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Abstract
This paper discusses the theme of cancer modeling and the control problem of chemotherapy. Cancer spread
is modeled by fractional derivative equation and asymptotically stabilized by chemotherapy law. The model is
converted by fractional complex transform into a simple partial derivative equation and associated with a viability
problem, and the set-valued analysis is used to make the converted model viable by the regulation law of the
regulation map. The regulation law is used to give the stabilizing chemotherapy control for a specific model of
the glioblastomas multiforme (GBM) tumor concentration.
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1. Introduction and Problem Statement
Fractional Differential Equations (FDEs) have more tendency in recent years to be an indispensable tool in various fields

of oncology, notably in the modeling cancer cells growth (1.1), or cancer spread in tissues (1.2), even cancer spread and
response to chemotherapy (1.3). The model (1.1) accounts for the fact that cancer cells have a memory of past events, such
as exposure to chemotherapy, which can affect their growth. The fractional order derivative represents this memory effect
by incorporating information from previous time points into the current growth rate. Several studies have been conducted
on the model (1.1), especially the Logistic model (1.1a-1.1f). Tudor Alinei-Poiana et al. offered in [1] the minimum Mean
Square Error. Nasser Sweilam et al. used in [2] finite difference method and variational iteration method to solve (1.1a-1.1f),
and compared numerical solutions with the exact solution. Nadir Djeddi et al. solved (1.1a-1.1f) in [3] by reproducing kernel
Hilbert space method, and compared numerical solutions with the exact solution. Adivi Kanth and Neetu Garg investigated
in [4] computational simulations for analytical solution of (1.1a-1.1f). Sadia Arshad et al. approximated in [5] solution of
(1.1a-1.1f) using Simpson’s 1/3 rule. Najla Varalta et al. applied in [6] Fractional calculus to solve (1.1a-1.1f). Francisco
Ariza-Hernandez et al. given in [7] Bayesian estimation to derivative order of (1.1a-1.1f). Mohamed Meabed Khader and
Mohammed Babatin expressed in [8] the solution of (1.1a-1.1f) as truncated Laguerre series. While Tudor Alinei-Poiana et
al. considerd in [1] formal power series to obtain the solution of Allee logistic model (1.1a-1.1g), and Subhas Khajanchi et
al. used in [9] non-singular kernel in the Caputo fractional derivative (1.1c) and calculated implicitly the analytical solutions
of (1.1a-1.1g), and Souheyla Debbouche given in [10] the implicit solution of (1.1a-1.1g). Whereas Changdev Jadhav et al.
solved in [11] the exponential model (1.1a-1.1e) using Elzaki and Sumudu transform. Finally Mesfin Etefa et al. generalized in
[12] the fractional differential Cauchy problem (1.1a-1.1b) by κ-Hilfer fractional derivative, investigated the existence and
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uniqueness of mild solutions, and established the stability in the sense of Ulam-Hyers-Rassias. Yeliz Karaca aimed in [13]
to point on the importance of computational complexity to obtain the fractional-order derivative with the least complexity
for optimal solution to (1.1a-1.1b). The model (1.2) accounts for the fact that cancer cells can spread through tissues by both
diffusion and growth. The fractional order derivative again represents the memory effect of the cells, as they may remember
previous times when they encountered resistance to their spread and adjust their growth and movement accordingly. Several
approaches have been performed on this model. Zainouba Chebana et al. established in [14] the existence and uniqueness of
the solution by Faedo-Galerkin method. Hamzeh Husni Zureigat et al. implemented in [15] explicit finite difference scheme
for solving (1.2). Zeliha Körpınar et al. investigated in [16] solutions by using residual power series method. Rania Saadeh
et al. examined in [17] analytical solutions by using Laplace residual power series method. Rakhi Singh et al. applied in
[18] homotopy decomposition method to determine the solution. Belal Batiha et al. developed in [19] new iterative method
to address (1.2), and compared solutions with those established by variational iteration method and Adomian decomposition
method, as well as the exact solution. Najma Ahmed et al. studied (1.2) in [20] using the Laplace transform and numerical
inversion. Roghayeh Moallem Ganji et al. founded in [21] numerical technique on operational matrix, and presented the
solution as an expansion of the Bernoulli polynomials. Mohammad Partohaghighi et al. compared in [22] solutions by fictitious
time integration method and reproducing kernel Hilbert space method as well as the exact solution. Fashareena Mohd et
al. solved (1.2) in [23] using Laplace Adomian decomposition method. Hemant Gandhi et al. performed in [24] fractional
reduced differential transform method to obtain the solution. Vineet Srivastava et al. solved (1.2) in [25] by fractional reduced
differential transform method. Olaniyi Iyiola and Fiazuddin Zaman used in [26] q-homotopy analysis method for (1.2) to obtain
analytical solution. Andrew Omame and Fiazuddin Zaman analytically solved (1.2) in [27] via the zeroth order finite Hankel
transform. Simon Gimnitz et al. presented in [28] a series solution of the model (1.2) with its convergence analysis.

