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In this study, an artificial neural network (ANN) based method is 

discussed to determine the aerodynamic performance of propellers used 

for Unmanned Aerial Vehicles (UAVs). Here, wind tunnel test data was 

used to obtain data for propellers without test data. First, wind tunnel test 

data was converted to a specific format using Python and modeling was 

done using ANN. With this modeling process, it was seen how close the 

model obtained with artificial neural networks produced results to the 

data obtained from wind tunnel tests. This study allows for more precise 

analysis of the aerodynamic performance of UAV propellers and 

optimization of their design. This approach provided a very accurate 

modeling of the aerodynamic performance of UAV propellers and took 

an important step towards determining the performance of propellers 

without wind tunnel test data. The obtained data constitutes a valuable 

resource for optimizing the design and performance of UAVs. 

Keywords: Unmanned Aerial Vehicles (UAV), Propeller, Artificial Neural Network, 

Modeling, Internal-Combustion Engine. 

1. Introduction 

Wind tunnel tests and simulations play an 

important role in evaluating the design and 

performance of UAVs. Wind tunnel tests are 

used to determine the aerodynamic properties 

of the UAV and optimize its performance. 

Additionally, thanks to simulations, different 

flight scenarios can be modeled and the 

behavior of the UAV can be predicted. One of 

the important elements affecting the 

aerodynamic performance of UAVs is 

propellers. Propellers enable the UAV to stay 

in the air by converting the power produced by 

the engine into thrust force. Therefore, the 

aerodynamic design of propellers must be done 

carefully, considering factors such as 

efficiency and noise. During the propeller 

selection process of unmanned aerial vehicles 

(UAV), a detailed analysis is made using 

various methods and techniques. The basis of 

these analyzes are research and testing 

methods such as computer-aided design 

(CAD), fluid dynamics (CFD) analyses, 

artificial neural networks, machine learning, 

flight tests and wind tunnel experiments [1]. 

Artificial neural networks and machine 

learning techniques are used to predict and 
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optimize propeller performance. These 

technologies, which have the ability to learn 

from complex datasets, enable more precise 

and efficient results in propeller design. Flight 

tests are important to verify propeller 

performance in real-world conditions and 

optimize the design. In these tests, the UAV is 

flown in different weather conditions and 

altitudes to evaluate its propeller performance 

[6]. Finally, wind tunnel tests are also used in 

the propeller selection process. In these 

experiments, the aerodynamic properties of 

UAV propellers are tested in different wind 

conditions and their performance is evaluated 

[3]. Integration of these various methods is 

critical in determining the optimal propeller 

design and ensuring optimum performance of 

the UAV. In this study, artificial neural 

networks and machine learning applications 

were preferred to determine the aerodynamic 

behavior of UAV propellers. Technologies 

such as artificial neural networks and machine 

learning play an important role in simulations 

and data analysis. Artificial neural networks 

are artificial intelligence models capable of 

learning from complex datasets. Machine 

learning, on the other hand, is based on the 

ability of algorithms to learn from datasets and 

recognize patterns. These technologies are 

used to obtain more precise results in UAV 

design and performance analysis and in 

determining the aerodynamic behavior of 

propellers. In order to determine the 

aerodynamic performance of propellers for 

unmanned aerial vehicles, datasets will be 

compared using artificial neural networks and 

methods will be followed to obtain data 

representing the real environment. The focus is 

on integrating wind tunnel test data of UAV 

propellers and thus achieving the closest result 

to reality. 

2. Literature Review 

Gamble, investigated the effects of Reynolds 

number on propeller performance in this study. 

It was found that the geometric features of the 

propeller, such as shape, twist, and blade 

chord, are highly dependent on Reynolds 

number. In wind tunnel tests, propellers 

produced by APC, which include glass-filled 

epoxy for high torsional strength, were used 

[1]. 

 
Figure 1. APC Propeller [1] 

Figure 1 shows a propeller belonging to the 

APC propeller. APC 18x12 and APC 18x8 

propellers were tested at 7 different rotation 

speeds for different Reynolds numbers ranging 

from 400,000 to 502,000 and 1,080,000 to 

1,213,000 respectively. It has been found that 

efficiency, thrust coefficient, power coefficient 

and slope increase when the number of 

Reynolds increases. It was determined that the 

efficiency of the APC 18x12 propeller 

increased by 5% by increasing the Reynolds 

number from 400,000 (1,700 rpm) to 

1,155,000 (4850 rpm). It can be seen that the 

same thrust force is produced at lower speeds 

as the pitch is reduced while the diameter is 

kept constant. In other words, as the pitch or 

pitch/diameter ratio increases, efficiency 

increases, and the propeller produces thrust at 

higher advance rates. In conclusion, 

experimental results show that Reynolds 

number has a strong effect on small propellers. 

Therefore, the designer must take the Reynolds 

number into account. 

 

 
Figure 2. Wind Tunnel performance of APC 14×10 

Thin Electric Propeller: (a) Thrust coefficient (Ct), (b) 

Power coefficient (Cp) [2] 

Dantsker and colleagues observed from wind 

tunnel performance tests that, for a given 
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propeller diameter, as the pitch angle 

increases, the thrust, power, and efficiency 

coefficient curves shift upwards and to the 

right. Figure 2 shows the Ct and Cp values of 

the 14x10 APC propeller as they vary 

according to the Advance Ratio from the wind 

tunnel test results. This observation indicates a 

trend where, as the advance ratio of a propeller 

increases, the thrust, power, and efficiency 

coefficients tend to have higher values, which 

is an expected general trend. It should be noted 

that for propellers with high diameter and pitch 

ratio, the performance curves are incomplete 

due to the 80 ft/s speed limit set by the 

propeller balance cover's structural design. 

