TESSARINELER İLE HOMOTETIK HAREKETLERE E_{2}^{4} YARI- ÖKLID UZAYINDA YENİ BİR YAKLAŞIM

Faik BABADAĞ (faik.babadag @kku.edu.tr)
Kırıkkale Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 71450, Kırıkkale, Türkiye

ÖZET

Bu çalşmada, 4 boyutlu yarı Öklid uzaynda tessarinesleri kullanarak, Hamilton operatörlerine benzer bir matris verdik ve çeşitli cebirsel özelliklerini tanmladık. Daha sonra bu hareketin homotetik hareket olabilmesi ispatlandı. Bir parametreli homotetik hareket için, pol noktaları, pol eğrileri ve hız merkezleri hakkında bazi teoremler tanmladik. Sonunda, her t annda, bir $M_{i_{3}}$ hiperyüzeyi üzerinde eğrilerin türevleri ve r ' inci dereceden regular eğriler tarafindan tanmlanan hareketin sadece $(r-1)$ inci derecen bir hiz merkezine sahip olduğu bulundu.
Tessarinesler ile verilen konudaki yöntemden dolayı, çalşma homotetik hareket hakkinda bilinmeyen cebirsel özellikleri ve bazı formulleri , gerçekleri ve özellikleri veriyor.
Anahtar kelimeler: Tessarineler, Homotetik hareketler, Pol eğrileri, Hiperyüzey.

A NEW APPROACH TO HOMOTHETIC MOTIONS WITH TESSARINES IN SEMI-EUCLIDEAN SPACE E_{2}^{4}

Faik BABADAĞ (faik.babadag @kku.edu.tr)
Kırıkkale University, Art \& Science Faculty, Department of Mathematics, 71450, Kırıkkale, Turkey

Abstract

In this study, by using tessarines in 4-dimension semi-Euclidean space, we describe a variety of algebraic properties and give a matrix that is similar to Hamilton operators and we show that the hypersurfaces are obtained and a new motion is defined in E_{2}^{4}. Then, this motion is proven to be homothetic motion. For this one parameter homothetic motion, we defined some theorems about velocities, pole points, and pole curves. Finally, It is found that this motion defined by the regular curve of order r on the hypersurface $M_{i_{3}}$, at every t - instant, has only one acceleration centre of order ($r-1$).

Due to the way in which the matter is given with tessarines, the study gives some formulas, facts and properties about homothetic motion and variety of algebraic properties which are not generally known.

Keywords: Tessarines, Homothetic motions, Pole curves, Hypersurface.

1. INTRODUCTION

First time, James Cockle defined the tessarines in 1848, using more modern notation for complex numbers as a successor to complex numbers and algebra similar to the quaternions. The tessarines are coincided with 4 -dimensional vector space R^{4} over real numbers. Cockle used tessarines to isolate the hyperbolic cosine series and the hyperbolic sine series in the exponential series. He also showed how zero divisors arise in tessarines, inspiring him to use the term "impossibles." The tessarines are now best known for their subalgebra of real tessarines $t=w+y j$ also called split-complex numbers, which express the parametrization of the unit hyperbola [1-5].

Homothetic motion is a general form of Euclidean motion. It is crucial that homothetic motions are regular motions. These motions have been studied in kinematic and differential geometry in recent years. In 4-dimensional semi-Euclidean space, a one-parameter homothetic motion of a rigid body is generated analytically by

$$
\begin{equation*}
Y=h(t) A(t) X_{0}(t)+C(t) \tag{1}
\end{equation*}
$$

in which X_{0} and Y correspond the position vectors of the same point with respect to the rectangular coordinate frames of the moving space K_{0} and the fixed space K, respectively. At the inital time $t=t_{0}$ we suppose that the coordinate system in K_{0} and K are coincident. A is an orthonormal $n \times n$ matrix that satisfies the property $A^{T} \varepsilon A=\varepsilon, C$ is a translation vector and g is the homothetic scale of the motion. Also g, A and C are continuously differentiable function of C^{∞} class of a real parameter t. It is showed that the Hamilton motions are the homothetic motions in 4dimensional Euclidean space and at $\left(E^{8}\right)$ with Bicomplex Numbers C_{3}, respectively, [6-9].

