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Abstract
In the paper we consider a multiple regression model with elliptically
contoured errors. In the Bayesian view, a prior information is taken for
the weight under a prior based balanced-type loss function in order to
avoid making redundant assumptions. This is the essence of the Bayesian
inference with vague prior information in regression analysis. It directly
impacts on the performance of the quasi empirical Bayesian shrinkage
estimators through the inclusion of a reciprocal weight related to the
dimension of parameter space. The shrinkage factor of the estimator is also
robust to outliers and the unknown density generator of elliptical models.
Finally, this result is supported by an application.

Keywords: Balanced loss function, Elliptically contoured distribution,
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Öz
Bu çalışmada eliptik konturlu hatalara sahip olan çoklu regresyon modeli
ele alınmıştır. Bayesyen bakıştan, gereksiz varsayımlarda bulunmaktan
kaçınmak için, ağırlık için dengeli tipteki kayıp fonksiyonuna dayalı
bir önsellik altında önsellik bilgisi gözönüne alınmıştır. Bu, regresyon
analizindeki muğlak öncelik bilgisiyle Bayesyen çıkarımın özüdür.
Parametre uzayının boyutuyla ilgili karşılıklı ağırlığın dahil edilmesi
yoluyla yarı ampirik Bayesyen büzücü tahmincilerin performansı bundan
etkilenir. Tahmin edicinin büzülme faktörünün, verilerdeki aykırı
değerlere ve eliptik modellerin bilinmeyen yoğunluk yaratıcı fonksiyonuna
karşı dayanıklı olduğu gösterilmiştir. Son olarak, bir uygulama ile
desteklenmiştir.

Anahtar Kelimeler: Dengeli kayıp fonksiyonu, Eliptik konturlu dağılım,
Kayıp fonksiyona dayalı önsellik, Yarı-ampirik Bayes tahmin edici,
Büzücü tahmin edici
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Introduction

Multiple regression model is commonly used statistical tool applied in many disciplines of the modern

area. The estimation of parameters of the multiple regression model is a common interest in many

studies. Let us consider the following multiple regression model

y = Xβ + ϵ, (1)

where

• y is an n× 1 response vector, representing the observed outcomes or dependent variable.

• X is an n×p design matrix, which contains the independent variables or predictors. It is assumed

to be non-stochastic (i.e., not random) and of full rank p with n > p (meaning the number of

observations is greater than the number of predictors).

• β = (β1, · · · , βp)′ is a p× 1 vector of unknown regression coefficients.

• ϵ = (ϵ1, · · · , ϵn)′ is the n × 1 error vector, representing the random disturbances or noise in the

model. The errors are assumed to follow an elliptically contoured distribution (ECD), specifically

ϵ ∼ En(0, σ2V, gn), where: σ2 is the variance of the error; V ∈ S(n) is a known, positive definite

matrix (i.e., all its eigenvalues are positive) that defines the covariance structure of the errors; gn
is the density generator function, which specifies the shape of the distribution.

Precisely the density of ϵ is given by

f(ϵ) = ϕ|σ2V|−
1
2 gn

[
1

2σ2
ϵ′V−1ϵ

]
, (2)

where ϕ is the normalizing constant given by

ϕ−1 =
π

n
2

Γ
(
n
2

) ∫
R+

y
n
2
−1gn(y)dy (3)

for some density generator function gn(.). Here, Γ (.) is the Gamma function, which generalizes the

factorial function to continuous values. The integral ensures that the distribution is properly normalized.

The condition in [1]∫ ∞

0
x

n
2
−1gn(x)dx <∞ (4)

guarantees that gn(x) is a density generator. If the function gn(.) does not depend on n, we use the

notation g instead of gn(x).

Lower risk improves the performance of the estimator. In such a case, the loss function plays as a decision

mechanism. It is quite significant to work with reasonable and practical losses in order to improve the

performance of the estimator.

Let β∗ be any estimator of β, then the quadratic loss function is described by (Xβ∗ − y)′(Xβ∗ − y),

which shows the goodness of fit. Then, the precision of the estimator β∗ is computed using the weighted
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loss function (β∗ − β)′X ′X(β∗ − β). In order to show the performances of an estimator, both of the

above criteria are taken into consideration. In this paper, we take into consideration the issue of the

estimator with following balanced loss function (BLF)

LW
ω,δ0(β

∗;β) = ωr
(
∥β∥2

)
(β∗ − δ0)

′W (β∗ − δ0) + (1− ω)r
(
∥β∥2

)
(β∗ − β)′W (β∗ − β), (5)

where the weight shows with ω ∈ [0, 1], W shows the matrix including weights, a pd weight function is

r(.) and δ0 is the estimation of unknown vector β. This loss function was proposed by Jozani [2] based on

Zellner’s balanced loss function [3]. Gómez-Déniz called it as weighted balanced loss function (WBLF)

and generalized that idea to the credibility theory [4]. Both measures for goodness of fit and estimator

error are taken using the WBLF. The first term in Eq. (5), ωr
(
∥β∥2

)
(β∗ − δ0)

′(β∗ − δ0), is similar to

the penalty term for being without smoothness in non-parametric regression. The weight ω in Eq. (5)

calibrates the relative importance of these two measures. Dey et al. [5] worked the issues of admissibility

and dominance under the loss function in Eq. (5) with r = 1 and W = Ip. For ω = 0, LW
0 (δ;β) shows

the quadratic loss function. Bayesian context is used to explain the the weight function r(.). To the best

of our knowledge, the studies that use vague prior information (roughly speaking, objective Bayesian)

for the parameter space seem to provide no more than a classical approach. A possible idea to solve

this issue is to consider a prior information for the weight function in the loss function in Eq. (5). This

approach is different from the recent study of Evans and Jang [6], where they derived the least relative

surprise Bayes estimator using a prior based loss function.

The main focus of this study is to improve objective Bayesian inference considering a prior based loss

function. We estimate the unknown regression coefficients β = (β1, · · · , βp)′ under the condition that

we may not know whether β belongs to the subspace defined by Hβ = h. This implies the presence

of certain restrictions on the parameter space, which may influence the estimation process. Specifically,

the matrix H shows a q x p matrix of constants, and h is a q-dimensional vector containing known

constants. These restrictions imply that certain linear combinations of the regression coefficients β are

fixed or constrained, and this affects how the coefficients are estimated.