Similarly, it is expected that, for a given 

propeller diameter, increasing the pitch angle 

will result in higher static (zero-speed) thrust 

and power coefficients. This study focuses on 

how propellers behave under different 

conditions in real-world environments [2]. The 

Blade Element Momentum (BEM) model is 

presented and used for performance 

predictions of sUAS propellers. Several 

corrections have been proposed for the BEM 

model to capture the unique characteristics of 

rotating flow in low Reynolds number 

propellers. Notably, corrections such as the use 

of aerodynamic databases produced by 

XFOIL, stall corrections, Mach corrections, 

and the inclusion of the model’s angular flow 

components are included. For the specific 

propeller geometries addressed in this study, 

the BEM model predictions follow the 

expected general trends for fixed-pitch 

propellers. The BEM model has been validated 

through a series of wind tunnel tests, and 

positive comparisons have been made between 

the predicted and measured theoretical trends. 

In Figure 3, part (a) presents the relationship 

between Ct, which likely represents a thrust 

coefficient, and J across different 

configurations: "10x5," "10x6," and "10x7." 

Both analytical (solid lines) and experimental 

(markers) results are shown for each 

configuration. The analytical results are 

represented by continuous lines, with each 

color indicating a different blade or propeller 

type. The experimental data, depicted with 

error bars, generally aligns well with the 

analytical curves but shows more variance. In 

part (b), the relationship between Cq, likely a 

torque coefficient, and J is illustrated for the 

same configurations. The torque coefficients 

(Cq) values are lower than those of thrust 

coefficients (Ct), suggesting that the torque 

coefficient is smaller in magnitude. While the 

analytical and experimental trends are similar, 

the experimental data appears to have a larger 

error margin. Overall, both graphs demonstrate 

that the analytical models generally match the 

experimental data, although there are some 

discrepancies and variations, indicating that 

experimental conditions or modeling 

assumptions may have impacted the results.  

 

 
Figure 3. Figure Analytical and experimental (a) thrust 

coefficients (Ct), (b) torque coefficients (Cq) for APC 

Propeller [3] 

McCrink and colleagues found similar results 

in their full-power tests to those reported in 

previous studies on small-scale propellers. A 

new constant Reynolds number test was 

introduced to demonstrate the scaling effects 

on propeller efficiency. Comparisons between 

experimental and model-based performance 

measurements highlight the importance of 

including Reynolds number dependence in the 
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analysis of small-scale thrust systems. The 

presented and validated BEM model is highly 

useful for propeller design for sUAS, 

especially since the operating Reynolds 

numbers of these propellers are low, where 

viscous effects are predominantly significant. 

Additionally, the general power model for 

sUAS thrust systems enables high-fidelity 

vehicle performance predictions for sUAS and 

determination of vehicle performance during 

flight tests and routine operations [3]. 

In his study, Bağçe, determined the 

performance of mini aircraft propellers 

through static and dynamic tests. A propeller 

testing setup was designed and assembled to 

evaluate the static performance of the 

propellers. This setup was also placed inside a 

wind tunnel. In the static tests, thrust, power, 

and efficiency values for four different 

Turbotek propellers were obtained as a 

function of propeller rotational speed. These 

data were compared with the calculation 

results from Turbotek, Computational Fluid 

Dynamics (CFD) analysis, and the static test 

results. In the dynamic tests, the variation of 

thrust coefficient, power coefficient, and 

efficiency values of these four Turbotek 

propellers as a function of advance ratio was 

obtained. The experimental results were 

compared with the analytical and CFD results 

provided by Turbotek, and the experimental 

results were found to be successful [4]. 

Demirhan analyzed the fuel consumption 

performance of a commercial aircraft using an 

artificial neural network model. The data were 

modeled using a feedforward neural network 

and trained with high-accuracy simulation data 

(operational flight plans). Subsequently, real 

flight data from the Quick Access Recorder 

(QAR) were used to adjust the model’s 

hyperparameters. Ten models with the least 

errors were selected and tested with a portion 

of the QAR data. After a statistical comparison 

among these ten models, the best model was 

chosen. Finally, a classification process for 

flights with fuel consumption prediction errors 

exceeding the three-sigma limit was described. 

Although the model was created using only 

five key parameters (takeoff weight, air 

distance, average cruise Mach number, altitude 

parameter, and fuel mileage deviation), it 

demonstrated a high level of accuracy. 

Additionally, the study proposes an additional 

method for identifying abnormal fuel 

consumption [5]. 

In Figure 4, a propeller motor setup within a 

wind tunnel is shown. This setup is used to test 

the aerodynamic performance of the propeller. 

The large fan at the end of the tunnel generates 

airflow through the tunnel, allowing for 

analysis of the propeller's effects. Most UAVs 

use propellers operating at low Reynolds 

numbers ranging from 50,000 to 100,000. 

Although sufficient data for these propellers 

are lacking, the performance of propellers for 

larger aircraft is well-documented. Therefore, 

in this study, tests were conducted at the 

University of Illinois, Urbana-Champaign, 

where the performance of 79 propellers with 

diameters ranging from 9 to 11 inches was 

determined, and static thrust measurements 

were taken. The subsonic wind tunnel at the 

University of Illinois, Urbana-Champaign, is 

reported to have a rectangular cross-section of 

2.8 x 4.0 ft (0.853 x 1.219 m) and a maximum 

flow speed of 160 mph (71.53 m/s) [6]. 

