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ABSTRACT

In this paper, we first introduce the notion of double Satake diagrams for compact symmetric triads.
In terms of this notion, we give an alternative proof for the classification theorem for compact
symmetric triads, which was originally given by Toshihiko Matsuki. Secondly, we introduce the
notion of canonical forms for compact symmetric triads, and prove the existence of canonical forms
for compact simple symmetric triads. We also give some properties for canonical forms.
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1. Introduction

A compact symmetric triad is a triple (G, θ1, θ2) which consists of a compact connected semisimple Lie group
G and two involutions θ1 and θ2 on it. The study of compact symmetric triads is motivated by the geometry
of Hermann actions. If we denote by Ki the identity component of the fixed point subgroup of G for θi, i = 1, 2,
then G/Ki is a compact Riemannian symmetric space. The natural isometric action of K2 on G/K1 is called
the Hermann action of K2 on G/K1. In the case when θ1 = θ2, we have K1 = K2, and the Hermann action
is nothing but the isotropy action on G/K1. It is known that Hermann actions have a geometrically good
property, the so-called hyperpolarity ([6]). In general, an isometric action of a compact connected Lie group on a
Riemannian manifold is called hyperpolar, if there exists a connected closed flat submanifold that meets all orbits
orthogonally. Such a submanifold is called a section or a canonical form of the action. It is known that any section
becomes a totally geodesic submanifold. The classification of hyperpolar actions on compact Riemannian
symmetric spaces was given by Kollross ([14]). By his classification most of hyperpolar actions on compact
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Riemannian symmetric spaces are given by Hermann actions. It is expected that a further development of the
theory for compact symmetric triads promotes a precise understanding of Hermann actions and their orbits.

In this paper, we first study the classification theory for compact symmetric triads. Matsuki ([15]) introduced
a non-trivial equivalence relation ∼ on compact symmetric triads (Definition 2.2). Roughly speaking, if two
compact symmetric triads are isomorphic with respect to ∼, then their Hermann actions are essentially the
same. Our concern is to classify the local isomorphism classes of compact symmetric triads. For this, we
will generalize the method to classify compact symmetric pairs due to Araki ([1]). In fact, he obtained the
local isomorphism classes of compact symmetric pairs in terms of Satake diagrams. Then, we introduce the
notion of double Satake diagrams as a generalization of Satake diagrams (Definition 4.5). The equivalence
relation ∼ induces a natural equivalence relation on double Satake diagrams. In fact, the local isomorphism
of a compact symmetric triad determines that of a double Satake diagram, and this correspondence becomes
bijective (Theorem 5.12, Lemma 5.13). By using the results we obtain the classification of the local isomorphism
classes of compact symmetric triads, namely, the classification of double Satake diagrams (Theorem 5.18)
derives that of the local isomorphism classes of compact symmetric triads (Corollary 5.19). Our classification is
listed in Table 4. In addition, for each isomorphism class of compact symmetric triads, we can give the method
to determine its rank and order by means of the corresponding double Satake diagram, which are also given in
the same table. Although the original classification of compact symmetric triads was given by Matsuki ([15]),
such data are advantages of our classification. Our motivation for giving the alternative proof comes from the
study of not only Hermann action but also the classification of noncompact symmetric pairs in terms of the
theory for compact symmetric triads ([2]). The results of this paper plays an important role in the forthcoming
paper [3].

Next we study canonical forms for compact symmetric triads. Intuitively, for the isomorphism class
[(G, θ1, θ2)], a canonical form is defined as a representative of [(G, θ1, θ2)] which has the most easy structure
in [(G, θ1, θ2)]. Our precise definition of the canonical form of [(G, θ1, θ2)] is given in Definition 6.1. We prove
the existence of canonical forms in the case when G is simple (Theorem 6.6). As mentioned above, if two
compact symmetric triads are isomorphic to each other, then so are their Hermann actions. Nevertheless,
we find that there is a difference in understandability between their Hermann actions. Hence it is necessary
to choose a canonical form in the isomorphic class. This is significant to study canonical forms of compact
symmetric triads. For example, in the case when [(G, θ1, θ2)] is commutable, its canonical form is given by a
commutative compact symmetric triad (G, θ′1, θ

′
2) ∼ (G, θ1, θ2). The second author ([9]) developed a systematic

method to study orbits of Hermann actions for such (G, θ′1, θ
′
2). By applying his method, many mathematicians

contributed to study commutative Hermann actions (for example, [10], [11], [17], [18], [20]). On the other hand,
the study of Hermann actions for non-commutable case was found in [5] and [19], and their studies were based
on the classification. For further direction, we should construct a unified theory for the geometry of Hermann
actions whether (G, θ1, θ2) is commutative or not, and expect that the canonical forms plays a important role in
such a study.

The organization of this paper is as follows: In Section 2, we recall the notion of compact symmetric
triads. We define the rank and the order for a compact symmetric triad and for its isomorphism class. The
hyperpolarity of a Hermann action is also explained. In Section 3, we recall that the local isomorphism classes
of compact symmetric pairs correspond to σ-systems and Satake diagrams. In Section 4, we first introduce
the notion of double σ-systems. We also define an equivalence relation on double σ-systems based on the
equivalence relation ∼ (Subsection 4.1). Next, we introduce the notion of double Satake diagrams and their
isomorphism classes for double σ-systems (Subsection 4.2). In Section 5, we introduce the notion of double
Satake diagrams for compact symmetric triads. We prove Theorems 5.12 and 5.18 mentioned above. We
determine the rank and the order for the isomorphism classes of compact simple symmetric triads based on the
classification. Furthermore, we give special isomorphisms for compact simple symmetric triads and determine
which compact simple symmetric triads are self-dual. In Section 6, we introduce the notion of the canonicality
for compact symmetric triads (Subsection 6.1), and prove its existence (Theorem 6.6 in Subsection 6.2). We also
give some properties for the rank and the order of a canonical form (Subsection 6.3).

2. Compact symmetric triads

2.1. Compact symmetric triads and Hermann actions

Let G be a compact connected semisimple Lie group, and θ1, θ2 be two involutions of G. We call the triplet
(G, θ1, θ2) a compact symmetric triad. Denote by Ki (i = 1, 2) the identity component of the fixed point subgroup
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of θi inG. ThenG/Ki is a compact Riemannian symmetric space with respect to the Riemannian metric induced
from a bi-invariant Riemannian metric on G. The natural isometric action of K2 on G/K1 is called the Hermann
action.

In what follows, we show that the Hermann action is a hyperpolar action. In particular, we give its section.
We also recall an equivalence relation on compact symmetric triads which was introduced by Matsuki ([16]).
Then we observe that two compact symmetric triads are isomorphic in his sense, then their Hermann actions
are essentially the same.

Let g be the Lie algebra of G and exp : g → G denote the exponential map. For each i = 1, 2, the differential
dθi of θi at the identity element in G gives an involution of g, which we write the same symbol θi if there is
no confusion. Let g = k1 ⊕m1 = k2 ⊕m2 be the canonical decompositions of g for θ1 and θ2, respectively. We set
gθ1θ2 = {X ∈ g | θ1θ2(X) = X} = {X ∈ g | θ1(X) = θ2(X)} = gθ2θ1 . Then gθ1θ2 becomes a (θ1, θ2)-invariant Lie
subalgebra of g. Clearly, θ1 = θ2 holds on gθ1θ2 . The canonical decomposition of gθ1θ2 for θ1|gθ1θ2 is given by

gθ1θ2 = (k1 ∩ k2)⊕ (m1 ∩m2).

