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ABSTRACT

Airline ticket pricing is a complex and dynamic process influenced by various factors, including demand fluctuations, seasonal
variations, and competitive strategies. Accurate price prediction is crucial for both airlines, to maximize revenue, and customers,
to secure the best deals. Traditional methods often fall short of capturing the intricate and rapidly changing patterns of airfare
pricing. With the advent of machine learning algorithms, there is a growing potential to enhance the accuracy and reliability of
ticket price predictions. This paper aims to predict ticket prices based on airline flight data using ML algorithms and to compare the
performance of ML algorithms. The secondary objective of this paper is to identify the main factors affecting airline ticket prices.
The flight and ticket price datasets of THY and PGS that were obtained from open-access sources are used in this paper. The final
dataset consists of 962 records for three months from June 1st, 2022 to August 30th, 2022 and includes 19 different variables.
Statistical tests and ML algorithms were applied to the final dataset. This paper compares various ML models to predict airline
ticket prices, considering performance metrics such as MAE, MSE, RMSE, and R2 during training and test phases. According to
the model training and test results, the best algorithm is GPR with R2: 0.86 (training) and R2: 0.90 (test). The findings are consistent
with existing literature, further validating the superior efficacy of certain models in specific contexts and demonstrating significant
progress in the field. This paper contributes to the literature by comparing the effectiveness of various machine learning algorithms
in predicting airline ticket prices, providing new and valuable insights into model performance and key price-determining factors.
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1. Introduction

In today’s highly competitive airline industry, ticket pricing is crucial in attracting customers and maximizing revenue. Airline
ticket prices are influenced by a multitude of factors including demand, seasonality, route popularity, fuel costs, and competitor
pricing strategies (Wang et al., 2019). Given the dynamic nature of these factors, accurately predicting ticket prices is a complex
and challenging task. Traditional pricing models often fall short of capturing the intricate patterns and rapid changes in the market
(Deng, 2024).

Recent advancements in Machine Learning (ML) offer promising tools and techniques for addressing this challenge. ML models
can analyze vast amounts of historical data and identify hidden patterns that can improve the accuracy of price predictions. These
models can be trained to consider a wide range of variables simultaneously, adapting to new data and refining their predictions
over time.

This paper aims to explore the application of various ML methods for predicting airline ticket prices. By leveraging ML
algorithms, we seek to develop a robust predictive model that can assist airlines in optimizing their pricing strategies. The
paper evaluates different ML techniques, including regression models, decision trees, and neural networks, to determine their
effectiveness in forecasting ticket prices. The objectives of this research are threefold: (1) to identify the key factors influencing
airline ticket prices, (2) to develop and compare the performance of various ML models in predicting these prices, and (3) to
provide insights and recommendations for airlines to enhance their pricing strategies using the developed models.

In the following sections, we review the relevant literature on airline pricing and ML applications, describe the methodology
and data used in our study, present the results of our model comparisons, and discuss the implications of our findings for the airline
industry. This research contributes to the growing body of knowledge on dynamic pricing and offers practical solutions for one of
the most critical aspects of airline revenue management.
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2. Related Work

The prediction of airline ticket prices has been an area of significant research interest, with various approaches and methodologies
being explored to enhance accuracy and efficiency. Predicting airline ticket prices is a complex task due to the dynamic nature of
pricing influenced by numerous fluctuating factors. Over the past decade, researchers have increasingly employed ML algorithms
and Data Mining (DM) techniques to model these prices more accurately (Abdella et al., 2021; Aliberti et al., 2023; Groves &
Gini, 2015; Kumar, 2023; Sherly Puspha Annabel et al., 2023; Zhao et al., 2022). This section reviews key studies and their
contributions to the field, focusing on the methods employed and their performance outcomes.

Janssen et al. (2014) aimed to predict the lowest ticket price before departure using a linear quantile mixed regression model.
While their model demonstrated reasonable short-term performance, its long-term efficiency was found to be inadequate. In this
study, multiple LR models were compared to determine the best fit for advising passengers on whether to purchase a ticket
immediately or wait for a better price. The authors recommended linear quantile mixed models for predicting the lowest fares,
termed "real bargains." This study, however, was limited to economy-class tickets on flights from San Francisco to John F. Kennedy
Airport. Tziridis et al. (2017) evaluated eight regression ML models to identify the optimal fare prediction algorithm. Among
these, the Bagging Regression model achieved an accuracy of 87.42%, and the Random Forest (RF) Regression Tree achieved
85.91%. On the other hand, Gordiievych and Shubin (2015) utilized the ARIMA model to predict future ticket price drops,
although specific performance results were not provided. Another study Santana et al. (2017) proposed Deep Regressor Stacking,
which combines RF and Support Vector Machine (SVM) for more accurate predictions, demonstrating the applicability of these
techniques across similar domains. Furthermore, Wohlfarth et al. (2011) focused on predicting the best time to buy tickets using
Classification And Regression Trees (CART) and RF models, suggesting that these models could offer preliminary advice to
customers during pre-registered purchase periods.

