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In this paper, the numerical solutions of the Navier-Stokes equations (NSE) used for modeling the flow 

in the cardiovascular system are investigated using the Finite Element Method (FEM). A fully discrete 

solution scheme of the NSE and its stability and error analysis are presented. Artificial viscosity 

stabilization is added to the fully discrete scheme to better model the real flow structure and to remove 

non-physical oscillations. Numerical tests are also presented to demonstrate the effectiveness of the 

resulting scheme. Simulations analyzing the flow structure in the case of cardiovascular diseases such 

as atherosclerosis and brain aneurysm are presented in detail along with wall shear stress values. 
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1. INTRODUCTION 

The cardiovascular system consists of three main components: blood, the heart that pumps blood to the body, 

and the vessels that distribute the pumped blood to the body. The cardiovascular system maintains the body's 

functions by transporting oxygen, nutrients and hormones to the body's cells and by removing waste products 

and carbon dioxide produced by the cells (Nair, 2017; Alimov, 2023). Cardiovascular diseases occur when 

impairments in the functions of the cardiovascular system affect blood circulation. Cardiovascular diseases are 

defined as disorders of the heart, blood vessels and blood function. These diseases can include vascular 

narrowing, blockage, weakening or widening, heart failure and stroke. According to the World Health 

Organization, cardiovascular diseases are the leading cause of death worldwide (WHO, 2017; Gaidai et al., 

2023). Although statistics on cardiovascular disease provide data, a better understanding of the cardiovascular 

system is important.  

Mathematical modeling and simulation of blood flow aim to better understand the conditions that influence 

the functioning of the system when cardiovascular diseases occur. The emergence of more powerful computers 

with improved image processing and geometry extraction techniques and the development of better algorithms 

have increased the demand for blood flow modeling among researchers (Formaggia et al., 2009; Taylor et al., 

2023). 

Mathematical models of blood flow can be divided into Newtonian models and non-Newtonian models. 

Newtonian models are models that neglect shear analysis and viscoelastic effects and can be applied to large 

vessels. Non-Newtonian models are those that take viscoelastic effects into account and can be applied to veins 

with a diameter of less than 1 mm. The non-Newtonian behavior makes the viscosity dependent on the shear 
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rate, which increases the computational cost, so Newtonian models are usually used for simplicity. Therefore, 

models that exhibit Newtonian flow, such as the NSE, are often preferred to model blood flow in the 

cardiovascular system. The NSE is considered an important tool in understanding the movement of blood 

between vessels and its effects on the overall health of the system. The most general forms of these 

incompressible equations governing blood flow are as follows: 

 𝑢𝑡 + (𝑢. ∇)𝑢 − 𝜈∆𝑢 + ∇𝑝 = 𝑓,             (0, 𝑇] × Ω 

                                                 ∇. 𝑢 = 0              (0, 𝑇] × Ω         
                            𝑢(𝑥, 0) = 𝑢0(𝑥)      𝑥 ∈ Ω  

                                                                                                    𝑢 = 0               Γ𝑊𝑎𝑙𝑙                                                  (1) 

                                𝑛. 𝜎 = 0                Γ𝑜𝑢𝑡 

                                     𝑢 = 𝑐                Γİ𝑛  .  

Here 𝑢 represents the fluid velocity, 𝑝 is the pressure, 𝑓 is the force per unit mass of the fluid, 𝜈 the viscosity 

and 𝜎 the Cauchy stress tensor. Suppose that Ω represents a fluid domain and the boundaries of Ω consist of 

two distinct boundaries, Γİ𝑛 and Γ𝑜𝑢𝑡, with Γ𝑊𝑎𝑙𝑙 representing the inner wall of the artery. The boundary of 

the section of the artery under consideration's input flow is denoted by Γİ𝑛, and the border of its outflow flow 

by Γ𝑜𝑢𝑡. Neumann boundary condition on Γ𝑜𝑢𝑡, no-slip Dirichlet boundary condition on Γ𝑊𝑎𝑙𝑙, and Dirichlet 

boundary condition on Γİ𝑛 are all taken into consideration (Formaggia et al., 2009). Also, the function 𝑐, which 

stabilizes the input flow, is set as a parabolic function for the simulations. 

Numerical solutions of these equations are used to understand the dynamics of blood flow, pressure changes 

in vessel walls and flow velocities (Quarteroni et al., 2002; Selmi et al., 2019; Ali et al., 2024). Besides the 

NSE, the most common method for the numerical solution of many partial differential equations is the finite 

element method, which involves dividing the domain into elements and approximating the solution as a linear 

combination of basis functions on these elements. In this formulation, large variations in some fluid properties 

can adversely affect the stability of numerical methods. Therefore, the artificial viscosity method is a technique 

used to provide stabilization in such cases. If the parameter of the method is chosen small, there is less artificial 

viscosity effect and more accurate results can be obtained with a better selection. On the other hand, if the 

parameter of the method is chosen larger, more artificial viscosity effects occur in the flow and the solution 

becomes more stable, but at the same time, more physical flow details may be lost. Therefore, a balanced 

selection of the parameter of the method is crucial to achieve accurate results. By stabilizing the fluid structure, 

artificial viscosity controls fluctuations and increases the stability of the numerical solution. Artificial viscosity 

techniques help CFD simulations produce more accurate results and predictions closer to real-world fluid 

dynamics (Manzari, 1999; Ma et al. 2022). In their work, Margolin and Lloyd-Ronning (2023) summarized 

the history of artificial viscosity, from its origins to current research and new directions for improvement. The 

work of Cook and Cabot (2005) has a similar structure. 

Together with solutions of velocity, pressure fields and streamlines, we can calculate the wall shear stress 

(WSS=𝜇(𝑑𝑢/𝑑𝑦)) by analyzing the solution data. These data provide extremely valuable clues for 

understanding blood flow phenomena. Research shows that a continuous flow or oscillating shear stress can 

be signs of vessel anomalies, causing continuous damage to endothelial cells (Fisher et al., 2001; Chiu & 

Chien, 2011). However, measuring these stress values in a real patient can be quite challenging. This is where 

mathematical models and simulations can help us better understand real-world situations (Velten et al. 2024). 