Let a be a maximal abelian subspace of m1 ∩m2. It is known that A := exp(a) is closed in G. Hence, A becomes
a compact connected abelian Lie subgroup of G, that is, a toral subgroup. The following theorem was proved
by Hermann.

Theorem 2.1 ([8]). Retain the notation as above. Then,

G = K1AK2 = K2AK1.

Let π1 : G→ G/K1 denote the natural projection. Then π1(A) is a flat totally geodesic submanifold of G/K1.
It follows from Theorem 2.1 that each K2-orbit intersects π1(A). In fact, it is shown that π1(A) gives a section of
the Hermann action K2 on G/K1. Hence this action is hyperpolar.

Let Aut(G) denote the group of automorphisms on G and Int(G) the group of inner automorphisms on G.
Then Int(G) is a normal subgroup of Aut(G). Matsuki ([16]) introduced the following equivalence relation on
compact symmetric triads.

Definition 2.2. Two compact symmetric triads (G, θ1, θ2) and (G, θ′1, θ
′
2) are isomorphic, which we write

(G, θ1, θ2) ∼ (G, θ′1, θ
′
2), if there exist φ ∈ Aut(G) and τ ∈ Int(G) satisfying the following relations:

θ′1 = φθ1φ
−1, θ′2 = τφθ2φ

−1τ−1. (2.1)

Geometrically, (G, θ1, θ2) ∼ (G, θ′1, θ
′
2) means that their Hermann actions are isomorphic. Indeed, we obtain an

isomorphism between them as follows. Assume that there exist φ ∈ Aut(G) and τ ∈ Int(G) as in (2.1). Denote
by K ′

i the identity component of the fixed point subgroup of θ′i in G. We obtain an isometric isomorphism
Φ : G/K1 → G/K ′

1 by
Φ : G/K1 → G/K ′

1; gK1 7→ φ(g)K ′
1.

Then the K2-action on G/K1 is isomorphic to the τ−1(K ′
2)-action on G/K ′

1 via Φ.
The Lie subgroups K1 ∩K2 and Gθ1θ2 := {g ∈ G | θ1θ2(g) = g} of G play a fundamental role in the study of

(G, θ1, θ2). However, their Lie group structures and even their Lie algebra structures depend on the choice of a
representative of its isomorphism class [(G, θ1, θ2)]. We expect that these structures are determined by taking a
representative with ‘easy structure’ in [(G, θ1, θ2)]. We will introduce such a representative as a canonical form
in Section 6, which is one of the main subjects of the present paper.

2.2. Rank and order for compact symmetric triads

We define the rank of a compact symmetric triad (G, θ1, θ2) as the dimension of a maximal abelian subspace
a of m1 ∩m2, which we write rank(G, θ1, θ2). Its well-definedness is shown by the Ad(K1 ∩K2)-conjugacy for
maximal abelian subspaces of m1 ∩m2, where Ad denotes the adjoint representation of G. Since the tangent
space of π1(A) gives the normal space of a principal orbit ofK2 onG/K1, the rank is equal to the cohomogeneity
of the action. Hence, for two compact symmetric triads (G, θ1, θ2) ∼ (G, θ′1, θ

′
2), the cohomogeneity of the K2-

action on G/K1 is equal to that of the K ′
2-action on G/K ′

2. Namely, we have the following lemma.

Lemma 2.3. Assume that two compact symmetric triads (G, θ1, θ2) and (G, θ′1, θ
′
2) satisfies (G, θ1, θ2) ∼ (G, θ′1, θ

′
2).

Then we have rank(G, θ1, θ2) = rank(G, θ′1, θ
′
2). Hence we define the rank of the isomorphism class [(G, θ1, θ2)] of

(G, θ1, θ2) as that of (G, θ1, θ2), which we write rank[(G, θ1, θ2)].
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Let (G, θ1, θ2) be a compact symmetric triad and a a maximal abelian subspace of m1 ∩m2. Then there exists a
maximal abelian subspace of mi containing a for each i = 1, 2. However, [a1, a2] = {0} does not hold in general.
In the case when [a1, a2] ̸= {0}, there exist no maximal abelian subalgebras t of g such that t contains both a1
and a2. On the other hand, retaking (G, θ1, θ2) in its isomorphism class if necessary, the following lemma holds.

Lemma 2.4. There exists a compact symmetric triad (G, θ1, θ
′
2) ∼ (G, θ1, θ2) and a maximal abelian subalgebra t of g

satisfying the following conditions:

(1) a1 := t ∩m1 and a′2 := t ∩m′
2 are maximal abelian subspaces of m1 and m′

2, respectively. In particular, t is (θ1, θ′2)-
invariant.

(2) a := t ∩ (m1 ∩m′
2) is a maximal abelian subspace of m1 ∩m′

2.

Proof. Let a be a maximal abelian subspace of m1 ∩m2. Let ai be a maximal abelian subspace of mi containing
a. We define a closed subgroup N(a) of G by N(a) := {g ∈ G | Ad(g)a = a}. Since G is compact, so is N(a). Then
the identity component N(a)0 of N(a) becomes a compact connected Lie group. Furthermore, its Lie algebra
n(a) has the following expression:

n(a) = {X ∈ g | [X, a] ⊂ a}.

Since [ai, a] ⊂ [ai, ai] = {0} holds, we have ai ⊂ n(a). Hence ai is an abelian subalgebra of n(a). By general theory
of compact connected Lie groups, there exists g ∈ N(a)0 satisfying [a1,Ad(g)a2] = {0}. We set θ′2 := τgθ2τ

−1
g .

Then we have dθ′2 = Ad(g)dθ2Ad(g)−1 and m′
2 = Ad(g)m2. From the inclusion a ⊂ a2, we get a = Ad(g)a ⊂

Ad(g)a2 =: a′2 ⊂ m′
2. This yields a ⊂ a1 ∩ a′2. In addition, by the maximality of a, we obtain a = a1 ∩ a′2. Since

[a1, a′2] = {0} holds, there exists a maximal abelian subalgebra t of g containing a1 and a′2. This t satisfies the
two conditions as in the statement.

We denote by rank(G) the rank of the compact connected semisimple Lie group G, and by rank(G, θi) the
rank of the compact symmetric pair (G, θi). From Lemma 2.4 we have the following corollary.

Corollary 2.5. If rank(G) = rank(G, θ1), then rank(G, θ2) = rank(G, θ1, θ2) holds.

Proof. The statement of this corollary is independent of the choice of a representative in the isomorphism class
[(G, θ1, θ2)]. By Lemma 2.4 we may assume that there exists a maximal abelian subalgebra t of g such that t ∩mi

(i = 1, 2) is a maximal abelian subspace of mi, and that t ∩ (m1 ∩m2) is a maximal abelian subspace of m1 ∩m2.
Then we have t ⊂ m1 by rank(G) = rank(G, θ1). This implies rank(G, θ1, θ2) = dim(t ∩m1 ∩m2) = dim(t ∩m2) =
rank(G, θ2). Thus, we have completed the proof.