 
Figure 4. Wind Tunnel Used for Propeller Testing [6] 

Whitmore and colleagues (2012) revisit and 

enhance the classical first-order design tool 

known as the Blade Element Momentum 

(BEM) theory. Blade element theory analyzes 

a propeller blade by dividing it into segments 

and evaluating each element individually. In 

Figure 5, the relationship between the advance 

ratio and both the thrust coefficient and the 

power coefficient is shown. In part (a), the 

thrust coefficient is compared across test data, 

Analytical BEM, and Nonlinear BEM models. 

The test data, displayed with error bars, 

generally aligns well with both models, though 

there is a slight divergence at higher advance 

ratios. In part (b), the power coefficient is 
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similarly compared, indicating good 

agreement between the test data and both 

models. However, slight discrepancies appear 

as the advance ratio increases. Overall, both 

graphs demonstrate that the Analytical and 

Nonlinear BEM models accurately capture the 

trends in the test data, with minor deviations at 

higher advance ratios. However, blade element 

theory alone lacks the capability to predict the 

inflow velocity required to complete the flow 

field of the propeller. By combining blade 

element and momentum theories, a combined 

low-order prediction tool known as the Blade 

Element Momentum (BEM) theory is created. 

The BEM theory uses momentum theory to 

calculate the local induced velocity and 

incorporates this information into the blade 

element model. The conventional method used 

to close the nonlinear BEM equations involves 

a small local angle of attack and assumptions 

of low local induced drag across all sections as 

proposed by McCormick. McCormick also 

assumes that the amount of local induced drag 

negligibly reduces the local propeller thrust 

coefficient. While these assumptions allow for 

a closed-form solution, they are known to be 

inaccurate at high advance ratios and for the 

inner radius of the blade. This paper presents a 

nonlinear solution method that avoids these 

flawed and simplifying assumptions and offers 

a general improvement over known analytical 

methods for the BEM model. Calculations 

using two BEM solution methods are 

compared with wind tunnel test data collected 

for a small radio-controlled (RC) aircraft 

propeller. The solution methods are compared, 

and it is shown that the traditional linear 

solution predicts propeller performance with 

high accuracy, especially at high advance 

ratios [7]. 

Hang Zhu and colleagues (2021) present an 

analysis of a model to calculate the 

requirements and aerodynamic performance of 

propellers for rotorcraft unmanned aerial 

vehicles (UAVs). Based on blade element 

momentum theory, the aerodynamic forces on 

a blade element are examined and utilized. The 

symbolic NACA0012 airfoil model is used as 

an example to validate the model's accuracy. 

An experimental system designed and 

constructed to test the aerodynamic 

 

 
Figure 5. Comparisons of a) Thrust Coefficient (Ct) 

and b) Power Coefficient (Cp) for the APC 8x8 Thin 

Electric Propeller [7] 

performance of propellers is used to evaluate 

six different types of APC propellers. 

Additionally, data processing software is 

developed to perform single-step calculations 

of three propeller parameters (airfoil drag 

power, induced velocity, and efficiency) for 

plotting aerodynamic graphs. The results of the 

experiment show that the thrust and torque of 

the propeller increase with rotational speed, 

propeller diameter, and pitch. The newly 

developed system and software provide more 

precise torque measurements and greater 

stability under current experimental 

conditions. Experimental data, including 

propeller speed, thrust, and torque, are used to 

analyze the aerodynamic performance of APC 

propellers. The chosen propeller type for the 
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experiment is one of the most commonly used 

for UAVs, making the experimental data more 

convincing for assisting in propeller selection 

for UAVs [8]. 

In their 2021 study, Zbigniew Czy and 

colleagues investigate the impact of propeller 

geometry on the aerodynamic performance of 

propellers. In Figure 6, the Thrust/Power ratio 

is shown for different PWM ratios. One of the 

factors affecting propeller performance is the 

propeller pitch. This parameter indicates the 

distance a propeller will advance during one 

rotation. The key aspect is to determine the 

pitch at which the propeller performance is 

optimal. In this study, the aerodynamic 

performance of propellers with different 

pitches is tested using a wind tunnel, and 

experimental results are obtained. The tests 

were conducted in a subsonic wind tunnel. As 

a result of the study, the values of 

dimensionless coefficients for thrust force, 

torque, power, efficiency, and thrust-to-power 

ratio were calculated. The results allow for the 

selection of the most suitable solution when 

these coefficients are used as criteria. It is 

shown that there is a decrease in the force 

produced per unit power at higher airflow 

speeds; however, high-pitch propellers were 

observed to perform better at higher airflow 

speed ranges [9]. 

Onay and colleagues (2012) compared the 

design, analytical-based analysis results, and 

performance test results of two propellers 

intended for unmanned aerial vehicles 

(UAVs). In Figure 7, the comparison of results 

obtained through BEM and experimental 

methods for the XOAR 26x12 propeller is 

shown. Dynamic tests of the two UAV 

propellers were conducted in a wind tunnel and 

compared with the results of the Blade Element 

Momentum (BEM) analysis. The study 

revealed that the results obtained from 

Computational Fluid Dynamics (CFD) closely 

matched the BEM analysis results. This 

indicates that the BEM analysis method can be 

used for propeller optimization [10]. 