The study pays special attention to the use of Stein-type shrinkage estimators and the preliminary test

(PT) estimator of β. The key restriction here is that the prior information regarding the weights in

the balanced loss function (Eq. (3)) directly influences the risk associated with these estimators. By

incorporating prior knowledge about the relationship between β and Hβ = h, the shrinkage estimator

is able to reduce the risk, but the extent of this reduction depends on both the dimensionality of the

parameter vector and the specific choice of prior models. Saleh [7] provides an overview for this issue

under normal and non-parametric theory covering many standard models. For more information, see

[8–19].

Our contribution has the following specific highlights:

1. We propose shrinkage estimators with robust performance concerning.

2. We introduce a flexible prior-based balanced loss function that can calibrate variability and risk.

3. We propose a class of minimax estimators under the balanced loss function.

4. We proposed the preliminary and Stein-type estimators for the class of elliptically contoured
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distribution.

Apart from the highlights mentioned above, as an advantage of the proposed shrinkage estimators, they

outperform the Bayes estimator using the BLF, under some mild conditions.

The summary of this paper is here: In the next section we take the vague prior on the entire parameter

space Θ = (β, σ2) ∈ Rp × R+, in order to show that the results are not unrelated to the Bayesian

analysis, and then introduce the prior information that plays a key role for enabling a real Bayesian

analysis. The following section introduces various estimators. The bias function and the risk function

for the estimators are obtained in the next section. Then the performances of the five estimators are

compared theoretically and then supported the results with a numerical example Last section presents

out conclusions and remarks.

The Bayesian Setup

Under standard assumptions, the least squares (LS) estimator of β is

β̃ = (X′V−1X)−1X′V−1y = C−1X′V −1y, where C = X′V−1X. (6)

Similarly the LS estimator of σ2 is

σ̃2 =
1

n
(y −Xβ̃)′V−1(y −Xβ̃). (7)

It is straightforward to show that

S2 =
1

n− p

[
(y −Xβ̃)′V−1(y −Xβ̃)

]
(8)

is an unbiased estimator of the true error variance σ2ϵ . Under the assumption of elliptical errors, the true

error variance σ2ϵ is related to the characteristic generator ψ′(0) of the elliptical distribution:

σ2ϵ = −2ψ′(0)σ2 (9)

where ψ′(0) denotes the first derivative of the characteristic generator of the elliptical distribution at zero.

Thus, the estimator S2, derived from the residuals weighted by V−1, provides an unbiased estimate of

the error variance σ2ϵ , which is consistent with the true variance structure of the model. See Chapt. 4

of [1] for more details.

From the Bayesian perspective, firstly, it is assumed to be a little about the parameters and further the

elements of β are independent of σ2. Therefore, the joint prior distribution has form

π(β, σ2) = π(β)π(σ2), (10)

where π(·) is a prior density. At this stage, it is important to consider invariant theory, which ensures that

the accuracy of the models is preserved regardless of linear transformations applied to the dataset. Using
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the invariant theory as in [20], we take the prior knowledge about the parameter space as follows:

π(β) ∝ constant, π(σ2) ∝ σ−2 (that is π(β, σ2) ∝ σ−2), (11)

where β and σ2 are regression model parameters. Additionally, invariant theory enhances the reliability

of estimators by ensuring that the error variance remains unchanged under transformations, particularly

in special models such as elliptical distributions.

Lemma 1. (Arashi, 2010) Assume that ϵ ∼ En(0, σ2V , g), where V ∈ S(n) in the multiple regression

model (1). Then, with respect to the prior distribution defined by (11), the posterior distribution of β

follows a multivariate Student’s t-distribution, denoted as β|(X,y) ∼ tp(β̃,Σ,m), where Σ = S2C−1,

with the following density

f(β|X,y) = |Σ|−
1
2

C(m, p)π
p
2

[
1 +

1

m
(β − β̃)′Σ−1(β − β̃)

]−n
2

, (12)

where the normalizing constant C(m, p) is given by

C(m, p) =
m

p
2Γ
(
m
2

)
Γ
(
n
2

) , with m = n− p. (13)

Using Lemma 2 of Jozani et al. [2], the Bayes estimator under the BLF in Eq. (5) is given by

β̂B = ωδ0 + (1− ω)
Eπ
[
βr
(
∥β∥2

)
|(X,y)

]
Eπ [r (∥β∥2) |(X,y)]

= ωβ̃ + (1− ω)
Eπ
[
βr
(
∥β∥2

)
|(X,y)

]
Eπ [r (∥β∥2) |(X,y)]

, (14)

where δ0 refers to any estimator of β according to [2]. ω is a weight factor between 0 and 1 that controls

the balance between the prior and posterior components. Eπ [.|(X,y)] presents the posterior expectation

given the data. r
(
∥β∥2

)
is a function of the squared norm of β. Let β̃ be the target estimator. Here the

LS estimator of β as the target estimator, and ω, r, and δ0 are defined in Eq. (5). When r
(
∥β∥2

)
= 1,

the Bayes estimator reduces to β̂B = β̃, which is similar to considering the Bayes estimator under the

quadratic error loss (QEL) function. In this case, since the Bayes estimator is nothing more than the

classical LS estimator of β, one may ask what would be the benefit of putting prior on the model? As a

response, we suggest to take a prior based loss function and consider the role of the prior distribution in

the loss function in the form of r(∥β∥2).
For the ECDs, let us take the form of the r(.) function as follows

r(∥β∥2) = gp(∥β∥2), (15)

where gp is defined in Eq. (2). Under the above assumption, the loss function relates to the density

generator of the base model and therefore the prior information has direct impact on the model understudy.

One should note that r(.) can be independent of the function g(.).

In order to recompute the Bayes estimator, we need to use invariant theory, which refers to computing

expectations in two steps: first, calculating the conditional expectation of a quantity given the data
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(X,y), and then taking the expectation of that conditional expectation with respect to the posterior

distribution of the parameters β. This process ensures that the estimator accounts for both the prior

knowledge (through the prior distribution) and the data (through the posterior distribution).

