where δ1 ∈ aid(G)⊕ 0,
δ2 ∈ 0⊕ aid(T ) and

δ1 + δ2 : G ⊕ T → G ⊕ T

p1 + p2 7→ (δ1 + δ2)(p1 + p2) = δ1(p1) + δ2(p2).

By the definition of aid(G ⊕ T ), there are q1 ∈ G and q2 ∈ T such that δ1(p1) =
[q1, p1] and δ2(p2) = [q2, p2]. Therefore, by the definition, there exists p1 + p2 ∈
G ⊕ T , where p1 ∈ G and p2 ∈ T . Since [q1, p2] = [p1, q2] = 0, we have

(δ1 + δ2)(p1 + p2) = δ1(p1) + δ2(p2)

= [q1, p1] + [q2, p2]

= [q1 + q2, p1 + p2].

Then [q1 + q2, p1 + p2] ∈ G ⊕ T and we obtain q1 + q2 ∈ G ⊕ T . This shows that
δ1 + δ2 ∈ G ⊕ T , that is, aid(G) ⊕ aid(T ) ⊆ aid(G ⊕ T ). As a result, we obtain
aid(G)⊕ aid(T ) = aid(G ⊕ T ), as required. □

Theorem 3. Let L be a Leibniz algebra and id(L) be an ideal of derL in which
each element is nilpotent. Then aid(L) is nilpotent.

Proof. If each element of id(L) is nilpotent, then there is a positive integer m such
that Lm

p ̸= 0 and Lm+1
p = 0. We have Lm+1

p (q) ∈ [Lm+1, q]. By Corollary 4.8 in [6],
L is nilpotent and so by Theorem 1 (v), aid(L) is nilpotent. □

4. Structure Constants

In this section firstly we derive which conditions a general map have to satisfy to
be an almost inner derivation. Recall that if L is a Leibniz algebra overK with basis
P = {p1, p2, . . . , pm}, then all elements in L can be determined by the products
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[pi, pj ]. Moreover, each product [pi, pj ] is expressed by a linear combination of the
elements of basis as the following

[pi, pj ] =

m∑
l=1

clijpl, (3)

where for 1 ≤ i, j, l ≤ m, clij are scalars in K. We say that the clij are the structure
constants of L with respect to this basis. The structure constants of L depend
on the choice of basis of L, that is, for different bases, we have different structure
constants (more details in [13]).
Since a derivation δ of L is linear, we have

δ(pi) =

m∑
j=1

αijpj ,

where A = [αij ]m×m is the corresponding matrix of derivation δ. Let pi and pj be
arbitrary two basis vectors in P . Then

δ([pi, pj ]) =

m∑
l=1

clijδ(pl) =

m∑
k=1

(

m∑
l=1

αlkc
l
ij)pk (4)

and

[δ(pi), pj ] + [pi, δ(pj)] =

m∑
l=1

αil[pl, pj ] +

m∑
l=1

αjl[pi, pl]

=

m∑
k=1

(

m∑
l=1

(αilc
k
lj + αjlc

k
il))pk. (5)

Hence by (4) and (5), we obtain

m∑
l=1

αlkc
l
ij =

m∑
l=1

(αilc
k
lj + αjlc

k
il)

for every 1 ≤ i, j, k ≤ m. As every derivation, an inner derivation can also be
represented by a matrix. Let Lpi

be an inner derivation. Then we have

Lpi
(pj) = [pi, pj ] =

m∑
k=1

βjkpk.

Hence by the equation (3), we obtain βjk = ckij for all 1 ≤ i, j, k ≤ m. Given an

arbitrary p =
∑m

i=1 tipi ∈ L, where ti ∈ K and let B = [βji]m×m be the matrix
representation of Lp. By using bilinearity of Leibniz bracket, the entries of B are
given by

βjk =

m∑
i=1

tic
k
ij .
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Moreover, there are other conditions imposed by the definition of an almost inner
derivation. Indeed, take δ ∈ aid(L), there exists aij with 1 ≤ i, j ≤ m, so that

δ(pi) =

m∑
j=1

aij [pj , pi] =

m∑
k=1

m∑
j=1

aijc
k
jipk. (6)

These values aij with 1 ≤ i, j ≤ m are referred to as the parameters of δ with
respect to the basis P . By using the bilinearity of a derivation and the equation
(6) for any p =

∑m
i=1 βipi ∈ L where βi ∈ K for all 1 ≤ i ≤ m, we have

δ(p) =

m∑
i=1

βiδ(pi) =

m∑
k=1

(

m∑
i=1

m∑
j=1

βiaijc
k
ji)pk. (7)

Besides, there exist γj ∈ K for 1 ≤ j ≤ m, so that

δ(p) = [

m∑
j=1

γjpj , p] =

m∑
i=1

m∑
j=1

βiγj [pj , pi] =

m∑
k=1

(

m∑
i=1

m∑
j=1

βiγjc
k
ji)pk. (8)

Therefore, we have two ways to write δ(p). The equations (7) and (8) give a system
of linear equations

m∑
i=1

m∑
j=1

βiaijc
k
ji =

m∑
i=1

m∑
j=1

βiγjc
k
ji

for all 1 ≤ i, j ≤ m. Equivalently,

m∑
i=1

m∑
j=1

βi(aij − γj)c
k
ji = 0. (9)

The aim is to obtain the conditions on the parameters aij with 1 ≤ i, j ≤ m
such that there exist γj for which the system of equations (9) has a solution for
all possible values of βi. An arbitrary almost inner derivation δ : L → L can be
expressed as p 7→ A.p where A = [αij ] is the matrix representation of δ and . is
matrix multiplication. By the equation (6), the entries of A are given by

αij =
m∑

k=1

aijc
k
ji.