These models can be integrated into the diagnosis and treatment of patients, thus contributing significantly to 

clinical practice and disease prognosis (Reneman & Hoeks, 2008; Formaggia et al., 2010; Arjmandi-Tash et 

al., 2011). 

In this paper, a fully discretized scheme of NSE with artificial viscosity is introduced and numerical analysis 

and experiments are presented. In this context, after the necessary preliminaries in section 2, the stability and 

error analysis of the proposed scheme are presented in section 3. In section 4, numerical tests are performed to 

verify the accuracy of the theoretical results and simulations of cardiovascular conditions such as 

atherosclerosis and aneurysm are presented. In section 5, the benefits of the obtained results and future 

directions are discussed. 
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2. MATHEMATICAL PRELIMINARIES AND MATHEMATICAL MODELING 

Since the FEM is used, the standard function spaces for the velocity field and pressure spaces are selected as 

follows (Adams, 1975): 

𝑋 = 𝐻0
1(Ω), and 𝑄 = 𝐿0

2 (Ω). 

Let 𝑉 be a weak subspace of 𝑋, then 

𝑉 ≔ {𝑣 ∈ 𝑋, (∇. 𝑞, 𝑣) = 0, ∀𝑞 ∈ 𝑄}. 

The dual norm of a function is given by 

‖𝑓‖−1: = sup
𝑣∈𝐻0

1(Ω)

(𝑓, 𝑣)

‖∇𝑣‖
. 

For (𝑣, 𝑞) ∈ (𝑋, 𝑄), the weak form of the NSE to be used is given below: 

(𝑢𝑡 , 𝑣) + 𝜈(∇𝑢, ∇𝑣) + 𝑏(𝑢, 𝑢, 𝑣) − (𝑝, ∇. 𝑣) + (∇. 𝑢, 𝑞) = (𝑓, 𝑣).        (2) 

The nonlinear term in equation (2) is expressed in the following skew-symmetric trilinear forms: 

𝑏(𝑢, 𝑣, 𝑤): =
1

2
((𝑢. ∇)𝑣, 𝑤) −

1

2
((𝑢. ∇)𝑤, 𝑣).                                                                                                 (3) 

Below are some properties of 𝑏 that will be used later in error analysis. 

Lemma 2.1. For 𝑢, 𝑣, 𝑤 ∈  𝑋, 𝑏(𝑢, 𝑣, 𝑤) satisfies the following bounds: 

|𝑏(𝑢, 𝑣, 𝑤)| ≤ 𝐶0(Ω)‖∇𝑢‖‖∇𝑣‖ ‖∇𝑤‖,                                                                                                           (4) 

|𝑏(𝑢, 𝑣, 𝑤)| ≤ 𝐶0(Ω)‖𝑢‖
1

2‖∇𝑢‖
1

2‖∇𝑣‖ ‖∇𝑤‖. 

Proof: The first inequality is obtained by taking the absolute value of the skew-symmetric trilinear form and 

making use of Cauchy-Schwarz and Poincare-Friedrich inequalities and similar arguments work for the second 

inequality too (Layton, 2008). 

The application of the finite element method for spatial discretization requires the construction of a 

triangulation 𝜋ℎ of the domain 𝛺 with maximum diameter ℎ. Finite element spaces as given follows: 

𝑋ℎ ⊂ 𝑋 and 𝑄ℎ ⊂ 𝑄. 

Lemma 2.2. It is assumed that the appropriate finite element spaces of velocity and pressure spaces satisfy the 

discrete inf-sup condition, i.e. the Ladyzenskaya-Brezzi-Babuska (LBB) condition. For example, let 𝛽 be a 

constant, then 

inf
𝑣∈𝑋ℎ

sup
𝑞∈𝑄ℎ

(𝑞ℎ,∇.𝑣ℎ)

‖∇𝑣ℎ‖‖𝑞ℎ‖
≥ 𝛽 > 0. 

 

We introduce the discretely divergence-free subspace 𝑉ℎ ⊂ 𝑋ℎ given by 

 

𝑉ℎ ≔ {𝑣ℎ ∈ 𝑋ℎ , (∇. 𝑞ℎ, 𝑣ℎ) = 0, ∀𝑞ℎ ∈ 𝑄ℎ}. 

 

Under the inf-sup condition, 𝑉ℎ is a nonempty, closed subspace of 𝑋ℎ and the formulation in 𝑋ℎ is equivalent 

to 𝑉ℎ (John, 2004). 

https://doi.org/10.54287/gujsa.1485920
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It is also assumed that the velocity and pressure finite element spaces satisfy the following well-known 

approximation properties (Layton, 2008): 

inf
𝑣∈𝒳ℎ

(ǁ𝑢 − 𝑣ℎǁ + ℎǁ∇(𝑢 − 𝑣ℎ)ǁ) ≤ 𝐶ℎ𝑘+1ǁ𝑢ǁ𝑘+1  ,       𝑢 ∈ 𝐻𝑘+1(Ω),                                                          (4)                                                                   

inf
𝑞∈𝑄ℎ

ǁ𝑝 − 𝑞ℎǁ ≤ 𝐶ℎ𝑠+1ǁ𝑝ǁ𝑠+1  ,                                              𝑝 ∈ 𝐻𝑠+1(Ω). 

for (𝑣ℎ, 𝑞ℎ) ∈ (𝑋ℎ , 𝑄ℎ).  

Discrete Gronwall’s inequality will be used in the error analysis (Girault & Raviart, 1979). 

Lemma 2.3. (Discrete Gronwall’s inequality) For 𝑛 ≥  0 and 𝑎𝑛,  𝑏𝑛,  𝑐𝑛, 𝑑𝑛, 𝑒𝑛 be non-negative integers. If 

𝑎𝑁+1 + ∆𝑡 ∑ 𝑏𝑛

𝑁+1

𝑛=0

≤ ∆𝑡 ∑ 𝑎𝑛𝑑𝑛

𝑁+1

𝑛=0

+ ∆𝑡 ∑ 𝑐𝑛

𝑁+1

𝑛=0

+ 𝐻,      𝑁 ≥ 0 

holds, then 

𝑎𝑁+1 + ∆𝑡 ∑ 𝑏𝑛

𝑁+1

𝑛=0

≤ 𝑒𝑥𝑝 (∆𝑡 ∑
𝑒𝑛

1 − 𝑘𝑒𝑛

𝑁+1

𝑛=0

) (∆𝑡 ∑ 𝑐𝑛

𝑁+1

𝑛=0

+ 𝐻) ,     𝑁 ≥ 0 

for 𝑘𝑒𝑛 < 1. 