We will define the order for the isomorphism class [(G, θ1, θ2)]. For the representative (G, θ1, θ2), the order
of the composition θ1θ2, which we write ord(θ1θ2), is defined by the smallest positive integer k satisfying
(θ1θ2)

k = 1. If there is no such k, then θ1θ2 has infinite order, which we write ord(θ1θ2) = ∞. The value of
ord(θ1θ2) depends on the choice of a representative of [(G, θ1, θ2)]. We define the order of the isomorphism class
[(G, θ1, θ2)] by

ord[(G, θ1, θ2)] := min{ord(θ′1θ′2) | (G, θ′1, θ′2) ∼ (G, θ1, θ2)} ∈ N ∪ {∞}.

It will be shown later that [(G, θ1, θ2)] has a finite order in the case when G is simple.
Here, we observe compact symmetric triads with low order. For two involutions θ1 and θ2 on G, we write

θ1 ∼ θ2 if there exists τ ∈ Int(G) satisfying θ2 = τθ1τ
−1. A compact symmetric triad (G, θ1, θ2) satisfying θ1 ∼ θ2

is isomorphic to (G, θ1, θ1). Hence, for a compact symmetric triad (G, θ1, θ2), the order of [(G, θ1, θ2)] is equal to
one if and only if θ1 ∼ θ2 holds. The Hermann action induced from such (G, θ1, θ2) is nothing but the isotropy
action K1 on G/K1. In other words, (G, θ1, θ2) with θ1 ̸∼ θ2 gives a nontrivial Hermann action. The isotropy
actions of compact symmetric spaces have been studied by many geometers. Therefore we will mainly focus
our attention on compact symmetric triads (G, θ1, θ2) with θ1 ̸∼ θ2. A compact symmetric triad (G, θ1, θ2) is said
to be commutative, if θ1θ2 = θ2θ1 holds. Clearly, ord[(G, θ1, θ2)] ≤ 2 holds if and only if [(G, θ1, θ2)] is commutable,
i.e., there exists a commutative compact symmetric triad (G, θ′1, θ

′
2) ∼ (G, θ1, θ2).

The following proposition gives a sufficient condition that the order of [(G, θ1, θ2)] is equal to one.

Proposition 2.6. Let (G, θ1, θ2) and (G, θ′1, θ
′
2) be two compact symmetric triads satisfying (G, θ1, θ2) ∼ (G, θ′1, θ

′
2).

Assume that there exists n ∈ N such that (θ1θ2)n = 1 and (θ′1θ
′
2)
n+1 = 1. Then we have θ1 ∼ θ2. In particular, θ′1 ∼ θ′2

holds.
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Proof. Without loss of generalities we may assume that θ′1 = θ1 and θ′2 = τθ2τ
−1 for some τ ∈ Int(G). Then, we

have (θ1θ
′
2)
n+1 = (θ1τθ2τ

−1)nθ1(τθ2τ
−1). Hence it is sufficient to show that there exists τ1 ∈ Int(G) such that

(θ1τθ2τ
−1)nθ1 = τ1θ2τ

−1
1 .

Let us consider the case when n is even: n = 2m for some m ∈ N. Then we have (θ1τθ2τ
−1)nθ1 =

(θ1τθ2τ
−1)mθ1(θ1τθ2τ

−1)m. Let g be in G satisfying τ = τg. Since θiτg = τθi(g)θi holds, there exists τ1 ∈ Int(G)
satisfying (θ1τθ2τ

−1)m = τ1(θ1θ2)
m. From (θ1θ2)

2m = 1, we obtain

(θ1τθ2τ
−1)nθ1 = τ1(θ1θ2)

mθ1(θ2θ1)
mτ−1

1 = τ1(θ1θ2)
2mθ1τ

−1
1 = τ1θ1τ

−1
1 .

In the case when n is odd, a similar argument shows that there exists τ1 ∈ Int(G) such that (θ1τθ2τ−1)nθ1 =
τ1θ2τ

−1
1 . Thus, we have complete the proof.

Here, let us consider the case when the rank of [(G, θ1, θ2)] is equal to zero. Then K2 acts transitively on G/K1

by Theorem 2.1. Furthermore, the value of the order of θ′1θ′2 is independent of the choice of a representative
(G, θ′1, θ

′
2) in [(G, θ1, θ2)], namely, the following proposition holds.

Proposition 2.7. Assume that the rank of [(G, θ1, θ2)] is equal to zero. If (G, θ1, θ2) ∼ (G, θ′1, θ
′
2) then, ord(θ1θ2) =

ord(θ′1θ
′
2) holds.

Proof. It follows from (G, θ1, θ2) ∼ (G, θ′1, θ
′
2) that there exist φ ∈ Aut(G) and g ∈ G satisfying the following

relation:
θ′1 = φθ1φ

−1, θ′2 = τgφθ2φτ
−1
g , (2.2)

where τg is an inner automorphism of G defined by τg(h) = ghg−1 (h ∈ G). By applying Theorem 2.1
to (G, θ′1, θ

′
2) we have k1 ∈ K ′

1 and k2 ∈ K ′
2 satisfying g = k′2k

′
1. Here, we have used the assumption

rank[(G, θ1, θ2)] = 0. Then from (2.2) we obtain

θ′1 = τk1θ
′
1τ

−1
k1

= (τk1φ)θ1(τk1φ)
−1,

θ′2 = τ−1
k2
θ′2τk2 = τ−1

k2
(τk2τk1φθ2φτ

−1
k1
τ−1
k2

)τk2 = (τk1φ)θ2(τk1φ)
−1.

This obeys ord(θ1θ2) = ord(θ′1θ
′
2). Thus we have completed the proof.

2.3. Compact symmetric triads at the Lie algebra level

In the present paper, we will also treat compact symmetric triads at the Lie algebra level. A compact
symmetric triad at the Lie algebra level is a triplet (g, θ1, θ2) which consists of a compact semisimple Lie algebra
g and two involutions θ1 and θ2 of g. Let Aut(g) denote the group of automorphisms on g and Int(g) the group
of inner automorphisms on g. Then Int(g) is a normal subgroup of Aut(g). Let us define the Lie algebra version
of Definition 2.2 as follows.

Definition 2.8. Two compact symmetric triads (g, θ1, θ2) and (g, θ′1, θ
′
2) are isomorphic, which we write

(g, θ1, θ2) ∼ (g, θ′1, θ
′
2), if there exist φ ∈ Aut(g) and τ ∈ Int(g) satisfying the following relations:

θ′1 = φθ1φ
−1, θ′2 = τφθ2φ

−1τ−1.

Let us consider a correspondence between the Lie group level and the Lie algebra level for compact
symmetric triads. For a compact symmetric triad (G, θ1, θ2) at the Lie group level, (g, dθ1, dθ2) gives a compact
symmetric triad at the Lie algebra level. Then (g, dθ1, dθ2) is called the compact symmetric triad at the Lie
algebra level associated with (G, θ1, θ2). We find that for two compact symmetric triads (G, θ1, θ2) and (G, θ′1, θ

′
2),

(G, θ1, θ2) ∼ (G, θ′1, θ
′
2) implies (g, dθ1, dθ2) ∼ (g, dθ′1, dθ

′
2). We say that two compact symmetric triads (G, θ1, θ2)

and (G, θ′1, θ
′
2) are locally isomorphic, if (g, dθ1, dθ2) ∼ (g, dθ′1, dθ

′
2) holds.