Beyond flight-specific features, other factors such as market demand significantly impact ticket pricing. For instance, Huang
(2013) used Artificial Neural Network (ANN) and Genetic Algorithm (GA) to predict air ticket sales revenue for a travel agency,
incorporating variables like international oil prices and stock market indices. The GA optimized input features for the ANNS,
resulting in a Mean Absolute Percentage Error (MAPE) of 9.11%. Another study Kalampokas et al. (2023) examines airfare price
prediction by comparing the pricing policies of different airlines using Al techniques. Specifically, it extracts features from over
136,000 flights from Aegean, Turkish, Austrian, and Lufthansa Airlines across six popular international destinations. Al models
from three domains—ML, DL, and Quantum ML (QML)—comprising 16 different architectures, were employed to predict ticket
prices. The findings indicate that at least three models from each domain achieved accuracy rates between 89% and 99% for this
regression problem, demonstrating the effectiveness of Al in airfare price prediction.

Early research explored classification models to predict price trends. For instance, Ren et al. (2014) developed an ensemble
model incorporating Linear Regression (LR), Naive Bayes, Softmax Regression, and SVM to predict the lowest ticket price before
departure. The training errors for Naive Bayes and Softmax Regression were reduced to 24.88% and 20.22%, respectively, with
SVM also showing an approximate 1% reduction in error. However, their SVM regression model underperformed, leading them
to use an SVM classification model to differentiate prices as "higher" or "lower" than the average.

Gui et al. (2020) applied an ensemble model combining random tree models with Deep Learning (DL) to predict flight delays.
The Long Short-Term Memory (LSTM) network effectively handled aviation sequence data, while the RF model achieved a
90.2% accuracy for binary classification, thereby mitigating overfitting issues. Likewise, Shih et al. (2019) proposed a DL model
utilizing an attention mechanism for multivariate time series prediction, which incorporated frequency domain information for
forecasting. Their TPA-LSTM model outperformed others in experimental tests, demonstrating the effectiveness of integrating
attention mechanisms with DL techniques for improving prediction accuracy.

Lai et al. (2018) explored multivariate time series prediction using DL models, specifically Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN), to extract short-term local dependency patterns among variables. Their results
indicated superior performance across three out of four experimental datasets. Similarly, Yujing et al. (2020) focused on predicting
flight passenger load factors with a CNN model incorporating a multi-granularity temporal attention mechanism (MTA-RNN)),
which demonstrated the best performance in their experiments. In the realm of stock time series prediction, Qin et al. (2017)
applied a dual-stage attention-based RNN (DA-RNN), which showed superior performance on the SML 2010 and NASDAQ 100
datasets compared to other models. Additionally, Chen et al. (2018) developed a dual-stage attention-based RNN for sales volume
forecasting in a commercial scenario, integrating trend alignment with dual-attention, multi-task RNNs, and their trend alignment
with dual-attention model yielded the best prediction results in their studies. Collectively, these studies highlight the effectiveness
of advanced DL techniques in various predictive tasks, demonstrating their potential for superior performance across different
domains.

The collection and processing of airline ticket data, often sourced from web crawling or private collaborations, pose significant
challenges. This variability makes it difficult to replicate studies and compare model performances. On the other hand, these studies
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illustrate the breadth of approaches and techniques applied to airline ticket price prediction, from traditional regression models
to advanced ML and DL frameworks. Each method has its strengths and limitations, contributing to the ongoing development of
more accurate and efficient prediction models in this dynamic field.

3. Method

This paper aims to predict ticket prices based on airline flight data using ML algorithms and to compare the performance of ML
algorithms. The secondary objective of this paper is to identify the main factors affecting airline ticket prices. The flight and ticket
price datasets from Turkish Airlines (THY) and Pegasus Airlines (PGS) are used in this paper. The data obtained were analyzed
using DM. DM allows the study data to be analyzed accurately and reduces the error rate. Thus, time and performance losses are
prevented. Statistical tests and ML algorithms were applied to the final extracted dataset and airline ticket price prediction was
performed.

3.1. Data Preprocessing

The dataset used for the analysis in this paper was obtained from open-access sources. The final dataset consists of 962 records
for 3 months from June 1st, 2022 to August 30th, 2022. The dataset includes flight and ticket price data of THY and PGS airlines.
There are 19 different variables in the dataset.

In this paper, some sub-processes were performed within the scope of data preprocessing. These are: removing columns with
out-of-scope and missing values, completing missing data, extracting outliers and repeated values, data editing, normalization,
and standardization. In general, identifying missing data, extracting outliers, and cleaning the dataset improves the accuracy of the
models and makes the results more reliable.

Data editing, in general, can be expressed as cleaning categorical variables and re-expressing them with a standard. The data
editing phase was completed with two approaches which are called one-hot encoding and label encoding. Data editing can be
defined as the rescaling and standardization of numerical variables in general. First, the data were arranged, and then normalization
and standardization were performed. On the other hand, the categorical variables were transformed to numerical classification,
labelled, and categorized by removing the textual expressions in the dataset.

Normalization and standardization are two important techniques used in data preprocessing. Normalization rescales the data
between 0 and 1, while standardization rescales the data to have the same mean (0) and the same standard deviation (1) (Karatas,
2021). The min-max scaler method which is one of the most popular normalization methods was used in this paper. Notations of
normalization and standardization are presented in Table 1.

