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OZET

Bu cahsmada, 4 boyutlu yarnn Oklid uzaymda tessarinesleri
kullanarak, Hamilton operatorlerme benzer bir matris verdik ve
cesith cebirsel Ozelliklerini tanmmladik. Daha sonra bu hareketin
homotetik hareket olabilmesi ispatlandi. Bir parametreli homotetik
hareket icin, pol noktalar1 , pol egrileri ve hiz merkezleri hakkmnda
bazi teoremler tammladk. Sonunda, her t annda, br M;
hiperylizeyi lizerinde egrilerin tiirevleri ve r’ inci dereceden regular
egriler tarafindan tanmlanan hareketin sadece (r — 1)’ inci
derecen bir hiz merkezine sahip oldugu bulundu.

Tessarinesler ile verilen konudaki ydntemden dolay, c¢ahsma
homotetik hareket hakkinda bilinmeyen cebirsel Ozellikleri ve baz
formulleri , gercekleri ve ozellikleri veriyor.
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ABSTRACT

In this study, by using tessarines in 4-dimension semi-Euclidean
space, we describe a variety of algebraic properties and give a
matrix that is similar to Hamilton operators and we show that the
hypersurfaces are obtained and a new motion is defined in E;.
Then, this motion is proven to be homothetic motion. For this one
parameter homothetic motion, we defined some theorems about
velocities, pole points, and pole curves. Finally, It is found that this
motion defined by the regular curve of order r on the hypersurface
M;,, at every t- instant, has only one acceleration centre of order
(r—1).

Due to the way in which the matter is given with tessarines, the
study gives some formulas, facts and properties about homothetic

motion and variety of algebraic properties which are not generally
known.
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1. INTRODUCTION

First time, James Cockle defined the tessarines in 1848, using
more modern notation for complex numbers as a successor to
complex numbers and algebra similar to the quaternions. The
tessarines are coincided with 4 -dimensional vector space R* over
real numbers. Cockle used tessarines to isolate the hyperbolic
cosine series and the hyperbolic sine series in the exponential
series. He also showed how zero divisors arise in tessarines,
inspiring him to use the term "impossibles.” The tessarines are now
best known for their subalgebra of real tessarines t = w + yj also
called split—complex numbers, which express the parametrization
of the unit hyperbola [1-5].

Homothetic motion is a general form of Euclidean motion. It is
crucial that homothetic motions are regular motions. These motions
have been studied in kinematic and differential geometry in recent
years. In 4-dimensional semi-Euclidean space, a one-parameter
homothetic motion of a rigid body is generated analytically by

Y = R(OA©X,(8) + C(©) (1)

in which X, and Y correspond the position vectors of the same
point with respect to the rectangular coordinate frames of the
moving space K, and the fixed space K, respectively. At the inital
time t = t, we suppose that the coordinate system in K, and K are
coincident. A is an orthonormal n x n matrix that satisfies the
property ATeA =&, C is a translation vector and g is the
homothetic scale of the motion. Also g, A and C are continuously
differentiable function of C*® class of a real parameter t. It is
showed that the Hamilton motions are the homothetic motions in 4-
dimensional Euclidean space and at (E®) with Bicomplex
Numbers C5, respectively, [6-9].

In this study, we define a variety of algebraic properties and give
a matrix that is similar to Hamilton operators. By using tessarines
product and addition rules we define the hypersurface and a new
motion in E;. Then, this motion is proven to be homothetic motion.
For this one parameter homothetic motion, we define some
theorems about velocities, pole points and pole curves. Finally, It is
found that this motion defined by the regular curve of order r on
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the hypersurface M5 at every t — instant, has only one acceleration
centre of order (r — 1).