• Cancer cells growth modeling

dα u(t)
dtα

= f (u(t)), (1.1a)

with the initial condition

u(0) = u0, (1.1b)

and
dα u(t)

dtα
is the fractional derivative of order α ∈R+, to the cancer cells concentration u(t) ∈R+ at time t ∈R+, so in

the Caputo sense
1

Γ(m−α)

∫ t

0
(t− s)m−α−1 dmu(s)

dtm ds if m−1 < α < m

dmu(t)
dtm if α = m,m ∈ N

, (1.1c)

where

u ∈ C m(R+,R+) and m = dαe,

while Γ is the Euler’s Gamma function defined by the improper integral

Γ(α) =
∫ +∞

0
tα−1 exp(−s)ds. (1.1d)

With the classical sub-models

– Exponential model [1]

f (u) = au. (1.1e)

– Logistic model [1]

f (u) = au
(

1−
(u

k

)b
)
. (1.1f)

– Allee logistic model in [29] by Iván Area and Juan Nieto

f (u) = u(1−u)(u−a). (1.1g)
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– Gompertz model [1]

f (u) = au ln
(

b
u+ c

)
.

– Bertalanffy-Pütter model, in generalized and particular form [1]{
f (u) = pua−qub fora 6= b
f (u) = pua−q ln(u)ua fora = b

.

• Cancer spread modeling

∂ α u(x, t)
∂ tα

= ∇ · (D(x)∇u(x, t))+ f (u(x, t)), (1.2a)

with the initial condition

u(x,0) = u0(x), (1.2b)

and
∂ α u(x, t)

∂ tα
is the fractional time derivative of order α ∈ R+, to the cancer cells concentration u(x, t) ∈ R+ at position

x ∈Ω⊂ Rn and time t ∈ R+, so in the Caputo sense
1

Γ(m−α)

∫ t

0
(t− s)m−α−1 ∂ mu(x,s)

∂ tm ds if m−1 < α < m

∂ mu(x, t)
∂ tm if α = m,m ∈ N

,

where

u ∈ C 2,m(Ω×R+,R+) and m = dαe,

while D(x) is the diffusion coefficient and ∇ is the nabla operator

∇u(x, t) =
(

∂u(x, t)
∂x1

, · · · , ∂u(x, t)
∂xn

)>
,

and f (u(x, t)) is the reaction term.

• Cancer spread modeling with response to chemotherapy

∂ α u(x, t)
∂ tα

= ∇ · (D(x)∇u(x, t))+ f (u(x, t),c(x, t)), (1.3a)

with the initial condition

u(x,0) = u0(x), (1.3b)

and c(x, t) ∈ R+ is the chemotherapy concentration, and f is the reaction-control function.

The set-valued methods developed to stabilize cancer cells concentration, to Ordinary Differential Equations (ODEs) models by
Khalid Kassara in [30], Khalid Kassara and Amine Moustafid in [31], Lahoucine Boujallal et al. in [32], and Amine Moustafid
in [33, 34, 35, 36, 37, 38], and to Partial Differential Equations (PDEs) models by Amine Moustafid in [39], is the motivation
to prolong further theses methods here onto the FDE models (1.3) and stabilize the cancer cells concentration u(x, t) in the
sense of the following control problem, and not limit studies to analyze the solutions of uncontrollable FDE models (1.2).