Table 1. Notations of normalization and standardization

Notation Explanation
o X = X Xpew - NEW _normallzed \_/alue _
Normalization Xpew = Xmax . Maximum value in variable

Xinax = Xmin Xomin - Minimum value in variable

. new standardized z-score
: number of observations

: mean of observations

: standard deviation

Standardization 7 = %

VT NN

3.2. Data Analysis

Some statistical analyses were performed on the final dataset. Statistical analysis is a type of analysis using statistical methods to
make sense of the data, identify patterns, understand the relationships between variables, and predict future events. In this paper,
descriptive analysis and correlation analysis were performed within the scope of statistical analysis.

Descriptive analysis is used to understand the general characteristics of the dataset, to identify important patterns and trends,
and to provide a basis for further analysis. Descriptive analysis aims to reveal the general characteristics of the variables related to
flight and ticket price in the final dataset in detail. The study dataset and the results of the descriptive analysis are shown in Table
2.
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Table 2. Study dataset and descriptive analysis results

Unique

Variable Data Value Standard

Name Description Type Count  Min. Max. Range Mean Median Mode Deviation Variance
AiirlineCode The commercial code of the airline Categorical 2 1 2 1 1,25 1 1 - -
FlightDay The day of flight Numerical 30 1 31 30 12,77 11 1 8,96 80,35
FlightMonth ~ The month of flight Numerical 3 6 8 2 6,99 7 6 0,82 0,68
FlightYear The year of flight Numerical 1 2022 2022 0 2022 2022 2022 0 0
DepCode The commercial code of departure airport Categorical 29 1 29 28 12,83 12,5 1 - -
DesCode The commercial code of arrival airport Categorical 9 21 37 16 31,62 33 21 - -
DepHour The departure time in hours Numerical 22 0 23 23 10,44 10 11 517 26,69
DepMin The departure time in minutes Numerical 12 0 55 55 23,57 20 0 17,79 316,35
ArrHour The arrival time in hours Numerical 24 0 23 23 12,93 14 7 6,15 37,79
ArrMin The arrival time in minutes Numerical 12 0 55 55 26,37 25 30 17,62 310,55
Day Whether the arrival was the same day or next day Categorical 2 1 2 1 1,11 1 1 - -
Duration(min)  The flight duration Numerical 132 55 1465 1410 314,96 280 230 184,72 34120,63
BoughtDay The day that the ticket was bought Numerical 3 16 18 2 16,54 16 16 0,75 0,56
BoughtMonth  The month that the ticket was bought Numerical 1 2 2 0 2 2 2 0 0
BoughtYear  The year that the ticket was bought Numerical 1 2022 2022 0 2022 2022 2022 0 0
Stop The number of flight stops Numerical 3 1 3 2 1,85 2 2 0,49 0,24
DayDiffer The day difference between date of flight and ticket sale  Numerical 82 103 194 91 146,38 144 136 27,12 735,73
PriceEx The price exchange between date of flight and ticket sale  Numerical 20 0 99 99 74,46 81 98 28,26 798,72
Price(b) The price of airline ticket Numerical 148 279 1212 933 935,85 1005 1159 250,33  62663,68

Correlation analysis is a statistical technique that measures the relationship between two or more variables and the strength of this
relationship. Correlation analysis is usually performed using the Pearson Correlation Coefficient (Miles & Banyard, 2007). Pearson
correlation is a parametric measure of the linear relationship between two continuous variables (Gibbons, 1997; Howell, 1992).
Its values vary between -1 and +1 (Cohen, 2013). +1 is a full positive correlation, meaning that when one variable increases, the
other variable increases linearly. 0 means that there is no correlation between the two variables. -1 means full negative correlation,
meaning that when one variable increases, the other variable decreases linearly. According to the results of the correlation analyses,
the variables with a correlation between them and the related values are presented in Table 3.

Table 3. Correlation analysis results

[ = E E —
2 s~ E 3 E % s § N
¢ § £ § 8 ¢ 5 £ 5 & E ¢ 2 % £ x 2
£ = e = Q (8] I = I = © > © D a 2 Q@
T 2 2 2 § g & & £t t ¥ 5 3 3 83 & ® £ ¢
< [ [ [ a o [a)] [a] < < [a] [a) o] o] o0 n o a o