Conversely, for a compact symmetric triad (g, θ1, θ2) at the Lie algebra level, there exists a compact symmetric
triad (G,Θ1,Θ2) satisfying (g, dΘ1, dΘ2) = (g, θ1, θ2), where g is the Lie algebra of G. Indeed, let G denote the
universal covering group of a connected Lie group with Lie algebra g or the adjoin group of g. Then we can get
Θi as the extension of θi to an involution of G.

Let (g, θ1, θ2) be a compact symmetric triad at the Lie algebra level. The rank of (g, θ1, θ2) is defined as the
dimension of a maximal abelian subspace of m1 ∩m2. We define the rank of [(g, θ1, θ2)] by that of (g, θ1, θ2). In
a similar manner, the orders of (g, θ1, θ2) and its isomorphic class [(g, θ1, θ2)] are defined in the same way as in
the case of the Lie group level. We denote by rank[(g, θ1, θ2)] the rank of [(g, θ1, θ2)], and by ord[(g, θ1, θ2)] the
order of [(g, θ1, θ2)].

By definition we have the following lemma.
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Lemma 2.9. For any compact symmetric triad (G, θ1, θ2), we have rank[(G, θ1, θ2)] = rank[(g, dθ1, dθ2)].

In order to state a similar result for the order, we prepare the following lemma.

Lemma 2.10. An automorphism θ of G is the identity transformation on it if and only if so is its differential dθ on g.

We omit the details of the proof. The following lemma follows immediately from Lemma 2.10.

Lemma 2.11. Let (G, θ1, θ2) be a compact symmetric triad. Then ord(θ1θ2) = ord(dθ1dθ2) holds. In particular, we have
ord[(G, θ1, θ2)] = ord[(g, dθ1, dθ2)].

Lemma 2.12. Let (G, θ1, θ2) be a compact symmetric triad. Assume that there exists a maximal abelian subalgebra t of g
such that t ∩mi and t ∩ (m1 ∩m2) are maximal abelian subspaces of mi and m1 ∩m2, respectively. Then θ1 ∼ θ2 implies
ord(dθ1dθ2|t) = 1.

Proof. It follows from θ1 ∼ θ2 we have dθ2 = Ad(g)dθ1Ad(g)−1 for some g ∈ G. By Theorem 2.1 there exist ki ∈
Ki and H ∈ t ∩ (m1 ∩m2) such that g = k2 exp(H)k1 holds. Here, we have used the maximality of t ∩ (m1 ∩m2)
in m1 ∩m2. Then we have

Ad(g)dθ1Ad(g)−1 = Ad(k2)e
ad(H)Ad(k1)dθ1Ad(k1)

−1e−ad(H)Ad(k2)
−1

= Ad(k2)e
ad(H)dθ1e

−ad(H)Ad(k2)
−1,

from which dθ2 = ead(H)dθ1e
−ad(H) holds. Since the automorphism ead(H) gives the identity transformation on

t, we obtain dθ2|t = dθ1|t. This yields ord(dθ1dθ2|t) = 1.

3. σ-systems, Satake diagrams and compact symmetric pairs

In this section, we recall the notions of σ-systems, Satake diagrams and compact symmetric pairs. We refer
to the references [7] and [24], for example. The contents of this section will be generalized in Sections 4 and 5.

3.1. Root systems

We begin with recalling the definition of a root system. Let t be a finite dimensional real vector space. Fix
an inner product ⟨ , ⟩ on t. We write ∥α∥ = ⟨α, α⟩1/2 as the norm of α ∈ t. For α ∈ t− {0} we define a linear
isometry wα ∈ O(t) by

wα(H) = H − 2
⟨α,H⟩
∥α∥2

α (H ∈ t).

Then wα satisfies w2
α = 1 and wα(α) = −α.

Definition 3.1. A finite subset ∆ ⊂ t− {0} is called a root system of t, if it satisfies the following two conditions:

(1) t = spanR(∆).

(2) If α and β are in ∆, then wα(β) = β − 2
⟨α, β⟩
∥α∥2

α is in ∆, and 2
⟨α, β⟩
∥α∥2

is in Z.

In addition, a root system ∆ is said to be reduced, if it satisfies the following condition:

(3) If α and β are in ∆ with β = mα, then m = ±1 holds.

A root system ∆ of t is said to be reducible if there exist two non-empty subsets ∆1 and ∆2 of ∆ satisfying
the following conditions:

∆ = ∆1 ∪∆2, ∆1 ∩∆2 = ∅, ⟨∆1,∆2⟩ = {0}.

Otherwise it is said to be irreducible. Any root system is decomposed into irreducible ones, namely, there exist
unique irreducible root systems ∆1, . . . ,∆l up to permutation of the indices such that ∆ = ∆1 ∪ · · · ∪∆l and
that ⟨∆i,∆j⟩ = {0} for 1 ≤ i ̸= j ≤ l. This decomposition of ∆ is called the irreducible decomposition of ∆.

Let ∆ and ∆′ be reduced root systems of t and t′, respectively. It is shown that, if ∆ and ∆′ are irreducible,
then, for any linear isomorphism φ : t → t′ satisfying φ(∆) = ∆′, we have

2
⟨β, α⟩
∥α∥2

= 2
⟨φ(β), φ(α)⟩
∥φ(α)∥2

, α, β ∈ ∆.

471 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads

Based on this observation we define an isomorphism of root systems as follows: A linear isomorphism φ : t → t′

satisfying φ(∆) = ∆′ is called an isomorphism of root systems between ∆ and ∆′. Two root systems ∆ and ∆′

are isomorphic, which we write ∆ ≃ ∆′, if there exists such φ. Then we have φ(∆) = ∆′. We find that ≃ gives an
equivalence relation on the set of root systems.

In the case when t = t′, ⟨ , ⟩ = ⟨ , ⟩′,∆ = ∆′, an isomorphism φ : t → t of ∆ is called an automorphism of ∆.
Denote by Aut(∆) the group of automorphisms of ∆. It is clear that Aut(∆) is a finite group. The subgroup of
O(t) generated by {wα | α ∈ ∆} is called the Weyl group of ∆, which we write W (∆). Then W (∆) is a normal
subgroup of Aut(∆). In particular, W (∆) is a finite group.

3.2. σ-systems

Let ∆ be a reduced root system of t. Let σ : t → t be an involutive linear isometry of ∆, which we call an
involution. Then the pair (∆, σ) is called a σ-system of t. If we put t±σ := {H ∈ t | σ(H) = ±H}, then we have
an orthogonal decomposition t = tσ ⊕ t−σ with respect to the inner product ⟨ , ⟩. The rank of (∆, σ) is defined
as the dimension of tσ, which we write rank(∆, σ). By definition, we have rank(∆, σ) ≤ rank(∆). Let pr : t → tσ

denote the orthogonal projection, that is,

pr : t → tσ; H 7→ 1

2
(H + σ(H)).