Therefore, using double expectation property and Lemma 1, we have

β̂B = ωβ̃ + (1− ω)
Eπ
[
βr
(
∥β∥2

)
|(X,y)

]
Eπ [r (∥β∥2) |(X,y)]

= ωβ̃ + (1− ω)

Eg

{
Eπ
[
βr
(
∥β∥2

)
|(X,y)

] ∣∣∣∣r (∥β∥2)}
Eg

{
Eπ [r (∥β∥2) |(X,y)]

∣∣∣∣r (∥β∥2)}
= ωβ̃ + (1− ω)

ϕ−1β̃

ϕ−1
= β̃, (16)

where we computed Eg
{
r(∥β∥2)

}
by making use of (11) for fixed constant (to 1) as follows

Eg
{
r(∥β∥2)

}
=

∫
Rp

gp(∥β∥2)dβ

=
π

p
2

Γ
(p
2

) ∫
R+

y
p
2
−1gp(y)dy

= ϕ−1, (17)

where ϕ corresponds to the normalizing constant as in (2) when n is replaced by p.

Note that the Bayes estimator we obtained with the prior based loss function may also be obtained by

using the QEL function. The advantage of using the risk function relative to the prior based loss function

will be benefited from the effect of prior in Eq. (17). In other words, the prior based BLF enables us to

evaluate the risk functions based on this loss, whereas the Bayes estimator is the QEL derived in reality.

Shrinkage Estimators

For testing H0 : Hβ = h (where q < p) against Ha : Hβ ̸= h, let us consider the restricted estimator

(RE) under H0 designated β̂ given by

β̂ = β̂B −C−1H ′V1(Hβ̃ − h), (18)

where V1 = [HC−1H ′]−1, H is a q x p constant matrix of row rank q(q ≤ p) and h is a q-vector of

pre-specified values. C = X′V−1X, β̃ is the LS estimator in (6), and β̂B is the Bayes estimator.

From the definition of the elliptical model in Eq. (1), β̂ ∼ Ep
(
β −∆, σ2V2, g

)
for ∆ = C−1H ′V1(Hβ−

h) and V2 = C−1(Ip − H ′V1HC−1). Similarly, the following estimator is unbiased for σ2ϵ under

H0 : Hβ = h,

S∗2 =
1

n− p+ q

[
(y −Xβ̂)′V −1(y −Xβ̂)

]
. (19)

In this part, we calculate the test statistic for testing the linear null hypothesis H0 : Hβ = h.
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Direct computations using Corollary 1 [21], gives the likelihood ratio test statistic as follows

Ln =
(Hβ̃ − h)′V1(Hβ̃ − h)

qS2
. (20)

where β̃ and S2 are given respectively by Eq. (6), Eq. (8). V1 = [HC−1H ′]−1, H is a q x p constant

matrix of row rank q(q ≤ p) and C = X′V−1X.

Under the hypothesis H0, the pdf of the likelihood ratio test statistic Ln is given by

g∗
q,m(Ln) =

( q
m

) q
2 L

q
2
−1

n

B
( q
2 ,

m
2

) (
1 + q

mLn
) 1

2
(q+m)

(21)

where m = n − p, B(·, ·) is the beta function and q is the rank of H and dimension of vector of

constants h in our restriction. Eq. (21) shows that Ln follows the central F-distribution with (q,m)

degrees of freedom (df).

Based on that model, β may not belong to the subspace defined by Hβ = h. In such a situation one

combines the estimators of β and the test-statistic in order to obtain shrinkage estimators as in [7]. Firstly,

we consider the PT estimator as a convex combination of the LS estimator β̃ (designated as unrestricted

estimator - UE) and β̂ (designated as RE) which are defined by Eq. (18) as follows:

β̂PT = β̃I(Ln ≥ Fα) + β̂I(Ln < Fα), (22)

where I(A) is an indicator function of the set A and Fα is the upper αth percentile of the central

F-distribution with (q,m) df. The PT estimator has disadvantage since it is defined with α (0 < α < 1),

the significance level. In addition to this, it yields the extreme results. Therefore, β̂ or β̃ depends on the

outcome of the test. To overcome this problem, we suggest a Stein-type shrinkage (SS) estimator of β,

as

β̂S = β̂ + (1− dL−1
n )(β̃ − β̂) = β̃ − dL−1

n (β̃ − β̂), (23)

where β̂ and β̃ are LS and RE estimators given by Eq. (6) and Eq. (18), respectively, and Ln as in Eq.

(20), and

d =
(q − 2)m

q(m+ 2)
with q ≥ 3. (24)

However, the SS has some drawbacks for small values of Ln such as the shrinkage factor (1 − dL−1
n )

becomes negative for Ln < d. Another estimator is proposed using the positive-rule shrinkage (PRS)

estimator as follows

β̂S+ = β̂ + (1− dL−1
n )I(Ln > d)(β̃ − β̂), (25)

where I() shows the indicator function.
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Bias and Risk for the Estimators

For an estimator β∗, the risk function under the BLF in Eq. (5) is given by

RW
ω,δ0(β

∗;β) = E
{
E[LW

ω,δ0(β
∗;β)]|β

}
. (26)

Note that the computation of the risk function in Eq. (26) depends on the balanced-type expectation

(inner expectation) w.r.t the sampling distribution. Then the expectation (outer expectation) from the

prior information is obtained by equation (15).

This section is dedicated to deriving the bias and the risk function in Eq. (26) for the five different

estimators when the target estimator is determined by δ0 = β̃ and the weight matrix is given by W = C,

where C is defined in Eq. (6). We will simply write RW
0 (β∗;β) for ω = 0.