In this study, we define a variety of algebraic properties and give a matrix that is similar to Hamilton operators. By using tessarines product and addition rules we define the hypersurface and a new motion in E_{2}^{4}. Then, this motion is proven to be homothetic motion. For this one parameter homothetic motion, we define some theorems about velocities, pole points and pole curves. Finally, It is found that this motion defined by the regular curve of order r on
the hypersurface M_{3} at every t - instant, has only one acceleration centre of order $(r-1)$.

2. TESSARINES

A tessarine w is an expression of the for

$$
\begin{equation*}
w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3} \tag{2}
\end{equation*}
$$

where w_{1}, w_{2}, w_{3} and w_{4} are real numbers and the imaginary units i_{1}, i_{2} and i_{3} are governed by the rules:

$$
\begin{gather*}
i_{1}^{2}=-1, i_{2}^{2}=+1, i_{3}^{2}=-1 \tag{3}\\
i_{1} i_{2}=i_{2} i_{1}=i_{3}, i_{1} i_{3}=i_{3} i_{1}=-i_{2}, \quad i_{2} i_{3}=i_{3} i_{2}=i_{1}
\end{gather*}
$$

here it is easy to see that the multiplication of two tessarine is commutative. It is also convenient to write the set of tessarines as

$$
T=\left\{w \mid w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3}, w_{1-4} \in R\right\}
$$

Definition 1. (Conjugations of Tessarines) : Conjugation plays an important role both for algebraic and geometric properties for tessarines, In that case, there are different conjugations according to the imaginary units i_{1}, i_{2} and i_{3} for tessarines as follows:

$$
\begin{aligned}
& w^{*}=\left(w_{1}-w_{2} i_{1}\right)+i_{2}\left(w_{3}-w_{4} i_{1}\right) \\
& w^{*}=\left(w_{1}+w_{2} i_{1}\right)-i_{2}\left(w_{3}+w_{4} i_{1}\right) \\
& w^{*}=\left(w_{1}-w_{2} i_{1}\right)-i_{2}\left(w_{3}-w_{4} i_{1}\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
& \text { 1. } w w^{*}=w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}+2 i_{2}\left(w_{1} w_{3}+w_{2} w_{4}\right) \\
& \text { 2. } w w^{*}=w_{1}^{2}-w_{2}^{2}-w_{3}^{2}+w_{4}^{2}+2 i_{1}\left(w_{1} w_{2}-w_{3} w_{4}\right) \\
& \text { 3. } w w^{*}=w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}+2 i_{3}\left(w_{1} w_{4}-w_{2} w_{3}\right) .
\end{aligned}
$$

The multiplication of a tessarine $w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3}$ by a real scalar μ is defined as

$$
\mu w=\mu w_{1}+\mu w_{2} i_{1}+\mu w_{3} i_{2}+\mu w_{4} i_{3} .
$$

Definition 2. (Product of Tessarines) : Define the product in T by

$$
\begin{gathered}
w u=u w=\left(w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3}\right)\left(u_{1}+u_{2} i_{1}+u_{3} i_{2}+u_{4} i_{3}\right) \\
=\left(w_{1} u_{1}-w_{2} u_{2}+w_{3} u_{3}-w_{4} u_{4}\right)+i_{1}\left(w_{1} u_{2}+w_{2} u_{1}+w_{3} u_{4}+w_{4} u_{3}\right) \\
+i_{2}\left(w_{1} u_{3}-w_{2} u_{4}+w_{3} u_{1}-w_{4} u_{2}\right)+i_{3}\left(w_{1} u_{4}+w_{2} u_{3}+w_{3} u_{2}+w_{4} u_{1}\right)
\end{gathered}
$$