Set ∆0 := {α ∈ ∆ | pr(α) = 0} = {α ∈ ∆ | σ(α) = −α}. Then ∆0 satisfies ∆0 = −∆0 and α+ β ∈ ∆0 for all α, β ∈
∆0 with α+ β ∈ ∆. We call such a subset of ∆ a closed subsystem of ∆. Then ∆0 becomes a root system of
spanR(∆0).

A σ-system (∆, σ) is said to be σ-reducible if there exist two non-empty σ-invariant subsets ∆1 and ∆2 of ∆
satisfying the following conditions:

∆ = ∆1 ∪∆2, ∆1 ∩∆2 = ∅, ⟨∆1,∆2⟩ = {0}.

Otherwise it is said to be σ-irreducible. Any σ-system is decomposed into σ-irreducible ones, that is, there exist
unique mutually orthogonal, σ-irreducible σ-systems (∆1, σ1), . . . , (∆l, σl) up to permutation of the indices
such that ∆ = ∆1 ∪ · · · ∪∆l and σ = σj holds on ∆j for each 1 ≤ j ≤ l. Then this decomposition is called the
σ-irreducible decomposition of the σ-system (∆, σ), which we write

(∆, σ) = (∆1, σ1) ∪ · · · ∪ (∆l, σl).

It is clear that (∆, σ) is σ-irreducible if ∆ is irreducible as a root system. Two σ-systems (∆, σ) and (∆′, σ′) are
said to be isomorphic, which we write (∆, σ) ≃ (∆′, σ′), if there exists an isomorphism φ : t → t′ of root systems
satisfying σ′ = φσφ−1. We call such φ an isomorphism of σ-systems. Then ≃ gives an equivalence relation on
the set of σ-systems. We find that if (∆, σ) ≃ (∆′, σ′), then their rank are the same.

3.3. Normal σ-systems and their Satake diagrams

A σ-system (∆, σ) is said to be normal if σ(α)− α /∈ ∆ for all α ∈ ∆. For a normal σ-system (∆, σ), Araki ([1])
proved that the set {pr(α) | α ∈ ∆−∆0} =: Σ becomes a root system of tσ (see also [24, Proposition 1.1.3.1]),
which is called the restricted root system of (∆, σ). Then we have rank(Σ) = rank(∆, σ). The equivalence relation
≃ is compatible with the normality of a σ-system. Namely, if (∆, σ) ≃ (∆′, σ′) and (∆, σ) is normal, then (∆′, σ′)
is also normal. In addition, if we denote by Σ′ the restricted root system of (∆′, σ′), then Σ ≃ Σ′ holds as root
systems.

Now, let us recall the notion of Satake diagrams for normal σ-systems. Let (∆, σ) be a normal σ-system.
Let Π be a fundamental system of ∆. The positive root system ∆+ for Π is described by ∆+ = {

∑
α∈Πmαα ∈

∆ | mα ∈ Z≥0}, where Z≥0 := {m ∈ Z | m ≥ 0}. Then Π is called a σ-fundamental system, if σ(α) is in ∆+ for all
α ∈ ∆+ −∆0. It is known that a σ-fundamental system always exists (cf. [1, p. 11]). The following lemma will
be needed later.

Lemma 3.2. Let Π be a σ-fundamental system. For any φ ∈ Aut(∆), φ(Π) is a (φσφ−1)-fundamental system of ∆.

The proof is straightforward and is omitted. Let Π be a σ-fundamental system of ∆. It is known that
Π ∩∆0 =: Π0 is a fundamental system of ∆0 (cf. [24, p. 23]). Denote by (Π0)Z the Z-submodule of t generated by
Π0. It follows from [24, Lemma 1.1.3.2] that there exists uniquely a permutation p : Π−Π0 → Π−Π0 of order
two such that

σ(α) ≡ p(α) (mod(Π0)Z),
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which is called the Satake involution of (∆, σ) associated with Π. Then the Satake diagram S = S(Π,Π0, p) of (∆, σ)
associated with Π is described as follows: In the Dynkin diagram of Π, every root in Π0 is replaced from a white
circle to a black circle, and two roots α, α′ ∈ Π−Π0 with α ̸= α′ are connected by a curved arrow if p(α) = α′.

The normal σ-system (∆, σ) can be reconstructed from S(Π,Π0, p). The Dynkin diagram of Π determines the
structures of ∆, t = spanR(Π) and ⟨ , ⟩. We write Π = {α1, . . . , αl} with l = rank(∆). By renumbering the indices
if necessary, we may assume that there exists l1, l2 ≤ l such that

Π−Π0 = {α1, . . . , αl1 , αl1+1, . . . , αl1+l2 , αl1+l2+1, . . . , αl1+2l2},

and
p(αj) = αj (1 ≤ j ≤ l1), p(αl1+j′) = αl1+l2+j′ (1 ≤ j′ ≤ l2).

In particular, l2 is equal to the number of arrows in S(Π,Π0, p). From this assumption the cardinality of Π0

is equal to l − (l1 + 2l2) =: l0. Clearly, Π0 = {αl−l0+1, . . . , αl} holds. For 1 ≤ j ≤ l1, the condition p(αj) = αj
implies that

αj − σ(αj) ∈
l∑

k=l−l0+1

Zαk ⊂ t−σ. (3.1)

Furthermore, for 1 ≤ j′ ≤ l2, from p(αl1+j′) = αl1+l2+j′ we have

t−σ ∋ αl1+j′ − σ(αl1+j′) = αl1+j′ − αl1+l2+j′ +

l∑
k=l−l0+1

mkαk, (3.2)

for some integers ml−l0+1, . . . ,ml. Hence it follows from (3.1) and (3.2) that the (−1)-eigenspace t−σ of σ in t
has the following description:

t−σ =

l∑
k=1

R(αk − σ(αk)) =

l2∑
j′=1

R(αl1+j′ − αl1+l2+j′)⊕
l∑

k=l−l0+1

Rαk.

In addition, we obtain tσ as the orthogonal complement of t−σ in t. Thus, the action of σ on ∆ is reconstructed.
In particular, we get rank(∆, σ) = l − (l2 + l0) = l1 + l2.

Let us explain that the definition of the Satake diagram of (∆, σ) is independent of the choice of σ-
fundamental systems. Suppose that Π̃ is another σ-fundamental system of ∆. Set Π̃0 := Π̃ ∩∆0. We denote
by p̃ the Satake involution associated with Π̃. Then it follows from [22, Proposition A in Appendix] that there
exists w ∈W (∆) satisfying Π̃ = w(Π) and wσ = σw. Thus, we have Π̃0 = w(Π0) and w(p(α)) = p̃(w(α)) for all
α ∈ Π−Π0. Then we write

S(Π,Π0, p) = S(Π′,Π′
0, p

′).

Definition 3.3. Let (∆, σ) and (∆′, σ′) be two normal σ-systems, and S(Π,Π0, p) and S(Π′,Π′
0, p

′) denote
the Satake diagrams of (∆, σ) and (∆′, σ′), respectively. We write S(Π,Π0, p) ≃ S(Π′,Π′

0, p
′) if there exists an

isomorphism ψ : Π → Π′ of Dynkin diagrams such that ψ(Π0) = Π′
0 and ψ(p(α)) = p′(ψ(α)) for all α ∈ Π−Π0.

We call such ψ an isomorphism of Satake diagrams. Then ≃ gives an equivalence relation for Satake diagrams.