The fully discretized finite element approximation of the model is given below. 

Algorithm 2.1: Given 𝑢𝑛
ℎ, find 𝑢𝑛+1

ℎ ∈ 𝑋ℎsatisfying: 

(
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

∆𝑡
, 𝑣ℎ) + 𝜈(∇𝑢𝑛+1

ℎ , ∇𝑣ℎ) + 𝑏(𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ , 𝑣ℎ) − (𝑝𝑛+1
ℎ , ∇. 𝑣ℎ) + 𝛼(∇𝑢𝑛+1

ℎ , ∇𝑣ℎ) 

= (𝑓𝑛+1, 𝑣ℎ),                            (5) 

(∇. 𝑢𝑛+1
ℎ , 𝑞ℎ) = 0, 

where 𝛼(∇𝑢𝑛+1
ℎ , ∇𝑣ℎ) is the stabilization term that will increase the stability of the solution, representing the 

artificial viscosity, and 𝛼 is the artificial viscosity parameter. 

3. ANALYSIS OF THE SCHEME 

This section focuses on the numerical analysis of Algorithm 2.1. In this context, the stability of the fully 

discrete approximation scheme is first analyzed. Then, the error analysis of the developed algorithm is 

performed. 

3.1. Stability Analysis 

Theorem 3.1: Let 𝑓 ∈ 𝐿2(0, 𝑇; 𝐻−1(Ω)). (5) is unconditionally stable and the solution found satisfies the 

following equation for any ℎ > 0 and 𝑢ℎ , 𝑣ℎ ∈ 𝑋ℎ; 𝑝ℎ , 𝑞ℎ ∈ 𝑄ℎ: 

‖𝑢𝑁
ℎ ‖

2
+ ∑ ∆𝑡 (

𝜈

2
+ 𝛼) ‖∇𝑢𝑛+1

ℎ ‖
2

≤ ‖𝑢0
ℎ‖

2
+ ∑

∆𝑡

𝜈
‖𝑓𝑛+1‖−1

2

𝑁−1

𝑛=0

𝑁−1

𝑛=0

 .                                                                      

Proof: Given the schemes (5) on 𝑋ℎ, the equivalent formulation on 𝑉ℎ is 

https://doi.org/10.54287/gujsa.1485920
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(
𝑢𝑛+1

ℎ −𝑢𝑛
ℎ

∆𝑡
, 𝑣ℎ) + 𝜈(∇𝑢𝑛+1

ℎ , ∇𝑣ℎ) + 𝑏(𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ , 𝑣ℎ) + 𝛼(∇𝑢𝑛+1
ℎ , ∇𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ).                               (7) 

If 𝑣ℎ = 𝑢𝑛+1
ℎ  is taken in (7), since 𝑏(𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ ) = 0 from (4), the equation becomes as follows: 

(
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

∆𝑡
, 𝑢𝑛+1

ℎ ) + 𝜈(∇𝑢𝑛+1
ℎ , ∇𝑢𝑛+1

ℎ ) + 𝛼(∇𝑢𝑛+1
ℎ , ∇𝑢𝑛+1

ℎ ) = (𝑓𝑛+1, 𝑢𝑛+1
ℎ ). 

Here, we first multiply both sides of the equation by ∆𝑡 and then rearrange the terms, 

‖𝑢𝑛+1
ℎ ‖

2
+ ∆𝑡(𝜈 + 𝛼)‖∇𝑢𝑛+1

ℎ ‖
2

= (𝑢𝑛
ℎ , 𝑢𝑛+1

ℎ ) + ∆𝑡(𝑓𝑛+1, 𝑢𝑛+1
ℎ )                                                                 (8) 

The terms on the right-hand side of the equation are analyzed separately. Using the Cauchy-Schwarz and 

Young’s inequalities for the first term on the right, the following bound is obtained: 

(𝑢𝑛
ℎ , 𝑢𝑛+1

ℎ ) ≤ ‖𝑢𝑛
ℎ‖‖𝑢𝑛+1

ℎ ‖ ≤
1

2
‖𝑢𝑛

ℎ‖
2

+
1

2
‖𝑢𝑛+1

ℎ ‖
2

. 

For the second term, the definition of dual norm is applied first, followed by Cauchy-Schwarz and Young 

inequalities respectively: 

∆𝑡(𝑓𝑛+1, 𝑢𝑛+1
ℎ ) =

∆𝑡(𝑓𝑛+1, 𝑢𝑛+1
ℎ )

‖∇𝑢𝑛+1
ℎ ‖

‖∇𝑢𝑛+1
ℎ ‖ ≤ ∆𝑡‖𝑓𝑛+1‖−1‖∇𝑢𝑛+1

ℎ ‖      

≤
∆𝑡𝜈

2
‖∇𝑢𝑛+1

ℎ ‖
2

+
1

2𝜈
∆𝑡‖𝑓𝑛+1‖−1

2 . 

Substituting the calculated terms in equation (8) yields the following inequality 

1

2
‖𝑢𝑛+1

ℎ ‖
2

+ ∆𝑡 (
𝜈

2
+ 𝛼) ‖∇𝑢𝑛+1

ℎ ‖
2

≤
1

2
‖𝑢𝑛

ℎ‖
2

+
∆𝑡

2𝜈
‖𝑓𝑛+1‖−1

2 . 