AirlineCode 1,00

FlightDay 0,09 1,00

FlightMonth ~ -0,03 0,04 1,00

FlightYear 0,00 0,00 0,00 1,00

DepCode 0,06 -0,12 -0,04 0,00 1,00

DesCode 0,02 0,03 0,00 0,00 -004 1,00

DepHour 0,22 -002 003 000 010 0,02 1,00

DepMin -0,15 0,17 0,04 000 -0,18 0,00 -0,13 1,00

ArrHour -0,06 0,02 -0,04 000 015 001 023 -021 1,00

ArrMin -0,02 002 0,02 0,00 -0,02 -009 -001 -0,03 -0,08 1,00

Day 0,18 -0,06 0,05 0,00 0,07 -003 [E§ o008 A 006 1,00

Duration(min) -0,04 -0,09 -0,01 0,00 0,233 -0,08 0,11 -0,10 0,13 0,09 0,237 1,00

BoughtDay 0,43 -028 -007 0,00 [BE -003 027 -025 0,06 -003 0,26 033 1,00

BoughtMonth 0,00 0,00 0,00 0,00 0,00 000 000 000 000 000 000 000 0,00 1,00

BoughtYear 0,00 0,00 0,00 0,00 0,00 000 0,00 000 000 000 0,00 000 000 000 1,00

Stop -0,14 -0,07 0,00 0,00 024 -0,18 -005 -0,04 0,15 005 0,12 [B¥ 0,13 0,00 0,00 1,00

DayDiffer -001 038 84 000 -009 001 001 010 -004 0,03 002 -0,04 -0,18 0,00 0,00 -0,03 1,00

PriceEx 049 021 001 000 -0,15 005 0,13 0,08 -0,07 -0,02 0,06 -0,22 0,04 000 0,00 -0,35 0,08 1,00

Price(b) 029 0,05 0,09 000 022 -009 -007 002 022 008 000 [HEE -002 0,00 0,00 [EE 0,10 -0,36 1,00

Correlation analysis was applied to the final dataset variables used in this paper. According to the correlation matrix presented
in Table 3, correlations less than -0.50 and greater than 0.50 are highlighted in red. According to the analysis results, it was found
that there were high positive correlations between some variables. There is a positive linear relationship of 0.94 between the
DayDiffer and FlightMonth variables and 0.80 between the Price(£) and Stop variables. In this case, the Multicollinearity problem
arises. Multicollinearity refers to a situation where there is a high correlation or relationship between independent variables in a
predicting model (Farrar & Glauber, 1967). In other words, one or more independent variables are strongly correlated with other
independent variable(s). This may cause problems in the prediction model. At this point, the variables the FlightMonth and Stop
which cause positive correlation and are also considered to negatively affect the model performance were removed from the model
to perform the prediction accurately.




Korkmaz, H., Prediction of Airline Ticket Price Using Machine Learning Method

3.3. Modelling

This paper requires a supervised regression ML technique according to the dataset structure and the problem addressed.
Regression algorithms, which are used in cases where the dependent variable should take a continuous value, stand out with their
data analysis and prediction capabilities. In this study, regression algorithms are used within the scope of supervised learning on a
labelled dataset. In this paper, various regression algorithms such as Linear Regression (LR), Decision Tree (DT), Support Vector
Machines (SVM), Efficiently Linear Regression (ELR), Gaussian Process Regression (GPR), Kernel Approximation Regression
(KAR), Ensemble Tree (ET), and Neural Networks (NN), which are widely used in the literature, were used and their performances
were compared.

LR is a simple, yet powerful statistical method used for modeling the relationship between a dependent variable and one or
more independent variables. It assumes a linear relationship between the variables and aims to find the best-fitting straight line (or
hyperplane in higher dimensions) through the data points. DT is a type of decision tree used for regression tasks. They recursively
partition the feature space into smaller regions and fit a simple model (usually a constant value) to each region. This allows for
non-linear relationships to be captured in the data. SVM is a powerful supervised learning algorithm used for classification and
regression tasks. It works by finding the optimal hyperplane that best separates the data into different classes while maximizing the
margin. SVM can also be used for regression tasks by finding the hyperplane that best fits the data within a margin of tolerance.
ELR is an optimization approach that combines stochastic gradient descent with L1 and L2 regularization to efficiently solve
linear regression problems. It aims to minimize the sum of squared errors while penalizing large coefficients to prevent overfitting.
GPR is a non-parametric probabilistic approach to regression tasks. It models the relationship between input and output variables
as a joint Gaussian distribution, allowing for uncertainty estimation in predictions. GPR is flexible and can capture complex
relationships without assuming a specific parametric form. KAR is a regression method that approximates the kernel trick used in
Support Vector Machines. It maps input features into a higher-dimensional space using a kernel function, allowing linear models
to capture non-linear relationships efficiently. ET, commonly known as Random Forests or Gradient-Boosted Trees, are ensemble
learning techniques that combine multiple decision trees to improve predictive performance. They work by training multiple trees
independently and averaging their predictions (or combining them in a weighted manner) to make more accurate predictions. NN is
a class of ML models inspired by the structure and function of the human brain. They consist of interconnected nodes organized in
layers and are capable of learning complex patterns and relationships from data. Neural networks have been successful in various
tasks, including regression, classification, and pattern recognition.