In their 2024 study, Xiaojing Wu and 

colleagues investigated the efficiency of 

electric propulsion systems used in unmanned 

aerial vehicles (UAVs). 

The study highlights the conflict between 

accuracy and design efficiency in optimization 

designs when using Computational Fluid 

Dynamics (CFD) and Propeller Theory 

methods. To address this, the study introduces 

a high-accuracy artificial neural network-

based optimization framework for electric 

aircraft propellers. 

 

 

 

 
Figure 6. Thrust-to-Power Ratio as a Function of 

Advance Ratio for the Tested Propeller Set at Different 

PWM Values: (a) 40%; (b) 60%; (c) 80%; (d) 90% [9]. 
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Figure 7. Comparison of Thrust Coefficient (Ct) 

Values Obtained Experimentally and with the Blade 

Element Momentum (BEM) Analysis Method for the 

XOAR 26x16 Propeller [10] 

This method is based on high-accuracy CFD 

numerical simulations and combines low-order 

Blade Element Momentum Theory (BEMT) 

knowledge with fewer CFD simulations to 

achieve higher model accuracy. This method 

improves the propeller’s cruising efficiency 

from a point of 82.3% designed by CFD and 

BEMT to 87.1% using the newly employed 

method. It has been shown that this method 

offers advantages in optimization effectiveness 

and efficiency compared to single-order 

optimization approaches [11]. 

3. Applications 

Obtaining a Wind Tunnel Data Set 

Propeller tests were conducted in the UIUC 

low-turbulence subsonic wind tunnel. The 

wind tunnel is an open-return type with a 7.5:1 

contraction ratio. Here, many variable sizes 

and pitches of the APC propeller were tested. 

These tests were carried out by changing many 

parameters such as RPM and Speed of the 

propellers. As a result of these tests, UIUC has 

compiled the wind tunnel test results into a test 

data set and shared it with the companies using 

this propeller. 

Artificial Neural Network Model 

The Artificial Neural Network (ANN) model is 

a model generally used in the fields of machine 

learning and artificial intelligence. ANN is a 

computational model inspired by the 

functioning of biological neural networks and 

is used to solve various complex problems. In 

this study, the artificial neural network (ANN) 

model will be established with wind tunnel 

data. Here, the artificial neural network model 

will be taught wind tunnel test data of 

propellers of different sizes and different pitch 

combinations, and as a model output, it will be 

aimed to predict propeller combinations 

without wind tunnel test data with the help of 

the wind tunnel test data model. Here, while 

the model is being established, changes will be 

made to the model according to the state of 

learning the test data of the model, and the 

most optimum artificial neural network model 

will be found. 

Creating Wind Tunnel Models 

Thrust coefficients (Ct) and Power coefficients 

(Cp) values were arranged before creating the 

model according to the variable RPMs in 

different propeller diameters and pitch 

combinations in the Wind Tunnel data set. This 

data Set is divided into Ct/Cp for “Sport” type 

propeller wind tunnel and Ct/Cp for “Thin 

Electric” type propeller wind tunnel. Before 

creating wind tunnel models, the data will be 

examined and the necessary data editing 

procedures for the models have been carried 

out. For the use of APC propellers in the 

modeling of propellers with variable diameter 

and pitch combinations tested in the wind 

tunnel, there are actual test data in the wind 

tunnel regarding 30 different diameter and 

pitch combinations of the "Sport" propeller 

type propellers between 1000 RPM and 10000 

RPM. In addition, there are actual test data 

performed in the wind tunnel on propellers of 

the “Thin Electric” propeller type, in the range 

of 1000 RPM and 10000 RPM, in 34 different 

diameter and pitch combinations. These data 

are arranged so that the “Sport” and “Thin 

Electric” type propeller data are side by side in 

the format “RPM J V Ct Ct_Predited Cp 

Cp_Predicted Typed p”.  

APC Propeller Sport Type Data Set Ct 

(Thrust Coefficient) Prediction Model 

Creation 

With the wind tunnel data set, first a model will 

be created using the wind tunnel data set for the 

“Sport” type propeller. Before creating the 

model, the independent variables to be used in 

the training process of the model were 

determined. These variables are the X_train 

dataset. “RPM J Predicted_Ct Diameter Pitch 

V” values will be used for the x_train data set. 

These values are the features given as input to 
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the model and help the model estimate the Ct 

value for the wind tunnel by using these 

features. The reason why these values were 

chosen as x_train is that these values are the 

main factors that determine propeller 

performance. RPM (number of revolutions), J 

(advance coefficient), Diameter (diameter), 

Pitch (pitch) and V (speed) are important 

features that directly affect the performance of 

the propeller. It is important for the model to 

learn these factors that determine the estimated 

Ct value. Y_train training set is the dependent 

variable that the model tries to learn during the 

training process. So, Ct will be used for 

y_train. While determining the 

hyperparameters of the model, different 

combinations were used, and the models were 

tested. In this way, the parameters were 

finalized by trial-and-error method. The 

hyperparameters used for the Wind Tunnel 

"Sport" type propeller Ct prediction model are 

as follows: 

• 5 Layers  
• 1 Input Layer, 3 Layers, 1 Output Layer  
• Batch Size 16   
• 1000 Epochs, 
• 256 Neurons in layers except Output 

Layer   
• Mean Squared Error (MSE) Loss 

Function  
• ReLU Activation Function  
• Adam Optimization Algorithm 
• Standard Scaler 
• Validation (X_test, y_test)  
• Test Size 1%  
With these determined parameters, the 

artificial neural network (ANN) model for the 

wind tunnel was trained. 