If we take the sum for 𝑛 = 0,1, . . . , 𝑁 − 1, we get  

‖𝑢𝑁
ℎ ‖

2
+ ∑ ∆𝑡 (

𝜈

2
+ 𝛼) ‖∇𝑢𝑛+1

ℎ ‖
2

≤ ‖𝑢0
ℎ‖

2
+ ∑

∆𝑡

𝜈
‖𝑓𝑛+1‖−1

2

𝑁−1

𝑛=0

𝑁−1

𝑛=0

 

Then the inequality in Theorem 3.1 is obtained.  

3.2. Error Analysis 

In addition to the discrete inf-sup condition, the approximations in Lemma (2.2) are assumed to be valid for 

the selection of velocity-pressure spaces. First, we state the regularity assumptions required for NSE solutions. 

𝑢 ∈ 𝐿4 (0, 𝑇; 𝐻𝑘+1(Ω)) ∩ 𝐿4(0, 𝑇; 𝐿2(Ω)) ∩ 𝐿∞(0, 𝑇; 𝐿2(Ω)), 

𝑝 ∈ 𝐿2(0, 𝑇; 𝐻𝑠+1(Ω)), 

𝑢𝑡 ∈ 𝐿∞(0, 𝑇; 𝐿2(Ω)). 

Theorem 3.2: Let (𝑢, 𝑝) be a solution of the NSE (1). Then the error of (5) defined as 𝑒𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛+1
ℎ  

satisfies the following inequality: 

https://doi.org/10.54287/gujsa.1485920
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‖𝑒𝑁
ℎ‖

2
+ ∆𝑡(𝜈 + 𝛼) ∑‖∇𝑒𝑛+1

ℎ ‖
2

𝑁−1

𝑛=0

 

≤ 𝑒𝑥𝑝( 𝐶𝜈−3∆𝑡‖∇𝑢𝑛+1‖4) [𝐶𝜈−1∆𝑡 ∑ ((∆𝑡)−1ℎ2𝑘+2 ∫ ‖𝑢𝑡‖𝑘+1
2 𝑑𝑡

𝑡𝑛+1

𝑡𝑛
+ ℎ2𝑘‖∇𝑢𝑛+1‖2‖𝑢‖𝑘+1

2 +𝑁−1
𝑛=0

ℎ2𝑘‖∇𝑢𝑛+1
ℎ ‖

2
‖𝑢‖𝑘+1

2 + ℎ2𝑘‖𝑝𝑛+1‖𝑘
2 + (∆𝑡)2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛
+ (∆𝑡)3 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡(‖∇𝑢𝑛+1‖2 +

𝑡𝑛+1

𝑡𝑛

‖∇𝑢‖2) + (∆𝑡)3 ∫ ‖𝑝𝑡𝑡‖2𝑑𝑡
𝑡𝑛+1

𝑡𝑛
+ (∆𝑡)3 ∫ ‖𝑓𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛
) + 𝐶𝜈∆𝑡ℎ2𝑘‖𝑢‖𝑘+1

2 + 𝐶𝜈(∆𝑡)4‖∇𝑢𝑡𝑡‖2 +

𝛼∆𝑡(ℎ2𝑘‖𝑢‖𝑘+1
2 + ‖∇𝑢𝑛+1‖2)]. 

Proof: The difference between the true solution and the approximate solution is estimated to obtain the 

minimum error. The equation  

(
𝑢𝑛+1 − 𝑢𝑛

∆𝑡
, 𝑣ℎ) + 𝜈(∇𝑢𝑛+1, ∇𝑣ℎ) + 𝑏(𝑢𝑛+1, 𝑢𝑛+1, 𝑣ℎ) − (𝑝𝑛+1, ∇. 𝑣ℎ) + (∇. 𝑢𝑛+1, 𝑞ℎ) + 𝛼(∇𝑢𝑛+1, ∇𝑣ℎ)

− 𝛼(∇𝑢𝑛+1, ∇𝑣ℎ) = (𝑓𝑛+1, 𝑣ℎ)                                                                                                        (9) 

is obtained by writing 𝑡 → 𝑡𝑛+1 in the true solution of (1) and adding and subtracting the 𝛼(∇𝑢𝑛+1, ∇𝑣ℎ) term. 

Subtract (5) from (9), 

(
𝑒𝑛+1 − 𝑒𝑛

∆𝑡
, 𝑣ℎ) + 𝜈(∇𝑒𝑛+1, ∇𝑣ℎ) + 𝑏(𝑢𝑛+1, 𝑢𝑛+1, 𝑣ℎ) − 𝑏(𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ , 𝑣ℎ) − (𝑝𝑛+1 − 𝑞ℎ, ∇. 𝑣ℎ)

+ 𝛼(∇𝑒𝑛+1, ∇𝑣ℎ) = 𝜏(𝑢𝑛, 𝑣ℎ)                                                                                                        (10) 

where 𝑒𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛+1
ℎ . The nonlinear terms on the right side of (10) can be arranged as follows: 

𝑏(𝑢𝑛+1, 𝑢𝑛+1, 𝑣ℎ) − 𝑏(𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ , 𝑣ℎ) 

=  𝑏(𝑢𝑛+1, 𝑢𝑛+1, 𝑣ℎ) − 𝑏(𝑢𝑛+1
ℎ , 𝑢𝑛+1, 𝑣ℎ) + 𝑏(𝑢𝑛+1

ℎ , 𝑢𝑛+1, 𝑣ℎ) − 𝑏(𝑢𝑛+1
ℎ , 𝑢𝑛+1

ℎ , 𝑣ℎ) 

= 𝑏(𝑒𝑛+1, 𝑢𝑛+1, 𝑣ℎ) − 𝑏(𝑢𝑛+1
ℎ , 𝑒𝑛+1, 𝑣ℎ). 