Computation of bias

The bias of the estimator β̂B in Eq. (14) and RE estimator β̂ in Eq. (18) are

b1 = E[β̂B − β] = 0, and b2 = E[β̂ − β] = −∆, (27)

respectively, where ∆ = C−1H ′V1(Hβ − h). Using [22], the bias of the PT is

b3 = E(β̂PT − β) = E[β̃ − I(Ln ≤ Fα)(β̃ − β̂)− β]

= −CH ′V
1/2
1 E[I(Ln ≤ Fα)V

1/2
1 (Hβ̃ − h)] = −∆G

(2)
q+2,m

(
Fα; ∆

2
∗
)
, (28)

where ∆2
∗ = θ/σ2ϵ , θ = (Hβ − h)′V ′

1 (Hβ − h),

G
(2−j)
q+2i,m(lα,∆

2
∗) =

∞∑
r=0

K(j)
r (∆2

∗)Ilα

[
q + 2i

2
+ r,

m

2

]
, and j = 0, 1, (29)

lα =
qFq,m(α)

m+qFq,m(α) , Ix[a, b] = 1
B(a,b)

∫ x
0 u

a−1(1− u)b−1du is the incomplete function of beta,

K(j)
r (∆2

∗) =
[−2ψ′(0)]r

r!

(
∆2

∗
2

)2 ∫ ∞

0
tr−jetψ

′(0)∆2
∗W (t)dt, (30)

and W (t) is a weight function.

Then, the bias of the SS becomes

b4 = E(β̂S − β) = E[β̃ − dL−1
n (β̃ − β̂)− β]

= −dC−1H ′V
1/2
1 E[L−1

n V
1/2
1 (Hβ̃ − h)] = −dq∆E(2)[χ∗−2

q+2(∆
2
∗)], (31)

and here

E(2−j)[χ∗−2

q+s(∆
2
∗)] =

∑
r≥0

1

r!
K(j)
r (∆2

∗)(q + s− 2 + 2r)−1, for s = 2, 4. (32)
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Finally, the bias of the PRSE is obtained as follows:

b5 = E(β̂S − β)− E[I(Ln ≤ d)(β̃ − β̂)] + dE[L−1
n I(Ln ≤ d)(β̃ − β̂)]

= −dq∆E
(2)
N [χ∗−4

q+2(∆
2
∗)] +∆G

(2)
q+2,m

(
d; ∆2

∗
)

+
qd

q + 2
∆E(2)

[
F−1
q+2,m(∆

2
∗)I
(
Fq+2,m(∆

2
∗
)
≤ qd

q + 2
)

]
, (33)

where

E(2−j)[F−k
q+s,n−p(∆

2
∗)I(Fq+s,n−p(∆

2
∗) < d1)]

=
∞∑
r=0

K(j)
r (∆2

∗)

(
q + s

n− p

)kB( q+s+2r−2k
2 , m+2k

2 )

B( q+s+2r
2 , m2 )

Ix′

[
q + s+ 2r − 2k

2
,
m+ 2k

2

]
, (34)

in which d1 = dq
q+2 , and x′ = dq

m+dq .

Note that for the non-centrality parameter ∆2
∗(= ∆′C∆/σ2ϵ) → ∞, the bias of these estimators are

obtained by b1 = b3 = b4 = b5 = 0, except for b2 which becomes unbounded. However, under

H0 : Hβ = h hypothesis, because ∆ = 0, the bias of that estimators is defined as b1 = b2 = b3 =

b4 = b5 = 0.

Computation of risk

The risk function of the Bayes estimator β̂B , RC
ω,β̃

(.;β) in Eq. (26), is computed as

RC
ω,β̃

(β̂B;β) = (1− ω)Eβ

{
r
(
∥β∥2

)
E[(β̃ − β)′C(β̃ − β)]|β

}
= p σ2ϵ(1− ω)Eβ

{
r
(
∥β∥2

)}
= p ϕ−1σ2ϵ(1− ω). (35)

where ω ∈ [0, 1] (see Eq. (5)), σ2ϵ = −2ψ′(0)σ2, and

ϕ =

(
π

n
2

Γ
(
n
2

) ∫
R+

y
n
2
−1gn(y)dy

)−1

. (36)

Using the fact that (see [8]) V
1
2
1 (Hβ̃ − h) ∼ Eq(V

1
2
1 (Hβ − h), σ2Iq, g), the risk of the estimator RE

is given by

RC
ω,β̃

(β̂;β) = ωEβ

{
r
(
∥β∥2

)
E[(Hβ̃ − h)′V1(Hβ̃ − h)]|β

}
+ (1− ω)Eβ

{
r
(
∥β∥2

)
E[(β̂ − β)′C(β̂ − β)]|β

}
= −qωσ2ϵEβ

{
r
(
∥β∥2

)}
+ (1− ω)Eβ

{
r
(
∥β∥2

)}
[σ2ϵ tr(V2C) +∆′C∆]

= −qωσ2ϵϕ−1 +RC
ω,β̃

(β̃;β) + ϕ−1(1− ω)(−σ2ϵ tr[H ′V1HC] +∆′C∆)

= RC
ω,β̃

(β̃;β)− q ϕ−1σ2ϵ + (1− ω)ϕ−1θ, (37)
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where θ = ∆′C∆ = (Hβ − h)′V1(Hβ − h). Note that R = C−1/2H ′V1HC−1/2 is a symmetric

idempotent matrix of rank q ≤ p and C = X′V−1X. Thus, there exists an orthogonal matrix Q

(Q′Q = Ip) such that QRQ′ =

[
Iq 0

0 0

]
. A random vector is defined by w = QC1/2β̃ −

QC−1/2H ′V1h, then w ∼ Ep(η, σ2Ip, g), where η = QC1/2β − QC−1/2H ′V1h. Partitioning the

vector w = (w′
1,w

′
2)

′ and η = (η′
1,η

′
2)

′, where w1 and w2 are the subvectors of sequence q and p− q

respectively, one may rewrite the test statistic Ln defined in Eq. (17) as

Ln =
w′

1w1

qS2
, θ = η′

1η1. (38)

Consequently, the risk of the PT, RC
ω,β̃

(β̂PT ;β), noting that β̂ − β̃ = C−1H ′V1HC− 1
2w as follows:

RC
ω,β̃

(β̂PT ;β) = ωEβ

{
r
(
∥β∥2

)
E[I(Ln < Fα)(β̂ − β̃)′C(β̂ − β̃)]|β

}
+ (1− ω)Eβ

{
r
(
∥β∥2

)
E[(β̂PT − β)′C(β̂PT − β)]|β

}
= RC

ω,β̃
(β̃;β)− (1− 2ω)Eβ

{
r
(
∥β∥2

)
E[w′

1w1I(Ln ≤ Fα)]|β
}

+ 2(1− ω)Eβ

{
r
(
∥β∥2

)
η′
1E[w1I(Ln ≤ Fα)]|β

}
= RC

ω,β̃
(β̃;β)− (1− 2ω)qσ2ϵϕ

−1G
(1)
q+2,m

(
Fα; ∆

2
∗
)

+ 2θ(1− ω)ϕ−1
[
2G

(2)
q+2,m

(
Fα; ∆

2
∗
)
−G

(2)
q+4,m

(
Fα; ∆

2
∗
)]
, (39)

where we obtain this result by simplifying the expressions.