5. Fixed Basis Vectors

Let L be anm-dimensional Leibniz algebra overK with the basis P = {p1, p2, . . . , pm}.
We denote by CL(p) the centralizer of p which is defined by

CL(p) = {q ∈ L|[p, q] = [q, p] = 0}.

Let δ ∈ aid(L), then there is a mapping φδ : L → L satisfying δ(p) = [φδ(p), p] ∈
[L, p] for all p ∈ L. This is not unique because for any q ∈ CL(p), we can take
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φδ(p) + q instead of φδ(q). Namely,

δ(p) = [φδ(p) + q, p] = [φδ(p), q] + [q, p] = [φδ(p), p].

In general, this map need not be linear. Let p ∈ L, then p can be written as a linear
combination of the basis P such that p =

∑m
j=1 αjpj , where αj ∈ K. We represent

by ti(p) = αi the i-th projection mapping of p with respect to the given basis.

Definition 5. A basis vector pi is called a fixed vector for δ with α ∈ K iff
ti(φδ(pj)) = α where pj /∈ CL(pi) for every 1 ≤ j ≤ m.

Example 2. Let L be a 3-dimensional Leibniz algebra with the basis {p, q, r} by
the following rule [p, p] = q and [p, q] = r. Then the centralizers for p, q, r ∈ L,
CL(p) = Span{r}, CL(q) = Span{q, r}, CL(r) = Span{p, q, r}. Let δ ∈ aid(L) and
φδ be a mapping with

δ(p) = [φδ(p), p] = q, δ(q) = [φδ(q), q] = r, δ(r) = [φδ(r), r] = 0.

Hence we obtain φδ(p) = p, φδ(q) = p and φδ(r) ∈ Span{p, q, r}. In particular, we
take a map φδ with the following rule

φδ(p) = p, φδ(q) = p, and φδ(r) = q.

Thus, for p ∈ L we have

p /∈ CL(p), t1(φδ(p)) = t1(p) = t1(1.p+ 0.q + 0.r) = 1,

v /∈ CL(p), t1(φδ(q)) = t1(p) = t1(1.p+ 0.q + 0.r) = 1,

r ∈ CL(p).

p is fixed basis vector for δ with fixed value α = 1. For q ∈ L
p /∈ CL(q), t2(φδ(q)) = t2(p) = t2(1.p+ 0.q + 0.r) = 0,

q ∈ CL(q),

r ∈ CL(q).

q is fixed basis vector for δ with fixed value β = 0. Finally, for r ∈ L we obtain
p ∈ CL(r), q ∈ CL(r), w ∈ CL(r), this means that r is also fixed basis vector for δ.

Lemma 4. Let L be a Leibniz algebra and δ ∈ aid(L) which is defined by a mapping

φδ : L → L. If pi is a fixed basis vector with fixed value α, then δ
′
= δ + Lαpi ∈

aid(L) which is determined by a mapping φδ
′ : L → L holding

ti(φδ
′ (pk)) = 2ti(φδ(pk)), tj(φδ

′ (pk)) = 0

for every 1 ≤ i, j, k ≤ m and i ̸= j.

Proof. Firstly, we will show that δ
′
∈ aid(L). For any p ∈ L,

δ
′
(p) = (δ + Lαpi

)(p)

= [φδ(p), p] + [αpi, p]

= [φδ(p) + αpi, p].
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This implies that [φδ(p) + αpi, p] ∈ [L, p]. So δ
′
∈ aid(L) and δ

′
is defined by the

mapping

φδ
′
∗ : L → L

p 7→ φδ(p) + αpi.

Now we define the mapping φδ
′ : L → L such that

p 7→
{

φδ(p) + αpi, if p /∈ {p1, p2, . . . , pm}
φδ(p) + ti(φδ(p))pi, if p ∈ {p1, p2, . . . , pm}.

We need to prove that δ
′
is determined by this map. Indeed for all p /∈ {p1, p2, . . . , pm}

we have φδ
′ (p) = φδ

′ ∗(p) and for all p ∈ {p1, p2, . . . , pm} there are two cases:
Case 1. If pj /∈ CL(pi), then we have fi(φδ(pj)) = α. Thus, φδ

′ ∗ = φδ
′ .

Case 2. If pj ∈ CL(pi), then we have

δ
′
(pj) = (δ + Lαpi

)(pj)

= δ(pj) + [αpi, pj ]

= [φδ(pj), pj ]

= [φδ(ej) + ti(φδ(ej))pi, pj ]

= [φδ
′ (pj), pj ].

Hence δ
′
is given by φδ

′ . By the definition of φδ
′ , it is clear to show that ti(φδ

′ (pk)) =
2ti(φδ(pk)), tj(φδ

′ (pk)) = 0 for every 1 ≤ i, j, k ≤ m and i ̸= j. □

Corollary 1. Given a Leibniz algebra L and δ ∈ aid(L) which is defined by a
mapping φδ. If each basis vector is fixed, then δ ∈ id(L).

Proof. Let αi be the fixed value of pi. By Lemma 4, we obtain that

δ
′
= δ + Lp

where p =
∑m

i=1 αipi is an almost inner derivation which is given by a mapping φδ
′

with φδ
′ (pi) = 0 for every 1 ≤ i ≤ m. It follows that

δ
′
(pi) = [φδ

′ (pi), pi] = 0

for all pi basis vectors. Hence we obtain δ
′
= 0 and δ = −Lp. This shows that

δ ∈ id(L). □

Corollary 2. If any basis vector for all almost inner derivation is fixed, then
aid(L) = id(L).

Proof. We know from the inclusions of Lie subalgebras id(L) ⊆ aid(L). By Corol-
lary 1, we obtain that aid(L) ⊆ id(L). Therefore, aid(L) = id(L). □
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