For the artificial neural network (ANN) model 

created for wind tunnel Ct prediction, the 

number of layers and the number of neurons in 

the layer were adjusted to be the most optimum 

values at which the model would perform best, 

based on previous studies and trial and error 

method. According to the created model 

"Epochs" values, the point at which the model 

performs best will be determined. 

Accordingly, the “Epochs” value will be 

determined. 

When the loss function and R2 performances 

of the models are examined according to 2 

different "Epochs" values, Model 1 has lower 

loss function performance and R2 score. This 

shows that Model 1 performs better. When 

evaluating the number of "Epochs", it is seen 

that there is no need for more "Epochs" values 

since the performance of the model is quite 

good for 1000 "Epochs". 

Table 1. Wind Tunnel “Sport” Ct Sequential Model 

Structure 

Wind Tunnel “Sport” Ct Sequential Model 

Layer (type) 
Output 

Shape 
Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable 

Parameter = 

62077 

Table 2. Comparison of model performances according 

to Wind Tunnel Ct Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model No 1 2 

Model 

Type 

Wind Tunnel 

“Sport” Ct 

Forecast Model 

Wind Tunnel 

“Sport” Ct 

Forecast Model 
Epochs 1000 2000 
MAE 0.032211390 0.056139356 
MSE 0.001689722 0.0077393565 
RMSE 0.17947532 0.2369374517 
R2 0.99833180 0.993742881 

When the Loss-Validation Loss graphs are 

examined in Figure 8, it is seen that the Loss 

and Validation Loss values overlap at 1000 

"Epochs". In this case, it appears that the model 

is not overfit. The fact that the loss values 

encountered during the training of the model 

are low and stable shows that the model works 

well in both the training and validation phases. 

This helps predict that the model can give good 

results against new data. When the graphics are 

evaluated, model 1 will be preferred for the 

wind tunnel Ct prediction model since the 

model performance shows good performance 

for 1000 "Epochs" value. Model 1 will be 

trained with the wind tunnel data set. 
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Figure 8. Wind Tunnel “Sport” Type Propeller Ct 

Forecast Model (top) 1000 “Epoch” and (bottom) 2000 

“Epoch” (Blue - Loss, Orange - Validation Loss) 

APC Propeller Sport Type Data Set Ct 

(Thrust Coefficient) Prediction Model 

Training and Outputs 

After the hyper parameters and “Epochs” value 

determined for the wind tunnel Ct prediction 

model, the artificial neural network (ANN) 

model was trained with the data set. 

When the "Predictions-Real Values" graph in 

Figure 9 is examined, it is seen that the graph 

shows a linear relationship. This shows that the 

model's predictions are quite close to the actual 

values and the performance of the model is 

very good. The fact that the points are regularly 

distributed around the ideal line shows the 

consistency of the model predictions and that 

the model has learned the data set well in 

general. Using an artificial neural network 

(ANN) model, the performance of the model 

was evaluated with the data set. 

When the performance of the wind tunnel 

“Sport” Ct prediction model is examined, it is 

seen that the performance of the model is 

almost the same as the real data set. Here, it is 

predicted that the predicted performance of the 

model is good and that it will make a good 

prediction for different propeller 

combinations. 

 
Figure 9. Wind Tunnel “Sport” Ct Forecast Model 

Predictions-Real Values 

 
Figure 10. Wind Tunnel “Sport” Type Propeller Ct 

Forecast Model 10x10 Propeller 2000 RPM Model 

Performance 

APC Propeller Sport Type Data Set Cp 

(Power Coefficient) Prediction Model 

Creation 

Wind tunnel data set was used to create the 

wind tunnel “Sport” Cp prediction model. 

While creating the model and determining the 

model parameters, the previously created wind 

tunnel model was taken as reference. The 

hyperparameters used for the Wind Tunnel 

"Sport" type propeller Cp prediction model are 

as follows: 

• 5 Layers  

• 1 Input Layer, 3 Layers, 1 Output Layer  
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• Batch Size 4  

• 500 Epochs,  

• 256 Neurons in layers except Output Layer  

• Mean Squared Error (MSE) Loss Function  

• ReLU Activation Function  

• Adam Optimization Algorithm  

• Standard Scaler  

• Validation (X_test, y_test) 

• Test Size 1% 

The determined parameters were determined 

based on the variables according to the 

prediction performance of the model and the 

Loss-Validation Loss graph. A neural network 

(ANN) model was trained according to these 

hyperparameters 

Table 3. Wind Tunnel “Sport” CP Sequential Model 

Structure 

Wing Tunnel “Sport” Cp Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter = 

62077 

The artificial neural network (ANN) model 

structure created for wind tunnel Cp prediction 

was created based on previous models. In order 

for the model to give the best performance, 

different "Epochs" values were tested for the 

established model structure. 

Models trained with different "Epochs" values 

were examined. Among these Examined 

models, Model 1 has the lowest MSE and the 

highest R2. This shows that Model 1 performs 

better than other models. Since the models 

performed very well according to the 

examined "Epochs" values, the number of 

"Epochs" was limited to 2000 for comparison. 