Similarly, after simplifying the expressions, the risk of the SE RC
ω,β̃

(β̂S ;β) is obtained by

RC
ω,β̃

(β̂S ;β) = ωd2Eβ

{
r
(
∥β∥2

)
E[L−1

n w′
1w1]|β

}
+RC

ω,β̃
(β̃;β)

− 2d(1− ω)Eβ

{
r
(
∥β∥2

)
E[L−1

n (w′
1w1 − η′

1w1)]|β
}

+ d2(1− ω)Eβ

{
r
(
∥β∥2

)
E[L−2

n w′
1w1]|β

}
= RC

ω,β̃
(β̃;β) + q ϕ−1

{[
d2ω − 2d(1− ω)

]
E(1)[χ∗−2

q+2(∆
2
∗)]

+ d2(1− ω)E(1)[χ∗−4

q+2(∆
2
∗)]

}
+ θ ϕ−1

×
{[

d2ω − 2d(1− ω)
]
E(2)[χ∗−2

q+4(∆
2
∗)]

− 2d(1− ω)E(2)[χ∗−2

q+2(∆
2
∗)] + d2(1− ω)E(2)[χ∗−4

q+4(∆
2
∗)]

}
, (40)

where

E(2−j)[χ∗−4

q+s(∆
2
∗)] =

∑
r≥0

1

r!
K(j)
r (∆2

∗)(q + s− 2 + 2r)−1(q + s− 4 + 2r)−1, (41)
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ω ∈ [0, 1] is the weight used in the BLF, and (24)

d =
(q − 2)m

q(m+ 2)
with q ≥ 3, (42)

and w1 is the first sub-partition of w. Finally, the risk function of the PRSE, RC
ω,β̃

(β̂S+;β) is found as

follows

RC
ω,β̃

(β̂S+;β) = RC
ω,β̃

(β̂S ;β)− Eβ

{
r
(
∥β∥2

)
E[(1− dL−1

n )2I(Ln ≤ d)

× (β̃ − β̂)′C(β̃ − β̂)]|β
}
− 2Eβ

{
r
(
∥β∥2

)
E{[(1− dL−1

n )I(Ln ≤ d)

× (β̂ − β)′C(β̃ − β̂)]}|β
}

= RC
ω,β̃

(β̂S ;β)− Eβ

{
r
(
∥β∥2

)
E[(1− dL−1

n )2I(Ln ≤ d)w′
1w1]|β

}
− 2Eβ

{
r
(
∥β∥2

)
E[(1− dL−1

n )I(Ln ≤ d)(w′
1w1 − η′

1w1)]|β
}

= RC
ω,β̃

(β̂S ;β)

− ϕ−1σ2ϵ

{
qE(1)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)2

I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]

+
θ

σ2ϵ
E(2)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)2

I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]}
− 2ϕ−1θE(2)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)
I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]
. (43)

Comparison of Risks

Recall that the LS estimator β̃ is designated as UE and β̂ is termed as RE. Then, the risk difference of

the estimator RE in Eq. (18) and the estimator UE in Eq. (6) is given by

D21 = RC
ω,β̃

(β̂;β)−RC
ω,β̃

(β̃;β) = ϕ−1
[
(1− ω)θ − qσ2ϵ

]
. (44)

It is shown that β̂ outperforms to β̃ (β̂ ⪰ β̃) - in other words β̂ dominates β̃ - provided 0 ≤ θ ≤ qσ2
ϵ

1−ω
for ω ̸= 1 since ϕ > 0.

First, let us start the comparison of risk with β̂PT versus β̃. We use the risk difference defined by

D13 = RC
ω,β̃

(β̃;β)−RC
ω,β̃

(β̂PT ;β) = (1− 2ω)q ϕ−1σ2ϵG
(1)
q+2,m

(
Fα; ∆

2
∗
)

− 2θ ϕ−1(1− ω)[2G
(2)
q+2,m

(
Fα; ∆

2
∗
)
−G

(2)
q+4,m

(
Fα; ∆

2
∗
)
]. (45)

where G is defined in Eq. (29), ω ∈ [0, 1] is the weight under the BLF, q is the rank of matrix H ,

ϕ−1 =
π

n
2

Γ
(
n
2

) ∫
R+

y
n
2
−1gn(y)dy (46)
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σ2ϵ = −2ψ′(0)σ2, Fα is the upper αth percentile of the central F-distribution with (q,m) df, and ∆2
∗ =

θ/σ2ϵ , θ = (Hβ − h)′V ′
1 (Hβ − h). For ω ̸= 1, the of Eq. (45) is not negative β̂PT ⪰ β̃ whenever

θ ≤
(1− 2ω)qσ2ϵG

(1)
q+2,m

(
Fα; ∆

2
∗
)

2(1− ω)
[
2G

(2)
q+2,m (Fα; ∆2

∗)−G
(2)
q+4,m (Fα; ∆2

∗)
] . (47)

Under the hypothesis H0 : Hβ = h when θ = 0, β̂PT ⪰ β̃ for ω with ω ≤ 1
2 .