It is easy to see that the product of two tessarine is commutative. Since the tessarines product is associative, commutative and it distributes over vector addition, T is a real algebra with tessarines product. According to the imaginary units i_{1}, i_{2} and i_{3}, by considering the product and addition rules of tessarines and the conjugates of the tessarines to be able to define norms, let us consider the hypersurfaces M_{1}, M_{2} and M_{3} as follows,
$\begin{array}{ll}M_{1}=\left\{w \mid w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3},\right. & \left.w_{1} w_{3}+w_{2} w_{4}=0\right\} \\ M_{2}=\left\{w \mid w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3},\right. & \left.w_{1} w_{2}-w_{3} w_{4}=0\right\} \\ M_{3}=\left\{w \mid w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3},\right. & \left.w_{1} w_{4}-w_{2} w_{3}=0\right\}\end{array}$

Definition 3. (Norms of Tessarines) : Norms on M_{1}, M_{2} and M_{3} hypersurfaces are defined as following

$$
\begin{aligned}
& \|w\|=w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2} \\
& \|w\|=w_{1}^{2}-w_{2}^{2}-w_{3}^{2}+w_{4}^{2} \\
& \|w\|=w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2} .
\end{aligned}
$$

The system T is a commutative algebra. It is referred as the tessarines algebra and shown with T, briefly one of the bases of this algebra is $\left\{1, i_{1}, i_{2}, i_{3}\right\}$ and the dimension is 4 . By using equations (2) and (3), we can give this representation to show a mapping into 4×4 matrices (It is possible to give the production T similar to Hamilton operators which has defined [6-9]).

$$
\begin{gathered}
\varphi: w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3} \in T \rightarrow \varphi(w)= \\
{\left[\begin{array}{cccr}
w_{1} & -w_{2} & w_{3} & -w_{4} \\
w_{2} & w_{1} & w_{4} & w_{3} \\
w_{3} & -w_{4} & w_{1} & -w_{2} \\
w_{4} & w_{3} & w_{2} & w_{1}
\end{array}\right]}
\end{gathered}
$$

T is algebraically isomorphic to the matrix algebra

$$
\xi=\left\{\left.\left[\begin{array}{cccr}
w_{1} & -w_{2} & w_{3} & -w_{4} \\
w_{2} & w_{1} & w_{4} & w_{3} \\
w_{3} & -w_{4} & w_{1} & -w_{2} \\
w_{4} & w_{3} & w_{2} & w_{1}
\end{array}\right] \right\rvert\,\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \in R\right\}
$$

and $\varphi(w)$ is a faithful real matrix representation of ξ. Moreover, $\forall w, u \in T$ and $\forall \gamma \in R$, we obtain

$$
\begin{gathered}
\varphi(w+u)=\varphi(w)+\varphi(u) \\
\varphi(\gamma w)=\gamma \varphi(w) \\
\varphi(w u)=\varphi(w) \varphi(u) .
\end{gathered}
$$

Definition 4. E^{n} with the metric tensor

$$
\begin{aligned}
<w, v> & =-\sum_{k}^{v} w_{k} v_{k} \\
& +\sum_{j=v+1}^{n^{k}} w_{j} v_{j} \ldots \ldots . w, v \in E^{n}, \quad 0 \leq v \leq n
\end{aligned}
$$

is called semi-Euclidean space and is defined by E_{v}^{n} where v is called the index of the metric. The resulting semi-Euclidean space E_{v}^{n} is reduced to E^{n} if $v=0$. For n, E_{1}^{n} is called Minkowski n space, if $n=4$, it is the simplest example of a relativistic space time.

Definition 5. Let E_{1}^{n} be a semi-Euclidean space furnished with a metric tensor $<,>$ A vector v to E_{1}^{n} is called spacelike if $<v$, $v \gg 0$ or $v=0$, null (a light vector) if

$$
<v, v>=0 \text { or timelike if }<v, v><0
$$

In the case when $0 \leq v \leq n$, the signature matrix ε is the diagonal matrix $\left[\delta_{i j} \varepsilon_{j}\right]$ whose diagonal entries are $\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{v}=-1$ and $\varepsilon_{v}=\varepsilon_{v+1}=\cdots=\varepsilon_{n}=1$. Hence

$$
\varepsilon=\left[\begin{array}{cc}
-I_{n} & 0 \\
0 & I_{n-v}
\end{array}\right]
$$