By the reconstruction of (∆, σ) from S(Π,Π0, p) we have the following lemma:

Lemma 3.4. Retain the notation as in Definition 3.3. Then, (∆, σ) ≃ (∆′, σ′) if and only if S(Π,Π0, p) ≃ S(Π′,Π′
0, p

′).
In particular, any isomorphism of Satake diagrams can be extended to an isomorphism of σ-systems.

3.4. Compact symmetric pairs and their Satake diagrams

Let G be a compact connected semisimple Lie group, and θ be an involution of G. We call the pair (G, θ) a
compact symmetric pair. Denote by g the Lie algebra of G. Fix an ad(g)-invariant inner product ⟨ , ⟩ on g. The
differential dθ of θ at the identity element in G gives an involution of g, which we write the same symbol θ
if there is no confusion. Let g = gθ ⊕ g−θ =: k⊕m be the canonical decomposition of g for θ. Take a maximal
abelian subalgebra t of g such that t ∩m is a maximal abelian subspace of m. This implies that t is θ-invariant.

Let ∆(⊂ t) denote the root system of g with respect to t. Since θ induces an automorphism of ∆, the pair
(∆, σ) := (∆,−θ|t) gives a σ-system of t. It follows from [24, Lemma 1.1.3.6] that (∆, σ) is normal. We call it the
σ-system of (G, θ) (or (g, θ)) for t. We will show that the σ-system (∆, σ) is uniquely determined from (G, θ)
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up to isomorphism. Let t′ be another maximal abelian subalgebra of g such that t′ ∩m is a maximal abelian
subspace of m. Denote by (∆′, σ′) := (∆′,−θ|t′) the σ-system of (G, θ) for t′. Let K be the identity component of
the fixed point subgroup of θ in G. From the Ad(K)-conjugacy of maximal abelian subspaces of m, there exists
k ∈ K satisfying t′ ∩m = Ad(k)(t ∩m). In addition, there also exists k′ ∈ K satisfying the following relations
(cf. [23, Proposition 5]):

Ad(k′)(H) = H (H ∈ t′ ∩m), Ad(k′)(Ad(k)(t ∩ k)) = t′ ∩ k.

If we put k̃ := k′k ∈ K, then we have Ad(k̃)(t ∩m) = t′ ∩m and Ad(k̃)(t ∩ k) = t′ ∩ k. This obeys Ad(k̃)(t) = t′.
Thus, we obtain

(∆′, σ′) = (Ad(k̃)(∆),−(Ad(k̃)θAd(k̃)−1)|Ad(k̃)(t)) ≃ (∆,−θ|t) = (∆, σ).

We define the Satake diagram of (G, θ) as that of (∆, σ), which is uniquely determined up to isomorphisms due
to Lemma 3.4.

Two compact symmetric pairs (G, θ) and (G, θ′) are said to be isomorphic, which we write (G, θ) ≃ (G, θ′),
if there exists φ ∈ Aut(G) satisfying θ′ = φθφ−1. Then their Satake diagrams are isomorphic in the sense of
Definition 3.3. In order to consider the converse (see Theorem 3.9 for the precise statement), we will recall the
result for compact symmetric pairs due to Araki ([1]).

Let (G, θ) and (G, θ′) be two compact symmetric pairs. Let t be a maximal abelian subalgebra of g such that
t ∩m and t ∩m′ are maximal abelian subspace of m and m′, respectively. The following theorem states that, if
their differentials dθ and dθ′ coincide with each other on t, then θ and θ′ are the same on the whole G up to the
Int(G)-conjugacy.

Theorem 3.5 (Araki). Retain the notation above. Assume that dθ|t = dθ′|t holds. Then, there existsH ∈ t ∩m satisfying
dθ′ = ead(H)dθe−ad(H). In addition, θ′ = τhθτ

−1
h holds for h = exp(H), where τh denotes the inner automorphism of G

defined by g 7→ hgh−1.

Here, we note that, under the assumption of this theorem, dθ|t = dθ′|t implies t ∩m = t ∩m′. Theorem 3.5
will be used in the proof of Theorem 5.12. For the completeness of our proof of Theorem 5.12, we will prove
Theorem 3.5 (see [1, Theorem 2.14] for the original statement and its proof).

For this purpose we need some preparation. We first restate Theorem 3.5 in terms of the complexification
of g. Let gC denote the complexification of g. We write dθC and dθ′C as the complexifications of dθ and
dθ′, respectively. Then it is sufficient to show that, if dθ|t = dθ′|t holds, then there exists H ∈ t ∩m satisfying
dθ′C = ead(H)dθCe−ad(H). In order to give such H , we next recall the result for compact symmetric pairs due to
Klein ([12]). In fact, following to his result, we can obtain a description for the action of dθC on gC by means of
the corresponding Satake diagram.

Let (G, θ) be a compact symmetric pair. Take a maximal abelian subalgebra t of g such that t ∩m is a maximal
abelian subspace of m. Denote by ∆ the root system of g with respect to t. We write the root space decomposition
of the complexification gC as follows:

gC = tC ⊕
∑
α∈∆

g(t, α),

where g(t, α) := {X ∈ gC | [H,X] =
√
−1⟨α,H⟩X, H ∈ t}. For each α ∈ ∆, g(t, α) is a complex one dimensional

subspace of gC. A family {Xα}α∈∆ of vectors in gC is called a Chevalley basis of gC, if it satisfies the following
conditions:

(1) For each α ∈ ∆, Xα is a nonzero vector in g(t, α).

(2) [Xα, X−α] = −
√
−1α for α ∈ ∆.

(3) There exists a family {cα,β | α, β ∈ ∆, α+ β ∈ ∆} of real numbers satisfying [Xα, Xβ ] = cα,βXα+β and
cα,β = −c−α,−β .

(4) [Xα, Xβ ] = 0 for α, β ∈ ∆ with α+ β ̸∈ ∆ ∪ {0}.

For formal reasons we put cα,β = 0 for α, β ∈ ∆ with α+ β ̸∈ ∆ ∪ {0}. Then {cα,β} is called the Chevalley
constants associated with {Xα}α∈∆. We note that a Chevalley basis is not a basis of the whole gC but the
subspace

∑
α∈∆ g(t, α). It is known that a Chevalley basis exists (see [13, Theorem 6.6, Chapter VI] for the

proof).
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We extend ⟨ , ⟩ to a complex bilinear form on gC, which is denote by the same symbol ⟨ , ⟩. Then it is ad(gC)-
invariant and nondegenerate. For each α ∈ ∆, by taking the scalar product of both sides of [Xα, X−α] = −

√
−1α

with αwe get ⟨Xα, X−α⟩ = −1. We writeX the complex conjugate ofX ∈ gC with respect to g in gC. By a similar
argument in the proof of [12, Proposition 3.5] we obtain the following lemma.

Lemma 3.6. There exists a Chevalley basis {Xα}α∈∆ of gC which satisfies Xα = −X−α for α ∈ ∆. Then we have
⟨Xα, Xα⟩ = 1.