Secondly, the comparison of β̂ and β̂PT using the risk difference is defined as follows

D23 = RC
ω,β̃

(β̂;β)−RC
ω,β̃

(β̂PT ;β)

= −q ϕ−1σ2ϵ [1− (1− 2ω)G
(1)
q+2,m

(
Fα; ∆

2
∗
)
] + θ ϕ−1(1− ω)[1− 2G

(2)
q+2,m

(
Fα; ∆

2
∗
)

+G
(2)
q+4,m

(
Fα; ∆

2
∗
)
], (48)

where G is defined in Eq. (29), ω ∈ [0, 1] is the weight used in the BLF, q is the rank of matrix H ,

ϕ−1 =
π

n
2

Γ
(
n
2

) ∫
R+

y
n
2
−1gn(y)dy, (49)

σ2ϵ = −2ψ′(0)σ2, Fα is the upper αth percentile of the central F-distribution with (q,m) df, and ∆2
∗ =

θ/σ2ϵ , θ = (Hβ − h)′V ′
1 (Hβ − h).

Thus β̂PT ⪰ β̂ whenever

θ ≥
qσ2ϵ

[
1− (1− 2ω)G

(1)
q+2,m

(
Fα; ∆

2
∗
)]

(1− ω)
[
1− 2G

(2)
q+2,m (Fα; ∆2

∗) +G
(2)
q+4,m (Fα; ∆2

∗)
] , (50)

and vice versa. Under H0, the superiority order of β̃, β̂ and β̂PT is defined by

β̂ ⪰ β̂PT ⪰ β̃, or β̂PT ⪰ β̂ ⪰ β̃, (51)

depending on the value α satisfying (5.5).

To demonstrate the superiority of β̂S to β̃, we give the following results.

Theorem 1. Let us take into account the model in Eq. (1) with the error vector based on the ECD,

En(0, σ2V, g). Then the SS estimator of β is defined by

β̂S = β̃ − d∗L−1
n (β̃ − β̂) (52)

where β̃ and β̂ are the UE and RE, respectively. The SS estimator uniformly controls the Bayes estimator

β̃ with respect to the BLF LC
0 (δ;β) and it is minimax iff 0 < d∗ ≤ 2m

m+2 . The biggest risk decrease is

obtained for d∗ = m
m+2 .

Proof: Let
(
mS2

σ2

) ∣∣∣∣τ ∼ τ−1χ2
m and β̃′H ′V1Hβ̃ | τ ∼ τ−2σ4χ2

q(∆̇). Defining ż = H ′V1(Hβ̃ − h),
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the SS estimator is as follows

β̂S = β̃ − qd∗S2
[
(Hβ̃ − h)′V1(Hβ̃ − h)

]−1
C−1H ′V1(Hβ̃ − h)

= β̃ − qd∗S2
(
ż′C−1ż

)−1
C−1ż. (53)

Using the result of [23], the weight function W (t) in elliptical models satisfies
∫∞
0 t−1W+(dt) < ∞

and
∫∞
0 t−1W−(dt) <∞, where W+−W− is the Jordan decomposition of W in positive and negative

part.

Therefore, the risk difference between the SS estimator and the Bayes estimator under BLF is then given

by

D41 = Eβ

{
E(β̂S − β)′C(β̂S − β)− E(β̃ − β)′C(β̃ − β)|β

}
= Eβ

{
(d∗)2E

[
q2S4

(
ż′C−1ż

)−1
]
− 2d∗E

[
qS2

(
ż′C−1ż

)−1
(β̃ − β)′ż

]
|β
}

= Eβ

{
(d∗)2Eτ

{
EN

[
q2S4

(
ż′C−1ż

)−1
∣∣∣∣τ]}

− 2d∗Eτ

{
EN

[
qS2

(
ż′C−1ż

)−1
(β̃ − β)′H ′V1(Hβ̃ − h)

∣∣∣∣τ]} |β
}

= ϕ−1

{
q2(m+ 2)

m
(d∗)2Eτ

(
τ−2

ż′C−1ż

)
− 2q2d∗Eτ

(
τ−2

ż′C−1ż

)}
, (54)

where ∆̇ = β′H ′V1Hβ and EN means getting expectation with respect to multivariate normal with

covariance τ−1σ2V and Eτ means getting expectation with respect to measure dW (.).

Therefore, D41 ≤ 0 iff 0 < d∗ ≤ 2m
m+2 since

∫∞
0

τ−2

ż′C−1ż
dW (τ) > 0.

Remark 1. Consider the shrinkage coefficient d given by Eq. (24). For q ≥ 3, we get 0 < d = (q−2)m
q(m+2) <

2m
m+2 and thus using Theorem 1, the β̂S uniformly controls the β̃ on the entire parameter space under

BLF.

Lemma 2. (Arashi, 2012)

(i) The estimator δ0(X)+(1−ω)h1(X) controls δ0(X)+(1−ω)h2(X) under the BLF LW
ω,δ0

(δ;β)

iff δ0(X)+h1(X) dominates δ0(X)+h2(X) with respect to the quadratic loss functionLW
0 (δ;β).

(ii) Suppose that the estimator δ0(X) has the constant risk γ with respect to the quadratic loss function

LW
0 (δ;β). Then δ0(X) is minimax under the BLF LW

ω,δ0
(δ;β) with constant risk (1 − ω)γ iff

δ0(X) is minimax under the quadratic loss function LW
0 (δ;β) with constant risk γ.

Theorem 2. Suppose ϵ ∼ En(0, σ2V , g) in the model (1). Then the SS estimator

β̂S∗ = β̃ − d(1− ω)L−1
n (β̃ − β̂) (55)

uniformly dominates the β̃ under the BLF LC
ω,β̃

(β̃;β).

With Lemma 2(i) and Theorem 1, the theorem is proven easily.

Corollary 1. Let us take into consideration the Eq. (1), ϵ ∼ En(0, σ2V , g). In this case, β̂S ⪰ β̃ under

the BLF LC
ω,β̃

(β̃;β).
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Using Theorem 5.2 with ω = 0, this corollary is proven, easily.

Lemma 3. Suppose ϵ ∼ En(0, σ2V , g) in the model (1). Then the estimator β̃ of β is minimax under

the BLF LC
ω,β̃

(β̃;β) given in Eq. (2).