Problem 1.1. Find a chemotherapy concentration c(x, t), to stabilize the cancer cells concentration u(x, t), subject to the FDE
(1.3) and the asymptotic sense

lim
t→+∞

u(x, t) = 0, a. e. x ∈Ω. (1.4)

This paper is sectioned as follows: Section Introduction and Problem Statement presented the general cancer model by the
FDE (1.3), and associated the control Problem 1.1 by chemotherapy. Section Fractional Complex Transform and Viability
Analysis converts the FDE (1.3) into PDE model, and corresponds a viability problem, and gives the control solution by
regulation law of regulation map. Section Chemotherapy Application carries out the obtained results on a particular model.
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2. Fractional Complex Transform and Viability Analysis
This section uses the fractional complex transform (2.1c) in Proposition 2.1, to turn the FDE (1.3a) subject to the control

Problem 1.1, into the PDE (2.1a) subject to the viability problem (2.3) in Theorem 2.3, and characterizes the control solution
as regulation law (2.8) of the regulation map (2.6) by Corollary 2.6 under Assumption 2.5 of [40] by Jean-Pierre Aubin and
Hélène Frankowska, then uses Lemma 2.7 of [34] by Amine Moustafid, to express the regulation law (2.8) by the explicit
formula (2.10) in Corollary 2.8.

2.1 Fractional complex transform
Proposition 2.1. The FDE (1.3a) can be converted into the PDE

∂U(x,τ)
∂τ

= ∇ · (D(x)∇U(x,τ))+ f (U(x,τ),C(x,τ)), (2.1a)

with the initial condition

U(x,0) = u0(x), (2.1b)

by the fractional complex transform in [41] by Ji-Huan He and Zheng-Biao Li and in [42] by Rabha Ibrahim

τ =
tα

Γ(1+α)
, (2.1c)

where the function Γ is defined by (1.1d),
while

U(x,τ) = u(x, t), (2.1d)

and

C(x,τ) = c(x, t). (2.1e)

Proof.

∂ α u(x, t)
∂ tα

=
∂u(x, t)

∂τ
× ∂ α τ(t)

∂ tα

=
∂U(x,τ)

∂τ
× 1

Γ(1+α)
× ∂ α tα

∂ tα

=
∂U(x,τ)

∂τ
× 1

Γ(1+α)
×Γ(1+α)

=
∂U(x,τ)

∂τ
.

2.2 Viability problem
Definition 2.2. Let the subset

K = {U ∈ L2(Ω),U ≥ 0 and ψ(U)≤ 0, a. e. x ∈Ω}, (2.2a)

where the function ψ expression is

ψ(U)(x,τ) =U(x,τ)−u0(x)exp(−τ). (2.2b)

Theorem 2.3. Let the initial state u0 ∈ L2(Ω). If the subset K is viable under (2.1), in the sense that there exists a solution U
such that

∀τ ∈ [0,+∞),U(·,τ) ∈ K, (2.3)

then

lim
τ→+∞

U(x,τ) = 0, a. e. x ∈Ω, (2.4)

and by consequent u (2.1d) is solution to the Problem 1.1.
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Proof.
By (2.2b) and (2.1b), a. e. x ∈Ω

ψ(U)(x,0) =U(x,0)−u0(x)exp(0)
= u0(x)−u0(x)

= 0,

then u0 ∈ K.
By (2.2a) and (2.2b), a. e. τ ∈ [0,+∞)

U ∈ K =⇒ ψ(U)(x,τ)≤ 0
=⇒ U(x,τ)−u0(x)exp(−τ)≤ 0
=⇒ U(x,τ)≤ u0(x)exp(−τ)

=⇒ lim
τ→+∞

U(x,τ) = 0. (2.4)

By (2.1d), a. e. x ∈Ω

lim
t→+∞

u(x, t) = lim
τ→+∞

U(x,τ)

= 0.

Remark 2.4. u0(x) is supposed regular enough (for example upper bounded) so that u0(x)exp(−τ) admits null limit 0.

2.3 Set-valued analysis
Assumption 2.5. The function f is continuous affine and linear growth to C

sup
U
| f (U,C)| ≤ ς(|C|+1). (2.5)

Corollary 2.6. [40, Corollary 13.4.2] The subset K (2.2) is viable under (2.1) when and only when the regulation map

RK(U) = {C ∈ L2(Ω),∇ · (D∇U)+ f (U,C) ∈ TK(U)}, (2.6)

where TK(U) is the contingent cone, enjoys non-emptiness property, in the sense that

∀U ∈ K,RK(U) 6= /0, (2.7)

and viable solution U is given by regulation law C

C(x,τ) ∈ RK(U(x,τ)), a. e. (x,τ) ∈Ω× [0,+∞). (2.8)

Lemma 2.7. [34, Lemma 3.3] The belonging of directions U in TK(U) is characterized by both inequalities{
U ≥ 0 if U(x,τ) = 0

Dψ(u(x,τ))U ≤ 0 if ψ(U(x,τ)) = 0
, (2.9)

where D denotes the differential operator.