LR serves as the fundamental basis for many regression techniques, including ELR, which enhances LR’s optimization process.
SVM builds upon LR’s principles, providing a robust framework for both classification and regression tasks, with ELR borrowing
optimization strategies from SVM. DT offers a different approach, utilizing tree-based structures to capture non-linear relationships,
close to ET which leverages multiple decision trees for improved accuracy. GPR diverges by employing a probabilistic framework,
allowing for uncertainty estimation in predictions, contrasting KAR which efficiently approximates non-linear relationships using
kernel functions, reminiscent of SVM’s kernel trick. NN stands as a versatile paradigm, capable of learning intricate patterns and
relationships from data, with the potential to encompass aspects of all aforementioned methods within their deep architectures.
The regression algorithms used in this paper and their notations are presented in Table 4.
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Table 4. Regression algorithms and notations

Algorithm Notation

Explanation

LR Y =Bo+ Pixy + Poxpt... F Ppxy + €

y : dependent variable

X, . independent variable
By, : regression coefficient
€ : error term

DT
y=fx

M

):Zcm.l(xeRm)

m=1

¥ : predicted value of dependent variable
x : vector of dependent variable

M : total number of leaf nodes

R,,, : region corresponding to the m-th leaf node

¢ - prediction coefficient at the m-th leaf node

I(x € Ry) : function indicating whether x is present in Rm

SVM - w.x + b =0 (hyperplane)
— miny 5 llw |2

-y (w.x; +b) =1 for i =12,..,n (constraints)

w : weight vector perpendicular to the hyperplane
b : bias term

: input feature vector

x; : feature vector

y; : class label

x

ELR

m
1 ) . A
J) =52 (y (x0) = y©) 2+ Aylw Iy +F w113
i=1

W : weight vector

m : number of training samples

Ry, (x®): predicted value for the i-th observation
y® : actual value for the i-th observation

A, and A,: L1 and L2 regularization parameters

GPR f(x) ~GP(m(x), K (x,x"))

f(x) : predicted value of dependent variable
m(x) : mean function
K(x,x") : kernel function

KAR

n

F@) = K

i=1

f(x) : predicted value of dependent variable
x : input value to be estimated
x; : i-th observation in the dataset

a; : coefficient of i-th observation
K(x, x;) : kernel function

ET

B
1
Y@ =5 T
i=1

y(x) : predicted output
B : number of trees
T;(x) :prediction of the i-th tree for x

NN

}’:f(zn:wixi"'b)
i=1

y : output of a neural cell

f : activation function (i.e. sigmoid, ReLU, tanh)
x; : input value

w; : input weight

b : bias term

3.4. Performance Measures

R-squared - Determination Coeflicient (R2), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE) metrics were used to measure the performance of the ML algorithms in this paper. R? indicates that the independent
variable can explain the percentage of total changes in the dependent variable. R, which ranges between 0 and 1, indicates that the
model performs better as it approaches 1. MSE is another important metric that evaluates the model performance. MSE measures
the mean squared error between the actual and predicted values of the model. Lower MSE values indicate that the model makes
better predictions. RMSE is the square root of MSE. Calculating the RMSE is a useful way to evaluate the model’s accuracy.
RMSE measures the error between the actual values and the predicted values. The error rate decreases as the RMSE approaches

0. The performance measures used in this paper and their notations are presented in Table 5.

Table 5. Performance measures and notations

Performance Measures Explanation Reference
n : number of observations (Barrett, 2000; Di
p? =1 _ 2= =90 2 y; : true responses Bucchianico, 2008)
i —v) 2 ¥; - predicted responses
¥; : true responses mean
1< n : number of observations (Hyndman & Koehler,
MSE = _Z(yi -9 2 y; : true responses 2006; Makridakis et al.,
ne 9; : predicted responses 1982)
n : number of observations (Hyndman & Koehler,
} 2006; Nevitt &
RMSE = ¥; - true responses Hancock, 2000)
9; : predicted responses '
1 n : number of observations (Hyndman & Koehler,
MAE = _Zlyi -l y; : true responses 2006; Sammut & Webb,
n& 9, : predicted responses 2010)
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4. Results

In the results section, it is focused on the performance results of the implemented regression-based ML algorithms. MATLAB
R2023b was used in the training and test processes of ML algorithms. MATLAB is a widely preferred tool in data analysis and ML
applications and played a crucial role in this study. The performance results provide a detailed perspective on the effectiveness,
accuracy, and reliability of the models developed to predict airline ticket prices. The findings will provide an important basis for
how successful these models can be in practical applications.

According to the model training and test results, the best algorithm is GPR with R2: 0.86 (training) and RZ: 0.90 (test). The GPR
algorithm has lower RMSE, MSE, and higher R? values, indicating that this model has a better learning and prediction capability.
However, it should be noted that each model may have various advantages and disadvantages in different application and problem
contexts. The choice of the best model may vary depending on the requirements and data structure of a particular problem. Figure
1 shows the airline ticket prices and their predicted values from the final dataset. Also, Figure 2 shows the comparison of the
observed Price(TL) values in the training data set with the predicted values according to the perfect prediction curve (diagonal).

Predictions: Rational Quadratic GPR
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Figure 1. Distribution of true and predicted values by GPR algorithm (Training)

Predictions: Rational Quadratic GPR
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Figure 2. Comparison of true and predicted values by GPR algorithm (Training)
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4.1. Training and Test Dataset

The numbers and percentages of the datasets used in the training and testing processes of the implemented ML algorithms are
presented in this part. The results obtained are critical for the evaluation of the performance. The final dataset used in this paper is
divided into a 90% training set and a 10% test set. The number and proportions of training and test datasets used for ML algorithms
are presented in Table 6.