When the Loss-Validation Loss graphs of the 

models for different "Epochs" values are 

examined, it appears that the graphs show 

almost similar behavior. Although the Loss 

and validation Loss values of the graph with an 

Table 4. Comparison of model performances according 

to Wind Tunnel Cp Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model 

No 
1 2 

3 

Model 

Type 

Wind Tunnel 

“Sport” Ct 

Forecast 

Model 

Wind Tunnel 

“Sport” Ct 

Forecast 

Model 

Wind Tunnel 

“Sport” Cp 

Forecast 

Model 

Epochs 500 1000 2000 

MAE 0.03589336 0.05087223 0.043748091 

MSE 0.002298777 0.00520541 0.00403422 

RMSE 0.189455449 0.225548752 0.20916044 

R2 0.997517669 0.99659612 0.996350194 

 

 

 
Figure 11. Wind Tunnel “Sport” Type Propeller Cp 

Prediction Model a) 500 “Epoch” and b) 1000 “Epoch” 

c) 2000 “Epoch” (Blue - Loss, Orange - Validation 

Loss) 
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"Epochs" value of 500 in Figure 11 do not 

overlap completely, this does not matter in 

terms of the performance of the model. 

Because the loss and validation loss values do 

not overlap, it generally indicates that the 

model can generalize well and is not 

overfitting. This shows that the model does not 

overfit the training data and can perform well 

with new data. When the Loss-Validation Loss 

graphs are examined, as well as the loss 

function performances and R2 results of the 

models, it can be seen that the model that 

performs well is Model 1, Model 1 will be 

trained for the wind tunnel “Sport” Cp 

prediction model. 

APC Propeller Sport Type Data Set Cp 

(Power Coefficient) Prediction Model 

Training and Outputs 

The Cp prediction model, which will be 

created using the wind tunnel data set, was 

trained with the artificial neural network 

(ANN) model data set after the determined 

hyperparameters and "Epochs" value. 

 
Figure 12. Wind Tunnel “Sport” CP Forecast Model 

Predictions-Real Values 

When the Predictions-Real Values graph in 

Figure 12 is examined, it shows that the model 

and its predictions are consistent according to 

the behavior of the points in the graph, and that 

the model has learned the data set well in 

general. With the model trained with the wind 

tunnel data set, the performance of the model 

was examined according to propeller and RPM 

values in different combinations. 

When the prediction ability of the model is 

examined, it is seen that the Cp predictions 

make a close prediction to the values in the 

data set according to the variable J (Advance 

ratio) values. 

 
Figure 13. Wind Tunnel “Sport” Type Propeller CP 

Forecast Model 10x7 Propeller 6000 RPM Model 

Performance 

APC Propeller Thin Electrical Type Data 

Set Ct (Thrust Coefficient) Prediction 

Model Creation 

While creating the "Thin Electric" type 

propeller Ct prediction model, wind tunnel 

data set was initially used. Previous wind 

tunnel models were taken as a basis in the 

process of establishing the model and 

determining its parameters. The initial 

hyperparameters determined for the "Thin 

Electric" type propeller Ct prediction model 

are as follows: 

• 5 Layers  
• 1 Input Layer, 3 Layers, 1 Output Layer  

• Batch Size 4  
• 500 Epochs,  
• 256 Neurons in layers except Output 

Layer  
• Mean Absolute Error (MAE) Loss 

Function  

• ReLU Activation Function  

• Adam Optimization Algorithm  
• Standard Scaler  
• Validation (X_test, y_test) 

• Test Size 1% 
Artificial neural network (ANN) model 

structure will be established with the 

determined parameters. According to these 

parameters, the artificial neural network 

(ANN) model will be trained. Parameters can 
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be changed according to the performance of 

the model. 

Table 5. Wind Tunnel “Thin Electric” Ct Sequential 

Model Structure 

Wing Tunnel “Thin Electric” Ct Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense 168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter = 

62077 

The model structure was determined by 

reference to previous models. It has been 

observed that models previously trained in this 

determined structure showed high prediction 

performance. The number of "Epochs" that 

would give the best performance with this 

model structure was determined by trial and 

error method. 

Table 6. Comparison of model performances according 

to Wind Tunnel “Thin Electric” Ct Estimation Model 

“Epoch” Values according to Loss functions and R2 

method 

Model No 1 2 

Model Type 

Wind Tunnel 

“Thin 

Electric” Ct 

Forecast 

Model 

Wind Tunnel 

“Thin 

Electric” Ct 

Forecast 

Model 
Epochs 500 1000 

MAE 0.03377714 0.04106794 

MSE 0.0018278 0.00286244 

RMSE 0.18378559 0.20265226 

R2 0.99827756 0.9974655550 

The performance of models trained according 

to different "Epochs" values was compared. 

When comparing between two models, the 

model with lower error values is generally 

considered better. Therefore, in this case, it can 

be seen that the MAE, MSE, RMSE and R 

values of Model 1, which has a value of 500 

epochs, are lower. Since the model learned the 

data set with good performance even at low 

Epochs numbers, there was no need for high 

Epochs values. 

 

 
Figure 14. Wind Tunnel “Thin Electric” type propeller 

Ct Prediction Model (left) 500 “Epoch” and (right) 

1000 “Epoch” (Blue - Loss, Orange - Validation Loss) 

When the Loss-Validation Loss graphs are 

examined, it appears that the Loss values and 

Validation Loss values show similar behavior. 

Although these behaviors are not very stable 

compared to other models, the data set learning 

performance of the models is quite good. 