2. TESSARINES
A tessarine w is an expression of the for
w = W1 + WZ il + W3i2 + W4i3 (2)
where w;, w,, wg and w, are real numbers and the imaginary
units i;, i, and i5 are governed by the rules:
if=-1,i=+1,i =-1 3)
iy = Il =13, lyl3 = I3ly = —lp, lplz = i3ly =

here it is easy to see that the multiplication of two tessarine is
commutative. It is also convenient to write the set of tessarines as

T={w|w=w;+w,i; +wsi, +w,is, wi_4 €R}

Definition 1. (Conjugations of Tessarines ) : Conjugation plays
an important role both for algebraic and geometric properties for
tessarines, In that case, there are different conjugations according
to the imaginary units i;, i, and i5 for tessarines as follows:

w* = (W —wyiy) +i(Wz — wyiq)

w* = (Wy +wyiy) —ip(Wz + wyiq)

w* = (W —wyiy) — ip(Ws — wyiy)

where,

1. ww* = w? + wi + w2 + w2 + 2i,(wywsz + wywy)
2. ww* = wi —wi —wZ +wZ + 2i; (wyw, — wawy)
3. ww* = wi + wi — w2 —wi+ 2iz3(wyw, — wows).
The multiplication of a tessarine w = w; + w, i; + w3i, + w,is
by a real scalar u is defined as

UW = uwq + uw, ip + uwsi, + uwyis.
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Definition 2. ( Product of Tessarines ) : Define the product in T
by
wu = uw = (Wl + WZil + W3i2 + W4i3)(u1 + uZil + u?,iz + U4i3)
= (Wl U — wWhi, + W3U3 — W4u4) + il (Wl Uy, + Wouq + W3 Uy + W4u3)
+i2 (Wl u3 - W2u4_ + W3u1 - W4u2 ) + i3 (Wl U4_ + WzU3 + W3U2 + W4u1)

It is easy to see that the product of two tessarine is commutative.
Since the tessarines product is associative, commutative and it
distributes over vector addition, T is a real algebra with tessarines
product. According to the imaginary units iy, i, and iz, by
considering the product and addition rules of tessarines and the
conjugates of the tessarines to be able to define norms, let us
consider the hypersurfaces M;, M, and M5 as follows,

M1={W IW=W1+W2i1+W3i2+W4i3, W1W3+W2W4=O}
M2={W IW=W1+W2i1+W3i2+W4i3, W1W2_W3W4=O}
M3:{W |W:W1+W2i1+W3i2+W4i3, W1W4_W2W3:O}

Definition 3. ( Norms of Tessarines ) : Norms on M;, M, and M,
hypersurfaces are defined as following

Iwll = wf + w2 + w? + w?
Iwll = w — w2 — w2 + w?
Wil = w2 + w2 — w2 — w2

The system T is a commutative algebra. It is referred as the
tessarines algebra and shown with T, briefly one of the bases of this
algebra is {1, iy, i,,i3} and the dimension is 4. By using
equations (2) and (3), we can give this representation to show a
mapping into 4x4 matrices (It is possible to give the production T
similar to Hamilton operators which has defined [6-9] ).

Q:w=w; +wy iy +wgi, + Wiz €T - p(w) =
wy —w, Wz —W,
w, wy Wi W3
Wz —Wg W; =Wy [
Wy w3 W; W1

T is algebraically isomorphic to the matrix algebra
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E = W3 _W4 W1 _W2 | (W1'W2: W3' W4) E R

and @(w) is a faithful real matrix representation of &. Moreover,
Vw,u € Tand Vy € R, we obtain

pw+u) = p(w) + o(u),
p(yw) =y (w),
pwu) = pw) ().

Definition 4. E™ with the metric tensor
v
<Ww,v>= —Zwkvk
k

n
+ Z W;vj e W, VEET 0<v<n

j=v+1

is called semi-Euclidean space and is defined by E] where v is
called the index of the metric. The resulting semi-Euclidean space
E} is reduced to E™ if v = 0. For n, E]* is called Minkowski n
space,if n = 4, it is the simplest example of a relativistic space
time.

Definition 5. Let E]* be a semi-Euclidean space furnished with a
metric tensor <,> A vector v to E{* is called spacelike if < v,
v>>0 or v =0,null (alight vector) if

< v,v>=0 or timelikeif< v, v><0.