The error can be decomposed as 

𝑒𝑛+1 = 𝑢𝑛+1 − �̃�𝑛+1 + �̃�𝑛+1 − 𝑢𝑛+1
ℎ = 𝜇𝑛+1 − ∅𝑛+1

ℎ , 

where �̃�𝑛+1 is the arbitrary interpolant. Choosing the test function 𝑣ℎ = ∅𝑛+1
ℎ  yields 

   (
∅𝑛+1

ℎ − ∅𝑛
ℎ

∆𝑡
, ∅𝑛+1

ℎ ) + 𝜈(∇∅𝑛+1
ℎ , ∇∅𝑛+1

ℎ ) + 𝑏(∅𝑛+1
ℎ , 𝑢𝑛+1, ∅𝑛+1

ℎ ) + (𝑝𝑛+1 − 𝑞ℎ, ∇. ∅𝑛+1
ℎ ) 

+𝛼(∇∅𝑛+1
ℎ , ∇∅𝑛+1

ℎ ) 

= (
𝜇𝑛+1 − 𝜇𝑛

∆𝑡
, ∅𝑛+1

ℎ ) + 𝜈(∇𝜇𝑛+1, ∇∅𝑛+1
ℎ ) + 𝑏(𝜇𝑛+1, 𝑢𝑛+1, ∅𝑛+1

ℎ ) + 𝑏(𝑢𝑛+1
ℎ , 𝜇𝑛+1, ∅𝑛+1

ℎ ) 

+𝛼(∇𝜇𝑛+1, ∇∅𝑛+1
ℎ ) + 𝜏(𝑢𝑛 , ∇∅𝑛+1

ℎ ). 

Here,  
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𝜏(𝑢𝑛, ∇∅𝑛+1
ℎ ) = (

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
− 𝑢𝑡 , ∅𝑛+1

ℎ ) − (𝑝𝑛+1 − 𝑝, ∇. ∅𝑛+1
ℎ ) + (𝑓 − 𝑓𝑛+1, ∅𝑛+1

ℎ )

+ 𝜈(∇(𝑢𝑛+1 − 𝑢𝑛), ∇∅𝑛+1
ℎ ) + 𝑏(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1, ∅𝑛+1

ℎ ) + 𝑏(𝑢, 𝑢𝑛+1 − 𝑢, ∅𝑛+1
ℎ )

+ 𝛼 (∇𝑢𝑛+1, ∇∅𝑛+1
ℎ

). 

Using the equation 𝑎2 − 𝑎𝑏 =
𝑎2+(𝑎−𝑏)2−𝑏2

2
 , the first term is organized as follows: 

(∅𝑛+1
ℎ − ∅𝑛

ℎ , ∅𝑛+1
ℎ ) =

1

2
(‖∅𝑛+1

ℎ ‖
2

+ ‖∅𝑛+1
ℎ − ∅𝑛

ℎ‖
2

− ‖∅𝑛
ℎ‖

2
). 

Accordingly, 

1

2∆𝑡
(‖∅𝑛+1

ℎ ‖
2

+ ‖∅𝑛+1
ℎ − ∅𝑛

ℎ‖
2

− ‖∅𝑛
ℎ‖

2
) + 𝜈‖∇∅𝑛+1

ℎ ‖
2

+ 𝛼‖∇∅𝑛+1
ℎ ‖

2
 

= (
𝜇𝑛+1 − 𝜇𝑛

∆𝑡
, ∅𝑛+1

ℎ ) + 𝜈(∇𝜇𝑛+1, ∇∅𝑛+1
ℎ ) + 𝑏(𝜇𝑛+1, 𝑢𝑛+1, ∅𝑛+1

ℎ ) + 𝑏(𝑢𝑛+1
ℎ , 𝜇𝑛+1, ∅𝑛+1

ℎ ) 

−𝑏(∅𝑛+1
ℎ , 𝑢𝑛+1, ∅𝑛+1

ℎ ) − (𝑝𝑛+1 − 𝑞ℎ, ∇. ∅𝑛+1
ℎ ) + 𝛼(∇𝜇𝑛+1, ∇∅𝑛+1

ℎ ) + 𝜏(𝑢𝑛, ∇∅𝑛+1
ℎ ) 

= 𝑇1 + 𝑇2 + ⋯ + 𝑇8.                       (11) 

Here, the terms obtained on the right side of the equation are named  𝑇1, 𝑇2, … , 𝑇8 respectively. Each term will 

be analyzed separately, and necessary adjustments will be made. 

𝑇1 is bounded by Cauchy-Schwarz, and Young's inequalities: 

(
𝜇𝑛+1 − 𝜇𝑛

∆𝑡
, ∅𝑛+1

ℎ ) ≤
1

∆𝑡
‖ ∫ 𝜇𝑡𝑑𝑡

𝑡𝑛+1

𝑡𝑛

‖ ‖∅𝑛+1
ℎ ‖ ≤

𝐶𝜈−1

∆𝑡
∫ ‖𝜇𝑡‖2𝑑𝑡 +

𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
. 

𝑇2 is bounded by Young's inequalities: 

𝜈(∇𝜇𝑛+1, ∇∅𝑛+1
ℎ ) ≤ 𝐶𝜈‖∇𝜇𝑛+1‖2 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2

. 

For 𝑇3, 𝑇4, and 𝑇5 first apply Lemma 2.2, then Young's inequality to get: 

𝑏(𝜇𝑛+1, 𝑢𝑛+1, ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1‖∇𝑢𝑛+1‖2‖∇𝜇𝑛+1‖2 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2
, 

𝑏(𝑢𝑛+1
ℎ , 𝜇𝑛+1, ∅𝑛+1

ℎ ) ≤ 𝐶𝜈−1‖∇𝑢𝑛+1
ℎ ‖

2
‖∇𝜇𝑛+1‖2 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2
, 

𝑏(∅𝑛+1
ℎ , 𝑢𝑛+1, ∅𝑛+1

ℎ ) ≤ 𝐶𝜈−3‖∅𝑛+1
ℎ ‖

2
‖∇𝑢𝑛+1‖4 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2
 . 

Young's inequality is applied for 𝑇6, 𝑇7, and 𝑇8 

(𝑝𝑛+1 − 𝑞ℎ, ∇. ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1‖𝑝𝑛+1 − 𝑞ℎ‖

2
+

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2
, 

𝛼(∇𝜇𝑛+1, ∇∅𝑛+1
ℎ ) ≤ 𝐶𝛼‖∇𝜇𝑛+1‖2 +

𝛼

4
‖∇∅𝑛+1

ℎ ‖
2

. 