Definition 6. The set of all linear isometries $E_{v}^{n} \rightarrow E_{v}^{n}$ is the same as the set $O(v ; n)$ of all matrices $\operatorname{A\epsilon GL}(n, R)$ preserving the scalar product

$$
<w, v>=\varepsilon w v ; \quad w, v \in E_{v}^{n}
$$

The group $O(v, n)$ is denoted by $O_{v}(n)$. Hence

$$
O_{v}(n)=\left\{A \epsilon G L(n, R):<A w, A v>=<w, v>; w, v \in E_{v}^{n}\right\}
$$

$$
S O_{v}(n)=\left\{A \epsilon O_{v}(n): \operatorname{det} A=1\right\} .
$$

The following conditions of an $n x n$ matrix are equivalent
(i) $A \in O_{v}(n)$
(ii) $A^{T}=\varepsilon A^{T-1} \varepsilon$
(iii) The columns [rows] of A form an orthonormal basis for E_{v}^{n} (first v vectors timelike)
(iv) $\quad A$ carries one (hence every) orthonormal basis for E_{v}^{n} to an orthonormal basis.

The matrix A is called a real semi-orthogonal matrix [10].

3. HAMILTON MOTIONS WITH TESSARINES IN SEMIEUCLIDEAN SPACE E_{2}^{4}

Denote a hypersurface M_{3} and a unit sphere S_{2}^{3}, respectively, by considering the product and addition rules of tessarines and one of the conjugates of the tessarines according to the imaginary unit i_{3} as following,

$$
\begin{gathered}
M_{3}=\left\{w \mid w=w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3}, w_{1} w_{4}-w_{2} w_{3}=0\right\}, \\
S_{2}^{3}=\left\{w \mid w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}=1\right\}, \\
K=\left\{w \mid w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}=0\right\}
\end{gathered}
$$

be a null cone in E_{2}^{4}.

Let us define the following parametrized curve,

$$
\begin{gathered}
w: I \subset R \rightarrow M_{3} \subset E_{2}^{4} \text { given by } \\
w(t)=\left|w_{1}+w_{2} i_{1}+w_{3} i_{2}+w_{4} i_{3}\right| \text { for every } t \in I .
\end{gathered}
$$

We suppose that the curve $w(t)$ is differentiable regular curve of order r. Let position vector of the curve be timelike. Let the curve be a unit velocity timelike curve ($\langle w, v\rangle\rangle-1$). The operator Γ similar to the Hamilton operator, corresponding to $w(t)$ is defined by the following matrix:

$$
\Gamma=\Gamma(w(t))=\left\{\left.\left[\begin{array}{rrrr}
w_{1} & -w_{2} & w_{3} & -w_{4} \\
w_{2} & w_{1} & w_{4} & w_{3} \\
w_{3} & -w_{4} & w_{1} & -w_{2} \\
w_{4} & w_{3} & w_{2} & w_{1}
\end{array}\right] \right\rvert\,\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \in R\right\} .
$$

Theorem 1. The Hamilton motion determined by equation (1) in semi-Euclidean space E_{2}^{4} is a homothetic motion.

Proof. Let $\left\|w^{\prime}(t)\right\|=1, w(t)$ be a unit velocity curve. If $w(t)$ does not pass through the orijin and $w(t)$, the above matrix can be represent as $\Gamma=g \xi$ where $\xi=\frac{\Gamma}{g}$,

$$
\Gamma=g\left[\begin{array}{cccc}
\frac{w_{1}}{g} & \frac{-w_{2}}{g} & \frac{w_{3}}{g} & \frac{-w_{4}}{g} \tag{4}\\
\frac{w_{2}}{g} & \frac{w_{1}}{g} & \frac{w_{4}}{g} & \frac{w_{3}}{g} \\
\frac{w_{3}}{g} & \frac{-w_{4}}{g} & \frac{w_{1}}{g} & \frac{-w_{2}}{g} \\
\frac{w_{4}}{g} & \frac{w_{3}}{g} & \frac{w_{2}}{g} & \frac{w_{1}}{g}
\end{array}\right]
$$

and

$$
\begin{gathered}
g: I \subset R \rightarrow R \\
t \rightarrow w(t)=\sqrt{\left|w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}\right|}
\end{gathered}
$$