Table 6. The count and percentage of observations for training and test datasets

Observations Percentage

Training Data 866 %90
Test Data 96 %10
Total 962 %100

4.2. Performance Optimization

In this paper, different methods are used for the performance optimization of regression-based ML models. These methods
are k-fold cross validation, principal component analysis (PCA), and feature selection (FS). A value of 5 was set for k-fold cross
validation. 5-fold cross validation is a technique that involves dividing the dataset into five equal parts. One of these parts is used
as the test dataset, while the remaining four parts are used as the training dataset. The model is then trained and tested, and this
process is repeated five times, each time choosing a different part as the test dataset. The overall model performance is calculated
by averaging the performance measures obtained from each test run. PCA analysis was performed as another method. PCA results
can be used to assess the significance and predictive power of variables in regression models.

The FS algorithm was implemented to reduce the model complexity, avoid overlearning, and increase the predictive power. As
a result of the prediction model experiments, it has been observed that FS analyses affect the prediction performance by about
3-5%. The variables selected, the tests performed and the scores of the variables within the scope of the FS analysis are presented
in Table 7. In this paper, F Test scores were used. Accordingly, 13 different variables with scores greater than zero were selected
to be used in the training and testing of the models.

Table 7. Feature selection algorithms and importance scores of variables

No. Features F Test No. Features MRMR
1  Duration(min) 5.485.005 1  PriceEx 16.096
2 PriceEx 3.893.397 2 DayDiffer 10.713
3  DesCode 2.984.395 3  DesCode 0.8917
4 DepCode 483.303 4 Duration(min) 0.7631
5  BoughtDay 480.109 5  ArrHour 0.6174
6  ArrHour 459.737 6  BoughtDay 0.5873
7 AirlineCode 441.948 7  DepMin 4416
8  DepHour 353.904 8  FlightDay 0.3541
9  FlightDay 134.514 9  ArrMin 0.3432
10 ArrMin 108.690 10 DepHour 0.2586
11 DayDiffer 48.172 11  AirlineCode 0.1939
12 DepMin 40.774 12 DepCode 0.1725
13 Day 0.0362 13 Day 0.0258

4.3. Model Performance Comparison

The results of our experiments aimed at comparing the performance of various ML algorithms are presented in this section.
Below, detailed information is provided on the performance error rates (MAE, MSE, RMSE) and R? values for each model type on
both training and test sets. Additionally, the computation times of the models are compared. This analysis allows us to evaluate the
performance of the models in terms of accuracy and computational cost. Comparative training and test results of regression-based
ML algorithms are presented in Table 8.
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Table 8. Comparative training and testing results

Training Test
Model Model Type MAE MSE RMSE Rt TMel IAE  MSE RMSE R?
Category (obs/sec)
LR Linear 0,40039 0,29095 0,5394 0,70929 3600| 0,38031 0,27258 0,52209 0,72375
Interactions Linear 33,74 87300 295,47 -87227 2000|0,70971 4,2857 2,0702 -3,3435
Robust Linear 0,36837 0,33751 0,58095 0,66277 3700(0,39339 0,38422 0,61986 0,6106
Stepwise Linear 0,54087 1,392 1,1798 -0,39087 3500 0,42473 0,83185 0,91206 0,15692
DT Fine Tree 0,33102 0,31785 0,56379 0,68241 4600| 0,29416 0,29696 0,54494 0,69904
Medium Tree 0,34308 0,28885 0,53744 0,71139 5300|0,36839 0,3555 0,59624 0,63971
Coarse Tree 0,3962 0,32469 0,56981 0,67558 7200] 0,42497 0,38576 0,62110 0,60903
SVM Linear SVM 0,37302 0,30796 0,55494 0,69229 6600 0,38296 0,31851 0,56437 0,67719
Quadratic SVM 0,31177 0,21702 0,46585 0,78316 5200 0,29941 0,1584 0,398 0,83946
Cubic SVM 0,29949 0,17651 0,42013 0,82364 6700|0,23893 0,10542 0,32468 0,89316
Fine Gaussian SVM 0,76674 0,88528 0,94089 0,11545 6800|0,76768 0,8666 0,93091 0,12171
Medium Gaussian SVM 0,3146 0,18329 0,42813 0,81686 6400| 0,25806 0,11261 0,33558 0,88587
Coarse Gaussian SVM 0,4651 0,33409 0,578 0,66619 4200 0,41318 0,25137 0,50137 0,74524
ELR Efficient Linear Least Squares  0,40347 0,29215 0,54051  0,70809 3400 0,38285 0,27045 0,52005 0,7259
Efficient Linear SVM 0,36477 0,31808 0,56399 0,68218 5200| 0,3778 0,33579 0,57948 0,65968
ET Boosted Trees 0,33362 0,21426 0,46288 0,78592 3400 0,33647 0,23242 0,4821 0,76445
Bagged Trees 0,31653 0,22443 0,47374  0,77576 2800] 0,30259 0,23895 0,48883 0,75783
GPR Squared Exponential GPR 0,28555 0,14977 0,38701  0,85035 3700| 0,24658 0,10322 0,32128 0,89539
Matern 5/2 GPR 0,27717 0,14430 0,37986 0,85582 4000 0,24469 0,10427 0,32291 0,89432
Exponential GPR 0,28547 0,15090 0,38845 0,84923 4500 0,25913 0,11794 0,34342 0,88047
Rational Quadratic GPR 0,27595 0,143 0,37816  0,85712 4800| 0,2453 0,10485 0,32381 0,89373
NN Narrow Neural Network 0,32247 0,22607 0,47547 0,77411 5000 0,26544 0,11378 0,33732 0,88468
Medium Neural Network 0,44 0,33093 0,57526 0,66934 5300 0,37638 0,25744 0,50738 0,73909
Wide Neural Network 0,30638 0,16678 0,40839 0,83336 6600| 0,31536 0,18774 0,43329 0,80973
Bilayered Neural Network 0,33344 0,26627 0,51602 0,73395 6000| 0,26429 0,13394 0,36598 0,86425
Trilayered Neural Network 0,31347 0,22775 0,47723 0,77244 4100 0,256 0,15174 0,38953 0,84622
KAR SVM Kernel 0,34911 0,2167 0,46551 0,78348 4100( 0,30353 0,14815 0,38491 0,84985
Least Squares Regression 0,38434 0,24147 0,49139 0,75873 3300 0,35455 0,18733 0,43282 0,81014
Kernel