The terms given in equation 𝑇8=𝜏(𝑢𝑛, ∇∅𝑛+1
ℎ ) are named 𝑆1, 𝑆2, … , 𝑆7 and analyzed separately. 
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𝜏(𝑢𝑛, ∇∅𝑛+1
ℎ ) = (

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
− 𝑢𝑡 , ∅𝑛+1

ℎ ) + 𝜈(∇(𝑢𝑛+1 − 𝑢), ∇∅𝑛+1
ℎ ) + 𝑏(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1, ∅𝑛+1

ℎ )

+ 𝑏(𝑢, 𝑢𝑛+1 − 𝑢, ∅𝑛+1
ℎ ) − (𝑝𝑛+1 − 𝑝, ∇. ∅𝑛+1

ℎ ) + (𝑓 − 𝑓𝑛+1, ∅𝑛+1
ℎ ) 

                           = 𝑆1 + 𝑆2 + ⋯ + 𝑆7. 

Taylor Series expansion and Young's inequality are applied for these terms:  

(
𝑢𝑛+1 − 𝑢𝑛

∆𝑡
− 𝑢𝑡 , ∅𝑛+1

ℎ ) ≤ 𝐶𝜈−1(∆𝑡)2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡 +
𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

𝜈(∇(𝑢𝑛+1 − 𝑢), ∇∅𝑛+1
ℎ ) ≤ 𝐶𝜈‖∇(𝑢𝑛+1 − 𝑢)‖2 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2

≤ 𝐶𝜈(∆𝑡3) ∫ ‖∇𝑢𝑡𝑡‖2𝑑𝑡 +
𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

𝑏(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1, ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1(∆𝑡)3‖∇𝑢𝑛+1‖2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡 +

𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

𝑏(𝑢, 𝑢𝑛+1 − 𝑢, ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1(∆𝑡)3‖∇𝑢‖2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡 +

𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

(𝑝𝑛+1 − 𝑝, ∇. ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1(∆𝑡)3 ∫ ‖𝑝𝑡𝑡‖2𝑑𝑡 +

𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

(𝑓 − 𝑓𝑛+1, ∅𝑛+1
ℎ ) ≤ 𝐶𝜈−1‖𝑓 − 𝑓𝑛+1‖2 +

𝜈

24
‖∇∅𝑛+1

ℎ ‖
2

≤ 𝐶𝜈−1(∆𝑡)3 ∫ ‖𝑓𝑡𝑡‖2𝑑𝑡 +
𝜈

24

𝑡𝑛+1

𝑡𝑛

‖∇∅𝑛+1
ℎ ‖

2
, 

𝛼(∇𝑢𝑛+1, ∇∅𝑛+1
ℎ ) ≤ 𝐶𝛼‖∇𝑢𝑛+1‖2 +

𝛼

4
‖∇∅𝑛+1

ℎ ‖
2
. 

Substituting all the terms obtained in (11) and subtracting the non-negative term on the left side of the equation 

gives 

1

2∆𝑡
‖∅𝑛+1

ℎ ‖
2

−
1

2∆𝑡
‖∅𝑛

ℎ‖
2

+
𝜈

2
‖∇∅𝑛+1

ℎ ‖
2

+
𝛼

2
‖∇∅𝑛+1

ℎ ‖
2

≤ 𝐶𝜈−1 [(∆𝑡)−1 ∫ ‖𝜇𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ ‖∇𝑢𝑛+1‖2‖∇𝜇𝑛+1‖2+‖∇𝑢𝑛+1
ℎ ‖

2
‖∇𝜇𝑛+1‖2

+ ‖𝑝𝑛+1 − 𝑞ℎ‖
2

+ (∆𝑡)2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡(‖∇𝑢𝑛+1‖2 + ‖∇𝑢‖2)

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑝𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑓𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

] +  𝐶𝜈‖∇𝜇𝑛+1‖2 +  𝐶𝜈−3‖∅𝑛+1
ℎ ‖

2
‖∇𝑢𝑛+1‖4

+  𝐶𝛼(‖∇𝜇𝑛+1‖2 + ‖∇𝑢𝑛+1‖2) + 𝐶𝜈(∆𝑡3) ∫ ‖∇𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛
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Multiplying inequality by 2∆t and applying Lemma 2.2 yields the following: 

‖∅𝑛+1
ℎ ‖

2
− ‖∅𝑛

ℎ‖
2

+ ∆𝑡(𝜈 + 𝛼)‖∇∅𝑛+1
ℎ ‖

2

≤ 𝐶𝜈−1∆𝑡 [(∆𝑡)−1ℎ
2𝑘+2 ∫ ‖𝑢𝑡‖𝑘+1

2 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ ℎ2𝑘‖∇𝑢𝑛+1‖2‖𝑢‖𝑘+1
2 + ℎ2𝑘‖∇𝑢𝑛+1

ℎ ‖
2

‖𝑢‖𝑘+1
2

+ ℎ2𝑘‖𝑝𝑛+1‖𝑘
2 + (∆𝑡)2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡(‖∇𝑢𝑛+1‖2 + ‖∇𝑢‖2)

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑝𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑓𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

] + 𝐶𝜈∆𝑡ℎ2𝑘‖𝑢‖𝑘+1
2

+  𝐶𝜈−3∆𝑡‖∅𝑛+1
ℎ ‖

2
‖∇𝑢𝑛+1‖4 + 𝛼∆𝑡(ℎ2𝑘‖𝑢‖𝑘+1

2 + ‖∇𝑢𝑛+1‖2)

+ 𝐶𝜈(∆𝑡3)∆𝑡 ∫ ‖∇𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

          

If the sum is taken for 𝑛 = 0,1, … , 𝑁 − 1, we obtain 

‖∅𝑁
ℎ ‖

2
+ ∆𝑡(𝜈 + 𝛼) ∑‖∇∅𝑛+1

ℎ ‖
2

𝑁−1

𝑛=0

≤ [𝐶𝜈−1∆𝑡 ∑ ((∆𝑡)−1ℎ
2𝑘+2 ∫ ‖𝑢𝑡‖𝑘+1

2 𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ ℎ2𝑘‖∇𝑢𝑛+1‖2‖𝑢‖𝑘+1
2

𝑁−1

𝑛=0

+ ℎ2𝑘‖∇𝑢𝑛+1
ℎ ‖

2
‖𝑢‖𝑘+1

2 + ℎ2𝑘‖𝑝𝑛+1‖𝑘
2 + (∆𝑡)2 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑢𝑡𝑡‖2𝑑𝑡(‖∇𝑢𝑛+1‖2 + ‖∇𝑢‖2)