As the position of the curve are defined by using tessarines is timelike,
$w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}>0$. In the equation (3), we find $\xi \varepsilon \xi^{T}=$ $\xi^{T} \varepsilon \xi=I_{4}$
and $\operatorname{det} \xi=1$, where

$$
\varepsilon=\left[\begin{array}{cc}
-I_{2} & 0 \\
0 & I_{2}
\end{array}\right]
$$

Thus Γ is a homothetic matrix. Since $\Gamma=g \xi$ is a homothetic matrix determines a homothetic motion.
Theorem 2. Let $w(t) \in S_{2}^{3} \cap M_{3}$. In equation $\Gamma(\mathrm{t})=g(t) \xi(\mathrm{t})$, $\xi(\mathrm{t})$ is a scalar matrix then, ξ matrix is a semi-orthogonal matrix "the matrix ξ is $S O(4 ; 2)$ ".
Proof. If $w(t) \in S_{2}^{3}$, where $w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}=1$. Using equation (4), in equation $\Gamma(\mathrm{t})=g(t) \xi(\mathrm{t})$, we have $\Gamma^{-1}=\varepsilon \Gamma \varepsilon$ and $\operatorname{det} \xi=1$.
Theorem 3. In equation $\Gamma(\mathrm{t})=g(t) \xi(\mathrm{t})$, the matrix ξ in E_{2}^{4} is semi-orthogonal matrix.

Proof. Since $(t) \in M_{3}, w(t) \notin K$ and $w_{1} w_{4}-w_{2} w_{3}=0$.
In equation $\Gamma(\mathrm{t})=g(t) \xi(\mathrm{t})$. The matrix ξ has been shown by $\xi^{T} \varepsilon \xi=\varepsilon$. Let the signature matrix be given as

$$
\varepsilon=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

where, the matrix ξ is semiorthogonal matrix and $\operatorname{det} \xi=1$.
Theorem 4. Let $w(t)$ be a unit velocity curve and $w^{\prime}(t) \in M_{3}$ then the derivation operator Γ^{\prime} of $\Gamma=g \xi$ is real semi-orthogonal matrix in E_{2}^{4}.
Proof. Since $w(t)$ is a unit velocity curve, $w_{1}^{2}+w_{2}^{2}-w_{3}^{2}-w_{4}^{2}=$ 1 and $w^{\prime}(t) \in M_{3}$, then $w_{1} w_{4}-w_{2} w_{3}=0$. Thus, $\Gamma^{\prime} \varepsilon\left(\Gamma^{T}\right)^{\prime}=$ $\left(\Gamma^{T}\right)^{\prime} \varepsilon \Gamma^{\prime}$ and $\operatorname{det} \Gamma^{\prime}=1$.

Theorem 5. In semi-Euclidean space E_{2}^{4}, Hamilton motion determined by the derivation operator is a regular motion and it is independent of g.
Proof. This motion is regular as $\operatorname{det} \Gamma^{\prime}=1$ also, the value of $\operatorname{det} \Gamma^{\prime}$ is independentof g.

4. POLE POINTS AND POLE CURVES OF THE MOTION WITH TESSARINES IN SEMI-EUCLIDEAN SPACE E_{2}^{4}

To find the pole points in semi-Euclidean space E_{2}^{4} we have to solve the equation

$$
\begin{equation*}
\Gamma^{\prime} X_{0}+C^{\prime}=0 \tag{5}
\end{equation*}
$$

Any solution of equation (5) is a pole point of motion at that instant in K_{0}. Because, by Theorem 4, we have det $\Gamma^{\prime}=1$. Hence the equation (4.1) has only one solution, i.e.

$$
X_{0}=\left(-\Gamma^{\prime}\right)^{-1}(C)
$$

at every t-instant. In this case the following theorem can be given.
Theorem 6. If $w(t)$ is a unit velocity curve and $w^{\prime}(t) \in M_{3}$, then the pole point corresponding to each t-instant in K_{0} is the rotation by $\left(-\Gamma^{\prime}\right)^{-1}$ of the speed vektor $\left(C^{\prime}\right)$ of the translation vector at that moment.