The RMSE and MAE metrics were used for comparison between the models. Figures 3 and 4 show the performance results
obtained by each ML model during the training and test process. The changes and achievements are represented by different colors
and symbols are shown on the graph. This graph provides a visual comparison of model performances by showing how successful
each model is in the training process. Also, the Interactions Linear algorithm was removed from the graphs due to the presence of
outliers.
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Figure 3. Training performance comparison for ML models
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Figure 4. Test performance comparison for ML models

Figure 5 shows the training time of each ML model in observations per second (obs/sec). This figure provides a visual comparison
of the variation and differences in the training time of each model. This graph visually highlights the presence of time performance
between the models by representing the training times of each model with different columns. This distribution provides an important
indication of the computational complexity of each algorithm and its adaptability to the dataset.
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Figure 5. Training time distribution for all ML models
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5. Discussion and Conclusion

This paper aims to predict ticket prices based on airline flight data using ML algorithms and to compare the performance of ML
algorithms. The secondary objective of this paper is to identify the main factors affecting airline ticket prices. The flight and ticket
price datasets of THY and PGS that were obtained from open-access sources are used in this paper. The final dataset consists of
962 records for 3 months from June 1st, 2022 to August 30th, 2022 and includes 19 different variables. In this paper, we compared
various ML models to predict airline ticket prices, considering performance metrics such as MAE, MSE, RMSE, and R? during
both training and test phases. According to the model training and test results, the best algorithm is GPR with R?: 0.86 (training)
and R?: 0.90 (test). Our findings align with existing literature, reinforcing the efficacy of certain models over others in specific
contexts. Below, the performance results concerning previous studies are discussed.

Janssen et al. (2014) used a linear quantile mixed regression model to predict the lowest ticket price before departure, reporting
reasonable short-term performance but inefficient long-term results. Our study shows that the standard LR model achieved a
reasonable R? value of 0.72 during testing, indicating good short-term prediction capabilities. However, the Interactions Linear
model performed poorly with a negative R? value, suggesting its inefficiency in capturing complex price patterns over the long
term.

Wohlfarth et al. (2011) recommended using CART and RF models for predicting the best time to buy tickets. Our results for the
Medium Tree model show an R? of 0.71 during testing, supporting the effectiveness of decision tree approaches. Fine Tree and
Coarse Tree models also performed adequately, though with slightly lower R? values. Also, Kalampokas et al. (2023) conducted
a study to predict airfare prices using the decision tree model, achieving an average R? value of 0.83. Although our R? result is
lower, it can be said that a result close and parallel to the literature has been obtained. The reason for this low result is mainly
related to the quality and size of the dataset used. These findings collectively underscore the robustness and reliability of decision
tree models in accurately forecasting airline ticket prices.

Tziridis et al. (2017) found that Bagging Regression Trees and RF models performed best among eight ML models, including
SVMs. Similarly, Kalampokas et al. (2023) conducted a study to forecast airfare prices utilizing the RF model, achieving an
average R? value of 0.87. In our analysis, the Cubic SVM model achieved an impressive R? of 0.89 during testing, outperforming
other SVM variants. The Medium Gaussian SVM also showed strong performance with an R? of 0.88, confirming the potential of
SVM models in airfare prediction. Also, Kalampokas et al. (2023) achieved a study to predict airline ticket prices using the SVM
model, reaching an average R? value of 0.80. Furthermore, Gui et al. (2020) applied an ensemble model combining random tree
models with DL for flight delay prediction, achieving high accuracy. Similarly, our study indicates that Boosted Trees and Bagged
Trees performed well, with the Boosted Trees model achieving an R? of 0.78. These results corroborate the utility of ensemble
methods in handling complex, non-linear relationships in airfare data.