Theorem is proven using the information that β̃ is minimax under quadratic loss function and applying

Lemma 2 (ii).

Remark 2. Using Corollary 1 and Lemma 2, the SS estimator β̂S of β is minimax.

To compare β̂ and β̂S , it is easy to show that

RC
0 (β̂S ;β) = RC

0 (β̂;β) + ϕ−1

(
qσ2ϵ − θ − dq2σ2ϵ

{
(q − 2)E[χ∗−4

q+2(∆
2
∗)]

+

[
1− (q + 2)θ

2qσ2ϵ∆
2
∗

]
(2∆2

∗)E[χ∗−4

q+4(∆
2
∗)]

})
. (56)

Under the hypothesis H0, Eq. (56) becomes

RC
0 (β̂S ;β) = RC

0 (β̂;β) + qd−1
n σ2ϵ(1− d) ≥ RC

0 (β̂;β), (57)

where note that

RC
0 (β̂;β) = RC

0 (β̃;β)− qϕ−1σ2ϵ ≤ RC
0 (β̃;β). (58)

Therefore, under the hypothesis H0, β̂ ⪰ β̂S with the BLF LC
0 (β∗,β). Under the hypothesis H0, using

Lemma 1(i), β̂ ⪰ β̂S with the BLF LC
ω,β̃

(β∗;β). As η1 moves away from 0, θ increases and the risk

of β̂ becomes unbounded while the risk of β̃S remains below the risk of β̃. β̃S dominates β̂ outside an

interval around the origin under the BLF LC
ω,β̃

(β∗;β). The situation is repeated while comparing β̂S

and β̂PT . Let us consider the risk function under the hypothesis H0 as follows

RC
0 (β̂S ;β) = RC

0 (β̂PT ;β) + qϕ−1σ2ϵ [1− α− d] ≥ RC
0 (β̂PT ;β), (59)

for all α such that F−1
q+2,m(d, 0) ≤ qFα

q+2 , which means the estimator β̂S does not dominate β̂PT under

H0. Under hypothesis H0 with α holding F−1
q+2,m(d, 0) ≤ qFα

q+2 with the balanced loss function, β̂ ⪰
β̂PT ⪰ β̂S ⪰ β̃ holds.

Afterwards, we compare the risks of β̂S+ and β̂S with the risk difference given by

D54 = RC
ω,β̃

(β̂S+;β)−RC
ω,β̃

(β̂S ;β) =

− ϕ−1σ2ϵ

{
qE(1)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)2

I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]

+
θ

σ2ϵ
E(2)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)2

I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]}
− 2ϕ−1θE(2)

[(
1− qd

q + 2
F−1
q+2,m(∆

2
∗)

)
I

(
Fq+2,m(∆

2
∗) ≤

qd

q + 2

)]
. (60)
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The r.h.s. of the above equality is negative for Fq+2,m(∆
2
∗) ≤

qd
q+2 , ( qd

q+2Fq+2,m(∆
2
∗) − 1) ≥ 0 and the

expectation of a positive random variable is also positive. Thus, β̂S+ ⪰ β̂S .

Remark 3. The positive-rule shrinkage estimator β̂S+ of β is minimax.

Let us extend the comparisons underLC
0 (β∗;β). The same results can be obtained for the BLFLC

ω,β̃
(β∗;β).

For comparison of β̂ and β̂S+, let us take the case under the hypothesis H0 i.e., η1 = 0. For this

RC
0 (β̂S+;β) = RC

0 (β̂;β) + qϕ−1σ2ϵ

{
(1− d)− E

[
(1− qd

q + 2
F−1
q+2,m(0))

2

× I(Fq+2,m(0) ≤
qd

q + 2
)

]}
≥ RC

0 (β̂;β), (61)

since E
[
(1− qd

q+2F
−1
q+2,m(0))

2I(Fq+2,m(0) ≤ qd
q+2)

]
≤ E

[
(1− qd

q+2F
−1
q+2,m(0))

2
]
= 1− d.

Under the hypothesis H0, β̂ ⪰ β̂S+. As η1 moves away from 0, θ increases and the risk of β̂ becomes

unbounded when the risk of β̃S+ stays below the risk of β̃. This means that β̃S+ predominates β̂ outside

an interval around the origin.

Then, we compare β̂S+ and β̂PT . When hypothesisH0 holds,G∗
q+2,m(Fα, 0) = 1−α. The risk is given

by

RC
0 (β̂S+;β) = RC

0 (β̂PT ;β) + qϕ−1σ2ϵ

{
1− α− d− E

[
(1− qd

q + 2
F−1
q+2,m(0))

2

× I(Fq+2,m(0) ≤
qd

q + 2
)

]}
≥ RC

0 (β̂PT ;β) (62)

for ∀ α E
[
(1− qd

q+2F
−1
q+2,m(0))

2I(Fq+2,m(0) ≤ qd
q+2)

]
≤ 1− α− d.

As a result, β̂S+ does not always dominate β̂PT when the null-hypothesis H0 holds. Under the null

hypothesis, the dominance order of five estimators under the BLF LC
ω,β̃

(β∗;β) can be determined under

following two categories

1. β̂ ⪰ β̂PT ⪰ β̂S+ ⪰ β̂S ⪰ β̃ and 2. β̂ ⪰ β̂S+ ⪰ β̂S ⪰ β̂PT ⪰ β̃. (63)

To look closely at the dominance relationships above, we examine the risk function of the estimators

graphically in Figure 1. Let us suppose the error term in Eq. (1) has the multivariate Student’s t (MT)

distribution with ϵ ∼ Tn(0, In, ν). Figure 1 shows the results of the data sets with n = 30, p = 5,

q = 3 for different df values ν = 5, 10 and for different values of ω ∈ {0, 0.5, 0.9} to fulfill possible

situations. The equations required for risk functions are considered as in [24], [25], and [26]. For more

clarity, equations can be simply obtained from equations (35), (37), (39), (40), (43) and the fact that
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K
(∆2