Let {Xα}α∈∆ be a Chevalley basis of gC. The complexification of θ will be denoted by the same symbol θ.
For each α ∈ ∆, it follows from θ(g(t, α)) = g(t, θ(α)) that there exists a nonzero complex number sα satisfying
θ(Xα) = sαXθ(α). The family {sα}α∈∆ is called the Klein constants of (g, θ) associated with {Xα}α∈∆. Then we
get sθ(α) = s−1

α because of θ2 = 1. Furthermore, if Xα = −X−α holds for α ∈ ∆, then {sα}α∈∆ has the following
properties:

Lemma 3.7 ([12, Proposition 4.1]). Assume that {Xα}α∈∆ satisfies Xα = −X−α for α ∈ ∆. Let α and β be in ∆.

(1) We have s−α = sα = s−1
α . In particular, |sα| = 1 holds.

(2) If θ(β) = β, then g(t, β) ⊂ kC. In particular, we get sβ = 1.

Fix an elementH ∈ t. We have another involution θ′ := ead(H)θe−ad(H) of g, which satisfies θ′|t = θ|t. Set m′ :=
g−θ

′
= ead(H)(m). Then we obtain t ∩m′ = ead(H)(t ∩m), from which t ∩m′ is a maximal abelian subspace of m′.

Denote by {s′α}α∈∆ the Klein constants of (g, θ′) associated with {Xα}α∈∆. Then we have s′α = e
√
−1⟨H,θ(α)−α⟩sα

for α ∈ ∆.
The following lemma is useful in our proof of Theorem 3.5.

Lemma 3.8. Let {Xα}α∈∆ be a Chevalley basis of gC satisfying Xα = −X−α for α ∈ ∆. We put ∆0 = {α ∈ ∆ | θ(α) =
α}. Assume that γ1, . . . , γr (r ∈ N) are in ∆−∆0 which satisfy {θ(γ1)− γ1, . . . , θ(γr)− γr}(⊂ t ∩m) are linearly
independent. Then, for any u1, . . . , ur ∈ U(1), there exists H ∈ t ∩m satisfying the following relation:

uj = e
√
−1⟨H,θ(γj)−γj⟩sγj (1 ≤ j ≤ r). (3.3)

Proof. For each 1 ≤ j ≤ r, it follows from Lemma 3.7, (1) that there exists tj ∈ R satisfying sγj = e
√
−1tj . Since

uj is also in U(1), there exists vj ∈ R satisfying uj = e
√
−1vj . We define a matrix C by

C :=
(
⟨θ(γj)− γj , θ(γk)− γk⟩

)
1≤j,k≤r .

It follows from the assumption that the square matrix C is invertible. Let h1, . . . , hr be real numbers defined by h1
...
hr

 := C−1

 v1 − t1
...

vr − tr

 .

Then, if we put H :=
∑r

k=1 hk(θ(γk)− γk) ∈ t ∩m, then the following relation holds:

vj = tj + ⟨H, θ(γj)− γj⟩ (1 ≤ j ≤ r).

Thus we obtain the assertion because H satisfies (3.3).

Now, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let {Xα}α∈∆ be a Chevalley basis of gC with Xα = −X−α. Denote by {sα}α∈∆

(resp. {s′α}α∈∆) the Klein constants of (g, θ) (resp. (g, θ′)) associated with {Xα}α∈∆. By the assumption θ|t = θ′|t
we obtain (∆,−θ|t) = (∆,−θ′|t) =: (∆, σ). Set r := rank(∆, σ). Let Π be a σ-fundamental system of ∆, and
Π0 := Π ∩∆0. We can take α1, . . . , αr ∈ Π−Π0 such that {θ(α1)− α1, . . . , θ(αr)− αr}(⊂ t ∩m) are linearly
independent (cf. [24, p. 23]). By applying Lemma 3.8 to s′α1

, . . . , s′αr
∈ U(1), there exists H ∈ t ∩m satisfying

the following relation:
s′αj

= e
√
−1⟨H,θ(αj)−αj⟩sαj

(1 ≤ j ≤ r).
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Then we have θ′ = ead(H)θe−ad(H) on
∑r

j=1 g(t, αj). Furthermore, if we put

h := t⊕
∑
β∈Π0

g(t, β)⊕
r∑
j=1

(g(t, αj)⊕ g(t,−θ(αj))),

then we have θ′ = ead(H)θe−ad(H) on the subset h ∪ h of gC. Since gC is generated by h ∪ h, we have θ′ =
ead(H)θe−ad(H) on gC. Therefore we have completed the proof.

The following theorem is shown by Lemma 3.4 and Theorem 3.5.

Theorem 3.9. Let (G, θ) and (G, θ′) be two compact symmetric pairs. Then the followings conditions are equivalent:

(1) (G, θ) and (G, θ′) are locally isomorphic, namely, there exists φ ∈ Aut(g) satisfying dθ′ = φdθφ−1.

(2) The σ-systems of (G, θ) and (G, θ′) are isomorphic.

(3) The Satake diagrams of (G, θ) and (G, θ′) are isomorphic.

In addition, in the case when G is simply-connected or when G is the adjoint group, (G, θ) and (G, θ′) are isomorphic if
and only if one of the above conditions (1)–(3) holds.

An abstract σ-system (∆, σ) is said to be admissible, if there exists a compact symmetric pair whose σ-
system is isomorphic to (∆, σ). Clearly, any admissible σ-system is normal. Araki ([1, No. 5.11]) determined
the admissibilities of abstract normal σ-systems based on the classification. As a consequence of Theorem 3.9,
he gave an alternative proof of Cartan’s classification for compact symmetric pairs at the Lie algebra level.
Hence the locally isomorphism class of a compact symmetric pair is represented by a diagram. Furthermore,
we can determine the restricted root system of (G, θ) with multiplicity by means of the Satake diagram, which
characterizes the local isomorphism classes of compact symmetric pairs. This is a significance to give the
alternative proof. In Section 5, we will generalize this method to classify compact symmetric triads at the
Lie algebra level.

Here, in order to present concrete examples of compact symmetric triads, we give an explicit description of
the classification for the isomorphism classes of compact symmetric pairs (g, θ) at the Lie algebra level. The
following theorem gives a criterion for two compact symmetric pairs to be isomorphic to each other.

Theorem 3.10. Assume that g is simple. Two compact symmetric pairs (g, θ) and (g, θ′) are isomorphic if and only if the
fixed point subalgebras k and k′ are isomorphic as Lie algebras.

The proof is essentially due to Helgason ([7]).

Proof. The necessity is clear. In order to prove the sufficiency we assume that k and k′ are isomorphic. We
extend θ and θ′ to complex linear involutions on gC, which we write θC and θ′C, respectively. Then the fixed
point subalgebras of θC and θ′C are isomorphic to each other. It follows from [7, Theorem 6.2, Chapter X] that θC
and θ′C are Aut(gC)-conjugate. In addition, by [7, Proposition 1.4, Chapter X] there exists φ ∈ Aut(g) satisfying
θ′ = φθφ−1. Hence the assertion holds.