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑝𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

+ (∆𝑡)3 ∫ ‖𝑓𝑡𝑡‖2𝑑𝑡

𝑡𝑛+1

𝑡𝑛

)

+ 𝐶𝜈∆𝑡ℎ2𝑘‖𝑢‖𝑘+1
2 + 𝐶𝜈(∆𝑡)4‖∇𝑢𝑡𝑡‖2

+ 𝛼∆𝑡(ℎ2𝑘‖𝑢‖𝑘+1
2 + ‖∇𝑢𝑛+1‖2)] 𝑒𝑥𝑝( 𝐶𝜈−3∆𝑡‖∇𝑢𝑛+1‖4) 

Finally, Theorem 3.2 is obtained by applying the triangle inequality ‖𝑒𝑛+1‖ = ‖𝜇𝑛+1 − ∅𝑛+1
ℎ ‖ ≤ ‖𝜇𝑛+1‖ +

‖∅𝑛+1
ℎ ‖ to the error terms using approximation properties. 

Result 3.1: The error approximation obtained in Theorem 3.2 is an optimal error approximation. For example, 

if 𝑘 = 2, the order of the error according to the polynomial choices (𝑃2, 𝑃1) is 2. It is also clear from the 

statement of the theorem that 𝑢 → 𝑢ℎ when ℎ, 𝛥𝑡, 𝛼 → 0. 

4. NUMERICAL SIMULATION 

In this section, some simulations are presented to verify the theoretical results. Firstly, a quantitative numerical 

test is carried out to reveal the convergence behavior of the scheme in (5) and to verify the result obtained in 

Theorem 1. In qualitative experiments, blood and body temperature are assumed to be constant. For the 

understanding of blood flow, blood is assumed to be a Newtonian fluid.  Therefore, blood density ρ=1060 

kg/m3 and blood viscosity ν=0.0035 mPas were chosen (Kleinstreuer, 2016). A no-slip boundary condition is 

applied to the artery walls. Also, to determine the blood flow velocity, 𝑐 = 𝜈𝑅𝑒/𝜌𝑙 is taken as the inflow 
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velocity, where 𝑙 is the diameter of the lumen. The value of 𝑐 is important to estimate the velocity at a specific 

point of blood flow or to analyze the overall performance of blood vessels. In this paper, all simulations were 

performed using FreeFem++ (Hecht., 2012), a publicly licensed finite element software package. 

4.1. Convergence Study 

First, the order of the spatial error is analyzed. Since the Taylor-Hood finite element pair mentioned in Result 

1 is considered here, the expected order of the error is 2. The model problem computational domain is 𝛺 =
(0,1)2. The computational domain is triangulated with various coarse mesh resolutions and the mesh width is 

taken from ℎ = 2−1 to ℎ = 2−6. These choices were sufficient to verify the convergence rates. The converged 

solution was computed in the time interval [0, 1]. To minimize the effect of temporal error and to fully reveal 

the spatial effect on the error, ∆𝑡 = 0,000625 was taken. The 𝐻1 norms of the error for 𝜈 =  1 and 𝛼 =  0.01 

are evaluated. These values were optimally chosen to minimize the error rates in the newly derived model. For 

this test problem, the analytical velocity and pressure variables are considered as follows: 

𝑢 = [
𝑒𝑡𝑐𝑜𝑠(𝑦)

𝑒𝑡𝑠𝑖𝑛(𝑥)
] , 𝑝 = (𝑥 − 𝑦)(1 +  𝑡). 

These values are substituted in (1) and the function 𝑓 is obtained. The results of the numerical solution are 

given in Table 1 for different values of ℎ. 

Table 1. Spatial velocity errors and rates of convergence 

𝒉 ‖𝛁(𝒖 − 𝒖𝒉)‖ Rate 

2−1 6,46611e-4 - 

2−2 1,57286e-4 2,03 

2−3 3,85477e-5 2,02 

2−4 9,56907e-6 2,01 

2−5 2,38566e-6 2,00 

2−6 5,96731e-7 2,00 

As can be seen from this table, the degree of convergence in the spatial sense is 2, which is the expected 

optimal degree of convergence. Similarly, in order to find the degree of temporal error, a fixed mesh size of 

ℎ = 2−6 was taken in the same region using the same true solution functions and the right-hand side. ∆𝑡 values 

are halved iteratively in time interval [0, 1] to obtain a rate. The results are presented in Table 2. 

Table 2. Temporal velocity errors and rates of convergence 

∆𝒕 ‖𝛁(𝒖 − 𝒖𝒉)‖ Rate 

2−1 1,98947e-1 - 

2−2 1,70164e-2 3,55 

2−3 2,91767e-3 2,54 

2−4 2,17324e-4 1,98 

The effect of the 𝛼 stabilization term on the error rates calculated at different Re values for ℎ = 2−3 and ∆𝑡 =
0,125 will be compared in Table 3. 

Table 3. Velocity errors for different 𝛼 values 

𝑹𝒆 ‖𝛁(𝒖 − 𝒖𝒉)‖for 𝜶 = 𝟎 ‖𝛁(𝒖 − 𝒖𝒉)‖for 𝜶 = 𝟎, 𝟎𝟏 

100 0,0903558 0,0797131 

200 0,140067 0,11151 

300 0,186865 0,134197 

400 0,233123 0,151754 

500 0,27908 0,165875 
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4.2. Study of Two-Necked Vessels 

As a result of plaque formation in the vessel, knuckles, i.e. hardness, may occur on the upper and lower surfaces 

of the vessel in a reciprocal or non-reciprocal manner. This situation negatively affects the blood flow. In the 

numerical experiments, we tried to obtain the closest and most accurate solutions to the real blood flow with 

artificial viscosity stabilization. For this purpose, different Reynolds numbers were examined and the α's that 

would give the most accurate result were tuned. 