∗)
(r) =

Γ
(
ν
2 + r

) ( ∆2
∗

ν−2

)r
Γ
(
ν
2

) (
1 + ∆2

∗
ν−2

) ν
2
+r
,

and

G(j)
p,m(lγ ; ∆

2
∗) =

∑
r≥0

Γ
(
ν
2 + r

) ( ∆2
∗

ν−2

)r
Ix
[
1
2(p+ 2r), m2

]
Γ(r + 1)Γ

(
ν
2

) (
1 + ∆2

∗
ν−2

) ν
2
+r

,

E(j)[χ∗−2

p+s(∆
2
∗)] =

∑
r≥0

Γ
(
ν
2 + r + j − 2

)
Γ(r + 1)Γ

(
ν
2

)
(p+ s− 2 + 2r)

×

(
∆2

∗
ν−2

)r
(
1 + ∆2

∗
ν−2

) ν
2
+r+j−2

,

E(j)[χ∗−4

p+s(∆
2
∗)] =

∑
r≥0

Γ
(
ν
2 + r + j − 2

) ( ∆2
∗

ν−2

)r
Γ(r + 1)Γ

(
ν
2

) (
1 + ∆2

∗
ν−2

) ν
2
+r+j−2

× 1

(q + s− 2 + 2r)(p+ s− 4 + 2r)

E(j)[F−1
p+s,m(∆

2
∗)I(Fp+s,m(∆

2
∗) < ci)] =

∑
r≥0

Γ
(
ν
2 + r + j − 2

) ( ∆2
∗

ν−2

)r
Γ(r + 1)Γ

(
ν
2

) (
1 + ∆2

∗
ν−2

) ν
2
+r+j−2

×
(p+ s)Ix′

[
p+s−2+2r

2 , m+2
2

]
(p+ s− 2 + 2r)

,

E(j)[F−2
p+s,m(∆

2
∗)I(Fp+s,m(∆

2
∗) < ci)] =

∑
r≥0

Γ
(
ν
2 + r + j − 2

) ( ∆2
∗

ν−2

)r
Γ(r + 1)Γ

(
ν
2

) (
1 + ∆2

∗
ν−2

) ν
2
+r+j−2

×
(q + s)2Ix′

[
p+s−4+2r

2 , m+4
2

]
m(p+ s− 2 + 2r)(p+ s− 4 + 2r)

.

The value of ϕ−1 as in Eq. (2) is explored for arbitrary selection the arguments using Eq. (17) as

ϕ−1 =
(πν)

p
2Γ
(
ν
2

)
Γ
(p+ν

2

) .

Application

Table 1 presents specific values of ϕ−1 = (πν)
p
2Γ
(
ν
2

)
/Γ
(p+ν

2

)
for various parameter combinations

(p, ν). It is important to note that when ϕ−1 (for the t-distribution kernel) becomes smaller than 1,

it leads to a reduction in risk values. We observe that as the number of parameters p increases while

ν remains relatively small, the risk values decrease compared to situations with small p and large ν.
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Therefore, as the dimension of the parameter space grows, we recommend using the MT distribution

rather than the multivariate normal distribution for the error terms. Note that we eliminated the effect of

ϕ−1 in the graphs, since it gives the same amount of 54.16 and 679.36 for ν = 5 and ν = 10, respectively,

according to each risk value as seen in Table 1.

The dimension p is constrained by the sample size for the results to remain valid, as the theoretical

framework assumes n > p. Hence, if the model includes a large number of regressors (i.e., a high value

of p), the sample size must also be sufficiently large to ensure the validity of the model.

Table 1. Values of ϕ−1 for different parameter values (p, ν)

(p, ν) 1 2 5 10 100
1 3.14 2.82 2.63 2.56 2.51
2 2π 2π 2π 2π 2π
5 15.56 29.77 54.16 70.95 95.36
10 10.36 81.60 679.36 2023.93 8063.73
100 < 1 < 1 < 1 74883.62 ∞

Figure 1 demonstrates the risk function results of the suggested estimators for different numbers of

df comparing the risks of the PT, SE, and PRSE for the chosen number of df (here which is 5) with

different ω. Two upper frames of Figure 1 illustrate the superiority relationship given in equation (63).

The two lower frames of Figure 1 clearly demonstrate that as the w and α decrease, the risk increases.

Furthermore, as we deviate from the origin, or the null hypothesis, the risk values increase. From this

perspective, Figure 1 supports the results of the analytical comparison covered earlier here. The risk

values decrease when ω increases, which means, if the model fit is good under the structure of BLF, then

the risk values decrease naturally.

Figure 2 shows how rapidly ϕ−1 increases as both the arguments (p, ν) increase. Moreover, the contour

plot shows the skewed performance relative to the df, i.e., as the number of df gets larger, the coefficient

ϕ−1 increases rapidly with two exceptions for the cases p = 1, 2.

Conclusions and Remarks

This paper addresses the multiple regression model with elliptically contoured errors, utilizing a Bayesian

approach that integrates a prior-based balanced loss function (BLF) applied to the parameter space. This

methodology inherently influences the statistical properties of the resulting estimators. Specifically, from

a Bayesian standpoint, we introduce a set of shrinkage estimators designed for regression analysis. In

this novel framework, we derive key statistical criteria, such as bias and risk, and re-assess the properties

of these estimators across various scenarios.

Of particular interest is the fact that the proposed balanced loss shrinkage factor demonstrates robustness

to outliers in the data. By adjusting for extreme values, this approach provides a more stable estimation

process compared to traditional methods. Furthermore, we examine the conditions under which a broad

class of shrinkage estimators can achieve minimax properties—ensuring optimal performance across

a range of possible parameter values. This investigation reveals the circumstances under which these

estimators minimize both bias and variance simultaneously.
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Figure 1. Risk Performance

Additionally, we explore the risk performance of the proposed shrinkage estimators, providing a comparison

with conventional methods based on the closeness to the null hypothesis. This comparison allows us to

highlight the strengths and potential limitations of the shrinkage-based approach in practical applications,

offering insights into how the estimators behave under different settings. Ultimately, this paper contributes

to the understanding of shrinkage estimators in Bayesian regression, emphasizing their utility in improving

model robustness, especially when facing data with irregularities or outliers.
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Figure 2. Visualization of the performance of ϕ−1
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