When the graph of the model with an "Epochs" 

value of 500 is examined in Figure 14, it is seen 

that the model generally shows a good learning 

performance during the training process and 

there is no overfitting problem. Since the 

difference between training and validation 

losses is small, it can be said that the model 

generalizes well to both training data and 

unvalidated data. However, the fluctuation of 

training loss indicates that the learning rate 

may be too high, or some training examples are 

forced by the model. But in general, it seems 

that the predicted performance of the model 

will be good. Model 1, that is, the model with 

an "Epochs" value of 500, will be preferred for 

training with the data set. 
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APC Propeller Thin Electric Type Data Set 

Ct (Thrust Coefficient) Prediction Model 

Training and Outputs 

The model will be trained using the wind 

tunnel data set using the created model 

structure and the determined hyperparameters. 

After the artificial neural network (ANN) 

model is trained with the training data set, the 

performance of the model will be examined. 

 
Figure 15. Wind Tunnel “Thin Electric” Ct Forecast 

Model Predictions-Real Values Graph 

When you look at the Predictions-Real Values 

graph in Figure 15, you can see that there is a 

clear linear relationship in the graph. This 

indicates that the predictions of the model are 

very close to the real values and the 

performance of the model is quite good and the 

model performs well in learning the data set. 

The prediction performance of the artificial 

neural network (ANN) model trained with the 

data set was examined. 

Model prediction performance is very close to 

real data. The model performance output 

shows that the model can predict well both the 

propeller combinations in the data set and the 

propeller combinations not in the data set 

APC Propeller Thin Electrical Type Data 

Set Cp (Power Coefficient) Prediction 

Model Creation 

While creating the wind tunnel “Thin Electric” 

Cp prediction model, previous wind tunnel 

prediction models were taken as reference. 

Wind tunnel “Thin Electric” data set was used 

as the data set. For the wind tunnel “Thin 

Electric” Cp artificial neural network (ANN) 

prediction model, the following 

hyperparameters were determined for the 

model. 

 
Figure 16. Wind Tunnel “Thin Electric” Type Propeller 

Ct Forecast Model 14x10 Propeller 6000 RPM Model 

Performance 

• 5 Layers  

• 1 Input Layer, 3 Layers, 1 Output Layer  
• Batch Size 16  

• 1000 Epochs,  
• 256 Neurons in layers except Output 

Layer  

• Mean Absolute Error (MAE)Loss 

Function  

• ReLU Activation Function  
• Adam Optimization Algorithm  

• Standard Scaler  

• Validation (X_test, y_test) 

• Test Size 1% 

Artificial neural network (ANN) model 

structure will be established according to the 

determined parameters. This model structure 

was created based on the structure of artificial 

neural network (ANN) models created with 

previously good performing simulation and 

wind tunnel data sets. 

It has been observed that the number of layers 

and neurons is sufficient for previously created 

artificial neural network (ANN) models. 

Therefore, there was no need for more layers 

and number of neurons in the wind tunnel 

“Thin Electric” Cp prediction model structure. 

With the created model structure, the model 

will be trained with different "Epochs" values. 

“Epochs” values will be determined by trial 

and error method according to the prediction 

performance of the model. 
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Table 7. Wind Tunnel “Thin Electric” Cp Sequential 

Model Structure 

Wind Tunnel “Thin Electric” Cp Sequential Model 

Layer (type) Output Shape Parameter 

Dense  252 1764 

Dropout 252 0 

Dense  168 42504 

Dropout 168 0 

Dense  84 14196 

Dropout 84 0 

Dense  42 3570 

Dropout 42 0 

Dense  1 43 

Total Parameter = 62077 
Trainable Parameter 

= 62077 

Table 8. Comparison of model performances according 

to Wind Tunnel Cp Forecast Model “Epoch” Values 

according to Loss functions and R2 method 

Model No 1 2 

Model Type 

Wind Tunnel 

“Thin 

Electric” Cp 

Forecast 

Model 

Wind Tunnel 

“Thin 

Electric” Cp 

Forecast 

Model 
Epochs 500 1000 

MAE 0.0309182 0.030591069 

MSE 0.00173574 0.00196366 

RMSE 0.17498080 0.17490302 

R2 0.99818197 0.99820711 

With the created model structure, the 

performance of the model was examined for 

different "Epochs" values. It is seen that the 

model performs well when training the model 

with a low number of "Epochs". So there is no 

need for more Epochs values. In Figures 17 

and 18, the models trained with 500 and 1000 

"Epochs" values are compared. When these 

two models are examined, it is seen that the 

models perform very close to each other when 

the loss function performance and R2 score are 

examined. Although the R2 performance of the 

2nd model is very close, it is higher, so the 2nd 

model was preferred to train the prediction 

model. 

Loss-Validation When the loss graphs are 

examined, it is seen that the graph of the 2nd 

model shows a generally good learning 

performance in the process of learning the data 

set. 2. When the Loss-Validation Loss graph of 

the model is examined, it is seen that the Loss 

and Validation Loss values do not increase, so 

there is no overfitting problem. Since the 

difference between the training and validation 

losses of the model is small, it can be said that 

the model generalizes well to both training data 

and unvalidated data. Considering the loss 

function performance, R2 score and Loss-

Validation Loss graph for the wind tunnel 

“Thin Electric” Cp prediction model, it was 

decided to train the 2nd Model, which has a 

value of 1000 “Epochs”, with the data set and 

use it as the prediction model. 