DL models, such as those proposed by Tziridis et al. (2017) and various other studies, have shown significant promise. Likewise,
Kalampokas et al. (2023) conducted a study to forecast airfare prices utilizing the Multi-Layer Perceptron (MLP) model, achieving
an average R? value of 0.91. Our Narrow Neural Network model achieved an R? of 0.88, and the Bilayered Neural Network
performed well with an R? of 0.86. These findings are consistent with the literature, indicating that neural networks are highly
effective in capturing intricate patterns in ticket pricing data. Our study’s GPR models, particularly the Squared Exponential GPR
and Matern 5/2 GPR, demonstrated high performance with R? values of 0.895 and 0.894, respectively. These results align with
existing research suggesting that GPR models are well-suited for regression tasks involving complex, non-linear data.

Across different model categories, this paper confirms that advanced ML techniques, especially ensemble models and neural
networks, offer superior performance in predicting airline ticket prices. Models such as the Cubic SVM and GPR variants showed
outstanding predictive accuracy, with R? values close to or exceeding 0.89. This indicates their robustness and adaptability to the
dynamic nature of airfare pricing.

On the other hand, it is possible to note several key factors influencing ticket prices. There is a positive correlation between the
distance and duration of the flight and ticket prices; for instance, flights over 300 minutes exhibit an average price increase of 15%
compared to shorter duration. Additionally, longer flight durations increase ticket prices due to increased operational costs. Also,
seasonal demand can significantly impact ticket prices. Furthermore, three monthly demand fluctuations reveal that prices increase
by the day. The presence of competing airlines on the same route reduces ticket prices and our observations indicate that routes
served by three or more airlines tend to have lower prices due to increased competition. Besides, fluctuations in fuel prices can
directly impact ticket pricing. Macroeconomic factors such as Gross Domestic Product growth and inflation rates also affect ticket
prices, as higher disposable incomes during periods of economic growth lead to increased demand for air travel, subsequently
driving up prices, while during economic downturns, prices tend to stabilize or decrease. By considering these factors, airlines
can better understand and strategically manage their ticket pricing to optimize revenue and market competitiveness.
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Based on our analysis, several practical recommendations can be made for airlines to optimize their pricing strategies. Firstly,
airlines should adopt dynamic pricing models that adjust ticket prices based on real-time demand and supply conditions. Im-
plementing sophisticated algorithms that consider factors such as booking time, competition, and customer behavior can help
maximize revenue. Secondly, strategic route planning is crucial; airlines should strategically plan routes to capitalize on high-
demand periods and destinations by offering more flights during peak seasons and reducing frequency during off-peak times,
thus optimizing operational efficiency and profitability. To mitigate the impact of volatile fuel prices, airlines can engage in fuel
hedging, a financial strategy that involves locking in fuel prices for future purchases, providing cost predictability, and reducing
the risk of sudden price hikes. Additionally, developing robust loyalty programs can help airlines retain customers and encourage
repeat business; offering incentives such as discounts, upgrades, and exclusive benefits can enhance customer satisfaction and
brand loyalty. Lastly, leveraging advanced technologies such as Al and big data analytics can improve operational efficiency;
predictive maintenance, optimized flight paths, and automated customer service are areas where technology can significantly
reduce costs and improve the quality of service. By implementing these recommendations, airlines can strategically manage their
pricing, enhance customer loyalty, and achieve greater operational efficiency.

In conclusion, our findings support the existing literature, demonstrating that ML models, particularly ensemble methods and
DL models, significantly enhance the accuracy of airline ticket price predictions. These models provide valuable insights and
practical tools for airlines to optimize their pricing strategies, ultimately contributing to more efficient revenue management in the
highly competitive aviation industry. Future research should continue exploring these advanced techniques, incorporating larger
and more diverse datasets to further refine and validate model performance.

6. Limitations and Future Research

Our analysis has certain limitations and suggests several directions for future research. Firstly, data limitations exist as our
analysis was based on data from a limited number of airlines and routes, which may not fully represent the global airline industry.
Future studies should aim to include a more comprehensive dataset. Additionally, unforeseen external factors such as geopolitical
events, pandemics, and natural disasters can significantly impact ticket prices, and these factors were not fully accounted for in
our analysis, and thus should be considered in future research. Moreover, rapid technological advancements in aircraft efficiency
and alternative fuels were not deeply explored in this study, yet these factors could have significant implications for future ticket
pricing strategies.

Looking ahead, future research should aim to conduct a more comprehensive global analysis, including a broader range of
airlines and routes, to provide a more holistic understanding of the factors affecting ticket prices. Additionally, investigating the
impact of emerging technologies such as electric aircraft, autonomous flights, and sustainable fuels on ticket pricing can provide
valuable insights for the industry. Exploring consumer behavior patterns, including preferences and purchasing behaviors, can
help airlines develop more targeted and effective pricing strategies. Furthermore, conducting longitudinal studies to track changes
in ticket pricing over time and across different economic cycles can provide deeper insights into the dynamic nature of airline
pricing. By addressing these limitations and pursuing these research directions, future studies can offer a more robust and detailed
understanding of airline ticket pricing dynamics.
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