As can be seen from Figure 1, artificial viscosity stabilization has a significant impact on the solution when 

analyzing the velocity of blood flow. 

 
a) 𝑅𝑒 = 100, 𝛼 = 0 

 
b) 𝑅𝑒 = 100 , 𝛼 = 12 

 
c) 𝑅𝑒 = 300, 𝛼 = 0 

 
d) 𝑅𝑒 = 300, 𝛼 = 69 

 
e) 𝑅𝑒 = 500, 𝛼 = 0 

 
f) 𝑅𝑒 = 500, 𝛼 = 127 

Figure 1. Comparison of the effect of artificial viscosity stabilization for different values of the Reynolds 

number on the blood flow velocity in a two-necked vessel 

Figure 2 is important for understanding the effects of artificial viscosity stabilization on blood pressure. 

Determining how the pressure profile changes when blood flow has different 𝑅𝑒 and how artificial viscosity 

affects this profile can help in the development of better designed and effective medical devices and treatment 
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methods. Furthermore, this analysis can provide the necessary information to better model the behavior of 

blood flow in different conditions. 

 
a) 𝑅𝑒 = 100, 𝛼 = 0 

 
b) 𝑅𝑒 = 100, 𝛼 = 12 

 
c) 𝑅𝑒 = 300, 𝛼 = 0 

 
d) 𝑅𝑒 = 300, 𝛼 = 69 

 
e) 𝑅𝑒 = 400, 𝛼 = 0 

 
f) 𝑅𝑒 = 400, 𝛼 = 98 

 
g) 𝑅𝑒 = 500, 𝛼 = 0 

 
h) 𝑅𝑒 = 500, 𝛼 = 127 

Figure 2. Comparison of the effect of artificial viscosity stabilization for different values of Re on blood 

pressure in a two-necked vessel 
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Figure 3 shows the errors at 𝑅𝑒 = 500 for different values of 𝛼 to illustrate the effect of the stabilization. 

 

Figure 3. Errors for different 𝛼 values for Re=500 

For a given number 𝑅𝑒, iterations are obtained with different α values. Considering the error rates resulting 

from these iterations, the α value that will give the minimum error is selected. As can be seen from the figure, 

for 𝑅𝑒 = 500, error rates were calculated considering different α values and it was seen that 𝛼 = 127 gave 

the minimum error. 

4.3. Wall Shear Stress in Brain Aneurysm 

Figure 4 shows the section focusing on WSS in a brain aneurysm. This figure shows simulation results using 

FreeFem++ software to model blood flow and its effects on the aneurysm.  

 

Figure 4. FreeFem++ simulation of a brain aneurysm model 

Figures (5-10) of the regions with and without stabilization for 𝑅𝑒 = 200 and 𝛼 = 205 values are given below. 

𝑢
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Figure 5. WSS values for the f2 region 

The maximum WSS value in this region was approximately 0,000355 Pa, close to 𝛼 = 0. The flow in the 

vessels of the brain is usually pulsatile. This is caused by the expansion and contraction of the arteries with the 

beating of the heart. This is due to changes in the direction of blood flow in the inner walls of the arteries. 

 

Figure 6. WSS values for the f3 region 

As seen in the graph for the f3 region, it is clear that when there is no stabilization, results far from the general 

structure of the flow is obtained. The reason why the WSS value in this region is lower than f2 and f7 is due 

to the slowdown in the flow in these regions, as can be seen from the model (Figure 4). 
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Figure 7. WSS values for the f7 region 

The region where the WSS value is the highest, that is, the region where the stress is the highest, is the f7 

region. This is because the flow is concentrated in this region and it contains the choke point. 

 

Figure 8. WSS values for the f1 region 

https://doi.org/10.54287/gujsa.1485920


478 
Hilal KARADAVUT, Gülnur HAÇAT, Aytekin ÇIBIK  

GU J Sci, Part A 11(3) 463-480 (2024) 10.54287/gujsa.1485920  
 

 

 

Figure 9. WSS values for the f8 region 
 

 

Figure 10. WSS values for the f9 region 

When we examine the graphs of f1, f8 and f9 regions, it is in the f9 region that we will see the effect of 

stabilization the most. This is because the flow is in a more complex situation. As can be seen from f9 graph, 

when α is higher, the WSS values are more regular in accordance with the blood flow. 

5. CONCLUSION 

In this paper, changes in vascular flow due to cardiovascular diseases are analyzed with the NSE model. 

Stability and error analysis of the fully discrete scheme are performed. A stabilization term 𝛼(𝛻𝑢, 𝛻𝑣)  
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representing the artificial viscosity is used to stabilize the fully discrete finite element scheme. Numerical 

convergence tests are presented to verify the theoretical convergence rates, demonstrating the effectiveness of 

the proposed scheme. In addition, the effects of cardiovascular diseases on blood flow velocity, blood pressure 

and wall shear stress in vessels are modeled. Throughout the obtained models, it is shown how effective the 

scheme is and thanks to the stabilization, accurate, understandable and realistic results are obtained. 

The results of this study provide a better understanding of the changes in blood flow in vessels caused by 

cardiovascular diseases. The analysis using the NSE model reveals the complexity of the dynamics in vessel 

flow and shows that these dynamics can be reliably modeled through stability and error analysis of the fully 

discrete scheme. The stabilization term representing the artificial viscosity improves the accuracy and stability 

of the model, making the results realistic and reliable. The verification of the theoretical convergence rates by 

numerical convergence tests reinforces the effectiveness of the proposed scheme and demonstrates the 

usability of this approach in practical applications. With this model, the effects of cardiovascular diseases on 

blood flow velocity, blood pressure and wall shear stress can be studied in detail and the effects of these 

parameters on disease progression can be better understood. 

The results provide important information for planning medical interventions and disease management. The 

accuracy of the model and the reliable results provided by stabilization can contribute to the development of 

decision support systems in clinical applications. This could enable more efficient management of patients' 

treatment processes and early detection of diseases. Therefore, this study can be considered as an important 

step towards a better understanding and management of cardiovascular diseases. 
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