Corollary 2.8. The regulation law C (2.8) of the regulation map RK is characterized by

∇ · (D(x)∇U(x,τ))+ f (U(x,τ),C(x,τ))≥ 0, (2.10a)

if

U(x,τ) = 0,

and

Dψ(U(x,τ))(∇ · (D(x)∇U(x,τ))+ f (U(x,τ),C(x,τ))≤ 0, (2.10b)

if

ψ(U(x,τ)) = 0.
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Proof. By definition of the regulation map RK (2.6)

C(x,τ) ∈ RK(U(x,τ)),

if and only if

∇ · (D(x)∇U(x,τ))+ f (U(x,τ),C(x,τ)) ∈ TK(U(x,τ)),

whence (2.10) by the characterization (2.9).

3. Chemotherapy Application
To give an illustrative example of the theoretical results obtained in section 2, and their concordance with the numerical

results, this section considers from [23] the following sub-model (3.1) of the general model (1.3) in section 1.

∂ α u(x, t)
∂ tα

= ∇ · (D(x)∇u(x, t))+ρu(x, t)
(

1− u(x, t)
umax

)
− c(x, t)u(x, t), (3.1a)

with the Gaussian initial conditionu(x,0) =
1√
2πε

exp

(
−1

2

(
x− x0

ε

)2
)
,

x ∈ (0,50),x0 = 25mm,ε = 0.01,

(3.1b)

which verifies the hypothesis of the Remark 2.4 on the initial state u0.
D(x) is the diffusion coefficient

D(x) =


0.13mm2/day, if 0mm≤ x≤ 7.2mm (grey region),
0.65mm2/day, if 7.2mm≤ x≤ 42.5mm (white region),
0.13mm2/day, if 42.5mm≤ x≤ 50mm (grey region),

ρ is the proliferation rate

ρ = 0.012day−1,

umax is the carrying capacity

umax = 62.5cells/mm3,

f is the continuous affine function

f (U,C) = ρU
(

1− U
umax

)
−CU,

and linear growth to C (2.5)

sup
U
| f (U,C)| ≤ umax(|C|+1),

which verifies the hypothesis of the Assumption 2.5 on the function f .
The pdepe function of MATLABr programming solves the converting PDE of the FDE (3.1), while the function quadprog

minimizes C under the constraints (2.10a) and (2.10b) to calculate the regulation law (2.8). The following figures illustrate the
numerical results.

• Figure 3.1 represents uncontrolled cancer cells concentration u(x, t) which seems diverging of 0.

• Figure 3.2 represents controlled cancer cells concentration u(x, t), which seems converging to 0 in accordance with (1.4).

• Figure 3.3 represents the comparison between uncontrolled and controlled cancer cells concentrations.

• Figure 3.4 represents chemotherapy concentration c(x, t) transformed by (2.1e), defined by the regulation law (2.8) of the
regulation map (2.6) and characterized by (2.10), used to control cancer cells concentration u(x, t).
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Figure 3.1. Cancer cells concentration u(x, t) without chemotherapy.

Figure 3.2. Cancer cells concentration u(x, t) with chemotherapy concentration in Figure 3.4.

Figure 3.3. Cancer cells concentration u(x, t) without chemotherapy in Figure 3.1 and with chemotherapy concentration in
Figure 3.2.
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Figure 3.4. Chemotherapy concentration c(x, t) transformed by (2.1e), defined by (2.8) of (2.6) and characterized by (2.10).

4. Conclusion
This paper solved the control Problem 1.1 of the cancer cells concentration u(x, t). The fractional complex transform (2.1c)

is used to translate the Problem 1.1 into the viability problem 2.3, which is approached by the set-valued analysis tool. The
simulated FDE model (3.1) in the Figure 3.2, is stabilized in the sense (1.4) by the simulated chemotherapy concentration
c(x, t) in the Figure 3.4, which is transformed by (2.1e) and defined by the regulation law (2.8) of the regulation map (2.6) and
characterized by (2.10). The prolonged set-valued method based on viability theory, conceives here chemotherapy protocol
c(x, t) at position x and time t, and on feedback state u(x, t) dependence for any initial state u0 ∈ L2(Ω) in (1.3b), which is able
to asymptotically stabilize the cancer cells concentration u(x, t).
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