In the case when 0 < v < n, the signature matrix ¢ is the diagonal
matrix [;;¢;] whose diagonal entries are & = &, = -+ = g, = —1
and g, = g,4,1 =+ =&, = 1. Hence

-, 0
€= [ 0 In_,,]'
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Definition 6. The set of all linear isometries E;} — EJ' is the same

as the set O(v; n) of all matrices AeGL(n, R) preserving the scalar
product

< w,v>=¢ewv; w,veE}

The group O(v,n) is denoted by O,(n). Hence
0,(n) = {AeGL(n,R) : < Aw,Av > =< w,v >; w,veE}}

S0,(n) = {Ae0,(n): detA = 1}.
The following conditions of an nxn matrix are equivalent
(i)  Ae0,(n)
(i) AT = AT 1¢
(iti)) ~ The columns [rows] of A form an orthonormal basis for

EJ (first v vectors timelike)

(iv) A carries one (hence every) orthonormal basis for EJ} to
an orthonormal basis.

The matrix A is called a real semi-orthogonal matrix [10].

3. HAMILTON MOTIONS WITH TESSARINES IN SEMI-
EUCLIDEAN SPACE E,

Denote a hypersurface M; and a unit sphere S3, respectively, by
considering the product and addition rules of tessarines and one
of the conjugates of the tessarines according to the imaginary unit
i3 as following,

M3={W IW=W1+W2 i1+W3i2 +W4i3, W1W4_W2W3=0},
3 _ i 2 2 2 2 _
— 2 2 2 2 _
K={w |wf+wj—-—wj—w; =0}

be a null cone in E7.

85



Faik BABADAG

Let us define the following parametrized curve,
w:l € R — M; c E; given by
w(t) = |wy +w, iy +wsi, +w,is| forevery tel.
We suppose that the curve w(t) is differentiable regular curve of
orderr. Let position vector of the curve be timelike. Let the curve
be a unit velocity timelike curve (< w,v > > —1). The operator I'

similar to the Hamilton operator, corresponding to w(t) is defined
by the following matrix:

W1 —W, W3 —Wy

w w Wy w3
= F(W(t)) = W; —VI/‘::_ wq —W, I (WIIWZ' W3lW4) ER .
Wy w3 Wy Wy

Theorem 1. The Hamilton motion determined by equation (1) in
semi-Euclidean space E; is a homothetic motion.

Proof. Let |[w'(t)|l = 1, w(t) be a unit velocity curve. If w(t)
does not pass through the orijin and w(t), the above matrix can be

r
representas I' = g§ where § = 7
F Wi —wp, W3 W
) g g )
Wa w1 s W3
— g 9 9 g
L=l w, —we wi -w, (4)
9 9 9 4
Wa W3 Wp Wy
L 9 g g g
and
g:IcR—R
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As the position of the curve are defined by using tessarines is
timelike,

wi + wg —wZ —wZ > 0. In the equation (3), we find &g’ =
gheg =1,
and deté = 1, where

-1, 0
=[]

0 I,
Thus T is a homothetic matrix. Since T' = g¢ is a homothetic
matrix determines a homothetic motion.

Theorem 2. Let w(t) € S3 N M. In equation T'(t) = g(£)&(v),
&(t) is a scalar matrix then , € matrix is a semi-orthogonal matrix
"the matrix £is SO (4; 2) "

Proof. If w(t) €S, where wi+w?—ws—wf =1. Using
equation (4), in equation I'(t) = g(t)é(t), we have I'' = ¢l's and
dett = 1.

Theorem 3. In equation T'(t) = g(t)¥(t), the matrix & in E; is
semi-orthogonal matrix.

Proof. Since (t) € M5, w(t) ¢ K and wyw, — w, wg = 0.

In equation T'(t) = g(t)é(t). The matrix ¢ has been shown by
€T €€ = . Let the signature matrix be given as

10 00
|01 0o
00 -1 0
00 0 -1

where, the matrix & is semiorthogonal matrix and deté=1.

Theorem 4. Let w(t) be a unit velocity curve and w'(t) € M; then
the derivation operator I'" of ' = g¢ is real semi-orthogonal matrix
in EJ.

Proof. Since w(t) isa unit velocity curve, w¥ + ws — w2 — w2 =
1 and w'(t) € M3, then wyw, —w, wy = 0. Thus, TI'e(TT) =
(TT)'el” and detI'=1.