Proof. As the matrix Γ^{\prime} is semi-orthogonal, the matrix $\left(\Gamma^{\prime}\right)^{-1}$ is orthogonal too. Thus, it makes a rotation.

5. ACCELARATION CENTRES OF ORDER ($r-1$) OF THE MOTION WITH TESSARINES IN SEMI-EUCLIDEAN SPACE E_{2}^{4}

Definition 7. The set of the zeros of sliding acceleration of order r is called the acceleration centre of order $(r-1)$.

In order to find the acceleration centre of order $(r-1)$, by using definition 7, we have to find the solutions of the equation

$$
\begin{equation*}
\Gamma^{(r)} X_{0}+C^{(r)}=0 \tag{6}
\end{equation*}
$$

where

$$
\Gamma^{(r)}=\frac{d^{r} \Gamma}{d t^{r}} \text { and } \mathrm{C}^{(r)}=\frac{d^{r} \mathrm{C}}{d t^{r}}
$$

Let w be a regular curve of order r and $w^{(r)} \in M_{3}$. Then we have

$$
w_{1}^{(r)} w_{4}^{(r)}-w_{2}^{(r)} w_{3}^{(r)}=0 .
$$

Thus,

$$
\left|\left(w_{1}^{(r)}\right)^{2}+\left(w_{2}^{(r)}\right)^{2}-\left(w_{3}^{(r)}\right)^{2}-\left(w_{4}^{(r)}\right)^{2}\right| \neq 0
$$

Also, we have

$$
\operatorname{det} \Gamma^{(r)}=\left(w_{1}^{(r)}\right)^{2}+\left(w_{2}^{(r)}\right)^{2}-\left(w_{3}^{(r)}\right)^{2}-\left(w_{4}^{(r)}\right)^{2} .
$$

Then $\operatorname{det} \Gamma^{(r)}$. Therefor matrix $\Gamma^{(r)}$ has an inverse and by equation (6), the acceleration centre of order $(r-1)$ at every t-instant, is

$$
X_{0}=\left[\Gamma^{(r)}\right]^{-1}\left[-C^{(r)}\right]
$$

Example 1. Let $w: I \subset R \rightarrow M_{3} \subset E_{2}^{4}$ be a curve given by

$$
t \rightarrow w(t)=\frac{1}{\sqrt{2}}(c h t,-c h t, s h t, \operatorname{sh} t, \operatorname{sh} t)
$$

Note that $w(t) \in S_{2}^{3}$ and since $\|w(t)\|=1$, then $w(t)$ is a unit velocity curve. Moreover, $w(t) \in M_{3}, w^{\prime}(t) \in M_{3}, \ldots, w^{(r)}(t) \in$ M_{3}. Thus $w(t)$ satisfies all conditions of the above theorems.
Example 2. : $I \subset R \rightarrow M_{3} \subset E_{2}^{4}$ is defined by $w(t)=$ $(\sinh t, t, \cosh t, \sqrt{3} t)$ for every $t \in I$. Let $C(0, t, 0,0)$. Because $w(t)=(\sinh t, t, \cosh t, \sqrt{3} t)$ does not pass through the origin, the matrix Γ can be represented as

$$
\Gamma=\Gamma(w(t))=\sqrt{2 t^{2}+1}\left[\begin{array}{cccc}
\frac{\operatorname{sinht}}{\sqrt{2 t^{2}+1}} & \frac{-t}{\sqrt{2 t^{2}+1}} & \frac{\cosh t}{\sqrt{2 t^{2}+1}} & \frac{-\sqrt{3} t}{\sqrt{2 t^{2}+1}} \\
\frac{t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{sinht}}{\sqrt{2 t^{2}+1}} & \frac{\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{cosht}}{\sqrt{2 t^{2}+1}} \\
\frac{\operatorname{cosht}}{\sqrt{2 t^{2}+1}} & \frac{-\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{sinht}}{\sqrt{2 t^{2}+1}} & \frac{-t}{\sqrt{2 t^{2}+1}} \\
\frac{\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{cosht}}{\sqrt{2 t^{2}+1}} & \frac{t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{sinht}}{\sqrt{2 t^{2}+1}}
\end{array}\right]
$$

where

$$
\begin{aligned}
g & : I \subset R \rightarrow R \\
t \rightarrow g(t) & =\|w(t)\|=\sqrt{\left|-\left(2 t^{2}+1\right)\right|}
\end{aligned}
$$