 

 
Figure 17. Wind Tunnel “Thin Electric” Type Propeller 

Cp Prediction Model (left) 500 “Epoch” and (right) 

1000 “Epoch” (Blue - Loss, Orange - Validation Loss) 

APC Propeller Thin Electric Type Data Set 

Cp (Power Coefficient) Prediction Model 

Training and Outputs 

After the hyperparameters and "Epochs" value 

of the model were determined, the model was 

trained with the wind tunnel data set. After the 

artificial neural network (ANN) model was 

trained, the prediction performance of the 

model was examined. 

When the Predictions-Real Values graph in 

Figure 18 is examined, it is seen that there is a 
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linear and linear relationship between the 

prediction and real values. 

 
Figure 18. Wind Tunnel “Thin Electric” Cp Forecast 

Model Predictions-Real Values Graph 

 

Figure 19. Wind Tunnel “Thin Electric” Type Propeller 

Cp Forecast Model 19x12 Propeller 3000 RPM Model 

Performance 

This relationship shows that the model has a 

good performance in learning the data set well. 

The prediction performance of the artificial 

neural network (ANN) model trained with the 

data set was examined. 

When the prediction performance of the model 

is examined, it is seen that it performs well 

between the real data and the predicted data 

according to different RPM values and 

different propeller combinations. The 

performance of the model in predicting the real 

data in the data set and the data not in the data 

set is very good and gives results very close to 

reality. This model will be used for the wind 

tunnel “Thin Electric” Cp prediction model. 

Comparison of Wind Tunnel Artificial 

Neural Network Models 

Four artificial neural network (ANN) models 

were created using the wind tunnel data set. 

These created wind tunnel models will help 

find Ct (Thrust Coefficient) and Cp (Power 

Coefficient) for different RPM values of 

propeller combinations that do not have wind 

tunnel test data without going to the wind 

tunnel. 

When the four artificial neural network (ANN) 

models created are examined, it is seen that 

error metrics such as MAE, MSE and RMSE 

are at a very low level. These metrics show that 

the model's predictions are quite close to the 

actual values. Additionally, the R2 score is 

very close to 1 in 4 models. This means that the 

models fit the data set very well and their 

predictions exactly match the real values. 

4. Conclusion 

This study explores an approach that utilizes 

artificial neural networks and machine learning 

methods to determine the aerodynamic 

performance of propellers. The primary goal is 

to estimate the thrust and power values that 

different propeller combinations will produce 

without relying on wind tunnel data. The 

analyses demonstrate that artificial neural 

networks and machine learning models can 

accurately model the aerodynamic 

performance of propeller combinations 

without wind tunnel data. 

Table 9. Artificial Neural Network (ANN) Models for “Sport” and “Thin Electric” type propellers created using the 

Wind Tunnel dataset and Simulation Forecast dataset 

Model type Epochs MAE MSE RMSE R2 
Wind Tunnel “Sport” Ct 

Forecast Model 
1000 0.032211390 0.001689722 0.17947532 0.99833180 

Wind Tunnel “Sport” Cp 

Forecast Model 
500 0.03589336 0.002298777 0.189455449 0.997517669 

Wind Tunnel “Thin Electric” 

Ct Forecast Model 
500 0.03377714 0.0018278 0.18378559 0.99827756 

Wind Tunnel “Thin Electric” 

Cp Estimation Model 
1000 0.030591069 0.00196366 0.17490302 0.99820711 
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This provides a significant advantage by 

reducing dependence on wind tunnel testing 

and speeding up the design process. In this 

study, four different wind tunnel models were 

created, all of which produced results very 

close to real-world conditions. The results 

obtained from the models of propellers with 

wind tunnel data are very close to the true 

value of 1, with all four models yielding values 

that are 99.8% close to the actual value. This 

indicates how well the models align with 

reality. These models can accurately predict 

the thrust (Ct) and power (Cp) coefficient 

values of propellers without wind tunnel test 

data. This success is based on the effective use 

of artificial neural networks and machine 

learning methods. The results obtained show 

that these techniques can be successfully 

applied in the process of modeling the 

aerodynamic performance of propellers. 

5. Suggestions and Evaluations 

The artificial neural network models used in 

this study exhibit similarities to those found in 

the literature. However, these models can 

exhibit different behaviors depending on the 

dataset. Upon examining the models and 

datasets in the literature, it is observed that the 

average accuracy rate of the models in this 

study is 99.9%, which surpasses the accuracy 

capabilities of all models previously reported 

in the literature. The findings of this study are 

significant for accelerating the design process 

and reducing costs by decreasing reliance on 

wind tunnel testing. While wind tunnel testing 

can typically take months, the artificial neural 

network models used here can provide high-

accuracy test data in seconds. Additionally, 

accurately predicting the thrust and power 

values of propeller combinations is considered 

a crucial step in UAV design and optimization. 

These results suggest that artificial neural 

networks and machine learning techniques are 

valuable tools for analyzing and optimizing the 

aerodynamic performance of propellers. 

Nomenclature 

UAV : Unmanned Aerial Vehicle  

ANN : Artificial Neural Network 

CFD : Computational Fluid Dynamics 

APC : Propeller Brand 

Cp : Power Coefficient 

Ct : Thrust Coefficient 

BEM : Blade Element Momentum Theory 

UAS : Unmanned Aircraft System 

CQ : Torque Coefficients 

QAR : Quick Access Recorder 

RC : Radio Controlled 

PWM : Pulse Width Modulation 

UIUC : University of Illinois at Urbana-

Champaign 

MSE : Mean Squared Error Loss Function 

MAE : Mean Absolute Error Loss Function 

RMSE : Root Mean Squared Error Loss 

Function 

J : Advance Ratio 
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