87



Theorem 5. In semi-Euclidean space E;, Hamilton motion
determined by the derivation operator is a regular motion and it is
independent of g.

Proof. This motion is regular as detlI'=1 also, the value of detI" is
independentof g.

4. POLE POINTS AND POLE CURVES OF THE MOTION
WITH TESSARINES IN SEMI-EUCLIDEAN SPACE E;

To find the pole points in semi-Euclidean space E; we have to
solve the equation

I'Xo+C'=0. (5)
Any solution of equation (5) is a pole point of motion at that
instant in K. Because, by Theorem 4, we have det I =1. Hence the
equation (4.1) has only one solution, i.e.

Xo = (-I'")7Y(C)
at every t-instant. In this case the following theorem can be given.
Theorem 6. If w(t) is a unit velocity curve and w'(t) € M3, then
the pole point corresponding to each t-instant in K is the rotation

by (—I'")~1 of the speed vektor (C") of the translation vector at that
moment.

Proof. As the matrix I’ is semi-orthogonal, the matrix (I'")~? is
orthogonal too. Thus, it makes a rotation.

5. ACCELARATION CENTRES OF ORDER (r — 1) OF
THE MOTION WITH TESSARINES IN SEMI-EUCLIDEAN
SPACE E#

Definition 7. The set of the zeros of sliding acceleration of order r
is called the acceleration centre of order (r — 1).

In order to find the acceleration centre of order (r —1) , by
using definition 7, we have to find the solutions of the equation

rMx,+c® =0 (6)

where
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r® = 4T Jnd ¢ = L€
dat” dat”

Let w be a regular curve of order r and w(™ € M;. Then we have
Wl(r)wf) - Wz(r) ny) =0.

Thus,
() + (w7) = () = (w7
Also,we have
detr® = (w”) + ()’ = (W) = ()

Then detI' ™. Therefor matrix I'™ has an inverse and by equation
(6), the acceleration centre of order (r — 1) at every t —instant, is

Xo = [TM]-Cc™].

* 0.

Example 1. Letw:I ¢ R - M5 c E; be a curve given by
t > w(t) = % (cht, —cht, sht, sht, sht).

Note that w(t) € S5 and since |lw(t)|l = 1, then w(t) is a unit
velocity curve. Moreover, w(t) € My, w'(t) € M3,..., w™(t) €
M. Thus w(t) satisfies all conditions of the above theorems.
Example 2. :IcR - My;cEJ} is defined by w(t)=
(sinh t, t, cosh t,\/3t) for every

t €1. Let €(0,t,0,0). Because w(t) = (sinh t,t,cosh t,+/3t)
does not pass through the origin, the matrix I' can be represented as

- sinht -t cosht -3t ]
V2t2+1  V2t2+1 V28241 V2t2+1
t sinht V3t cosht
[=(w(D) = V2e7 + 1|20 V2l Ve Vaei
cosht —/3t sinht -t
V2t241  \rzp1 V2tZ+1 V2t2+1
V3t cosht t sinht
V28241 V28241 V2t2+1 V2t2+1

where
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g:IcR >R

t »g@®=Ilw®l = /I - 2"+ 1)|.

We find €7 eée = I, and deté=1and I'" €SO (4;2). Inthis case, in
equation (4), the motion is given by

- sinht -t cosht -3t 7
V2t2+1  V2t2+1 28241 V2t2+1
t sinht V3t cosht 0
Y = V2e2 + 1|V2PHT V2rtHl VarZl o V2e?4 X, + tl
cosht 3t sinht -t 0
V2t2+1 241 V2tZ+1 V2t2+1 0
V3t cosht t sinht
V26241 V2t2+1 V2t2+1 V2t2+41

Hence geometrical path of pole points in the Hamilton motion is
determined by above equation as

6. CONCLUSION

Using the product and addition rules of tessarines and one of the
conjugates of the tessarines

the hypersurface and a new motion are defined in E;. Then, this
new motion is proven to be homothetic motion. It is found that this
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new motion defined by the regular curve of order r on the
hypersurface M5 at every t - instant, has only one acceleration
centre of order (r — 1).
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