We find $\xi^{T} \varepsilon \xi \varepsilon=I_{4}$ and $\operatorname{det} \xi=1$ and $\Gamma^{\prime} \in S O(4 ; 2)$. In this case, in equation (4), the motion is given by

$$
Y=\sqrt{2 t^{2}+1}\left[\begin{array}{llll}
\frac{\operatorname{sinht}}{\sqrt{2 t^{2}+1}} & \frac{-t}{\sqrt{2 t^{2}+1}} & \frac{\cosh t}{\sqrt{2 t^{2}+1}} & \frac{-\sqrt{3} t}{\sqrt{2 t^{2}+1}} \\
\frac{t}{\sqrt{2 t^{2}+1}} & \frac{\sinh t}{\sqrt{2 t^{2}+1}} & \frac{\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\operatorname{cosht}}{\sqrt{2 t^{2}+1}} \\
\frac{\cosh t}{\sqrt{2 t^{2}+1}} & \frac{-\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\sinh t}{\sqrt{2 t^{2}+1}} & \frac{-t}{\sqrt{2 t^{2}+1}} \\
\frac{\sqrt{3} t}{\sqrt{2 t^{2}+1}} & \frac{\cosh t}{\sqrt{2 t^{2}+1}} & \frac{t}{\sqrt{2 t^{2}+1}} & \frac{\sinh t}{\sqrt{2 t^{2}+1}}
\end{array}\right] X_{0}+\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]
$$

Hence geometrical path of pole points in the Hamilton motion is determined by above equation as

$$
X_{0}=\left[\begin{array}{c}
-1 \\
-\cosh t \\
-\sqrt{3} \\
-\sinh t
\end{array}\right] .
$$

6. CONCLUSION

Using the product and addition rules of tessarines and one of the conjugates of the tessarines
the hypersurface and a new motion are defined in E_{2}^{4}. Then, this new motion is proven to be homothetic motion. It is found that this
new motion defined by the regular curve of order r on the hypersurface M_{3} at every t - instant, has only one acceleration centre of order $(r-1)$.

REFERENCES

[1] J. Cockle, On Certain Functions Resembling Quaternions and on a New Imaginary in Algebra, Philosophical magazine, London-Dublin-Edinburgh, 1848.
[2] J. Cockle, On a New Imaginary in Algebra Philosophical magazine, series3, London-Dublin-Edinburgh, 34, pp. 37--47, 1849.
[3] J. Cockle, On the Symbols of Algebra and on the Theory of Tessarines, 34, pp. 406-410, Philosophical magazine, series3, London-Dublin-Edinburgh, 1849.
[4] J. Cockle, On Impossible Equations, on Impossible Quantities and on Tessarines, ,Philosophical magazine, London-DublinEdinburgh, 1850.
[5] J. Cockle, On the True Amplitude of a Tessarine, Philosophical magazine, London-Dublin-Edinburgh, 1850.
[6] Y. Yaylı, Homothetic Motions at E4. Mech. Mach. Theory., 27 (3), 303-305, 1992.
[7] F. Babadağ, Homothetic Motions And Bicomplex Numbers, Algebras, Groups And Geometries, Vol. 26, Number 4,193-201, 2009.
[8] F. Babadağ, Y. Yaylı and N. Ekmekci, Homothetic Motions at $\left(E^{8}\right)$ with Bicomplex Numbers $\left(C_{3}\right)$, Int. J. Contemp. Math. Sciences, Vol. 4, no. 33, 1619-1626, 2009.
[9] F. Babadağ, The Real Matrices forms of the Bicomplex Numbers and Homothetic Exponential motions, Journal of Advances in Mathematics, ISSN 2347-1921, Vol 8, No. 1, 1401 1406, 2014.
[10] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.