From Theorem 3.10 there is no confusion when we write [(g, k)] in place of [(g, θ)]. Table 1 exhibits the
classification of the fixed point subalgebras of involutions on g. In Section 5, we will classify compact simple
symmetric triads at the Lie algebra level, based on the classification for compact simple symmetric pairs.
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Table 1. The classification of fixed point subalgebras of involutions ([7, TABLE V, p. 518])

g Fixed point subalgebra

su(n) so(n), sp(n/2) (n: even) , s(u(a)⊕ u(b)) (a+ b = n)

so(n) so(a)⊕ so(b) (a+ b = n ̸= 2, 4), u(n/2) (n ≥ 6, even)

sp(n) u(n), sp(a)⊕ sp(b) (a+ b = n)

e6 sp(4), su(6)⊕ su(2), so(10)⊕ so(2), f4

e7 su(8), so(12)⊕ su(2), e6 ⊕ so(2)

e8 so(16), e7 ⊕ su(2)

f4 sp(3)⊕ su(2), so(9)

g2 su(2)⊕ su(2)

4. Double Satake diagrams for double σ-systems

In this section, we will introduce the notions of double σ-systems and double Satake diagrams, which are
generalizations of σ-systems and Satake diagrams, respectively. Based on the equivalence relation for compact
symmetric triads, we define equivalence relations for double σ-systems and for double Satake diagrams. In
Theorem 4.7 we give a necessary and sufficient condition for two double σ-systems to be equivalent. As
explained in more detail in Section 5, this theorem plays a fundamental role in the definition of double Satake
diagrams for compact symmetric triads. We also define the rank and the order for the equivalence class of a
double σ-systems. We will discuss a geometrical meaning of the rank in Sections 5. On the other hand, we
will show the relation of the ranks and the orders between compact symmetric triads and double σ-systems in
Section 6.

4.1. Double σ-systems

Let t be a finite dimensional real vector space. Fix an inner product ⟨ , ⟩ on t. Let ∆ be a reduced root system
of t. For two involutions σ1 and σ2 on ∆, the triplet (∆, σ1, σ2) is called a double σ-system of t. In this paper, σ1
and σ2 are not necessarily commutative unless otherwise stated. Based on the equivalence relation for compact
symmetric triads as in Definition 2.2, we introduce an equivalence relation ∼ on double σ-systems as follows.

Definition 4.1. Two double σ-systems (∆, σ1, σ2) and (∆′, σ′
1, σ

′
2) are isomorphic, which we write (∆, σ1, σ2) ∼

(∆′, σ′
1, σ

′
2), if there exist an isomorphism φ : t → t′ of root systems between ∆ and ∆′, and w′ ∈W (∆′)

satisfying the following relations:

σ′
1 = φσ1φ

−1, σ′
2 = w′φσ2φ

−1w′−1. (4.1)

We write [(∆, σ1, σ2)] the isomorphism class of (∆, σ1, σ2).

A double σ-system (∆, σ1, σ2) is said to be normal, if both (∆, σ1) and (∆, σ2) are normal as σ-systems.
The normality of a double σ-system is compatible with ∼, namely, for two double σ-systems (∆, σ1, σ2) and
(∆′, σ′

1, σ
′
2) satisfying (∆, σ1, σ2) ∼ (∆′, σ′

1, σ
′
2), if (∆, σ1, σ2) is normal, then so is (∆′, σ′

1, σ
′
2).

Definition 4.2. Let (∆, σ1, σ2) be a normal double σ-system.

(1) A fundamental system Π of ∆ is called a (σ1, σ2)-fundamental system, if Π is both σ1- and σ2-fundamental
systems.

(2) (∆, σ1, σ2) is said to be canonical, if ∆ admits a (σ1, σ2)-fundamental system.

Proposition 4.3. For any normal double σ-system (∆, σ1, σ2), there exists a normal double σ-system (∆, σ1, σ
′
2) ∼

(∆, σ1, σ2) such that (∆, σ1, σ′
2) is canonical.
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Proof. For i = 1, 2, let Πi be a σi-fundamental system of ∆. Since W (∆) acts transitively on the set of
fundamental systems of ∆, there exists w ∈W (∆) such that Π1 = w(Π2) =: Π. If we put σ′

2 := wσ2w
−1, then

(∆, σ1, σ
′
2) ∼ (∆, σ1, σ2) holds. It follows from Lemma 3.2 that Π is a σ′

2-fundamental system. Hence we get the
assertion.

In general, a normal double σ-system (∆, σ1, σ2) is not necessarily canonical. Furthermore, there exist two
normal double σ-systems (∆, σ1, σ2) ̸∼ (∆, σ1, σ

′
2) such that they are canonical and that (∆, σ2) ≃ (∆, σ′

2) holds.
Before giving an example we prepare the following notation.

Notation 1. Let e1, . . . , er be the canonical basis of Rr. We write D+
r = {ei ± ej | 1 ≤ i < j ≤ r} as the set of all

the positive roots for the root system of type D with rank r ([4]). Then the following gives the set of all the
simple roots for D+

r :
Π = {α1 = e1 − e2, . . . , αr−1 = er−1 − er, αr = er−1 + er}.

Example 4.4. Let (∆, σ) be the σ-system corresponding to the compact symmetric pair (so(8), so(3)⊕ so(5)).
Then we have ∆ = {±ei ± ej | 1 ≤ i < j ≤ 4}. There exists a σ-fundamental system Π = {α1, . . . , α4} of ∆ such
that its Satake diagram is described as follows:

α1
◦

α2
◦

α3◦

α4◦

XX

��

Then we have σ : (α1, α2, α3, α4) 7→ (α1, α2, α4, α3). Clearly, (∆, σ, σ) gives a trivial example of canonical normal
double σ-systems. In what follows, we shall give an example of normal double σ-system (∆, σ, σ′) such
that (∆, σ, σ′) ∼ (∆, σ, σ) is not canonical. Furthermore, we give another example of normal double σ-system
(∆, σ, σ′′) such that (∆, σ, σ′′) is canonical, (∆, σ) ≃ (∆, σ′′) and (∆, σ, σ′′) ̸∼ (∆, σ, σ).

We define an automorphism w ∈ Aut(∆) by w : (e1, e2, e3, e4) 7→ (e1, e2, e4, e3). Then w ∈W (∆) holds. If we
put σ′ := wσw−1, then (∆, σ, σ′) ∼ (∆, σ, σ) is a normal double σ-system. In addition, from ord(σσ′) = 2 ̸=
ord(σσ), (∆, σ, σ′) cannot be canonical due to Theorem 4.7 as will be seen later.

Let κ be an automorphism of ∆ with order three defined by κ : (α1, α2, α3, α4) 7→ (α4, α2, α1, α3). We set
σ′′ := κσκ−1. Then (∆, σ) ≃ (∆, σ′′) holds. In addition, (∆, σ′′) is normal. Hence the double σ-system (∆, σ, σ′′)
is normal. It follows from κ(Π) = Π that Π becomes a σ′′-fundamental system by Lemma 3.2. This yields that
(∆, σ, σ′′) is canonical. Since the order of σσ′′ has three, we have ord(σσ) ̸= ord(σσ′′). Thus (∆, σ, σ) ̸∼ (∆, σ, σ′′)
holds by means of Theorem 4.7.

4.2. Double Satake diagrams

Let (∆, σ1, σ2) be a canonical normal double σ-system, and Π be a (σ1, σ2)-fundamental system of ∆.
Set ∆i,0 := {α ∈ ∆ | σi(α) = −α} for i = 1, 2. We denote by Si = S(Π,Πi,0, pi) the Satake diagram of (∆, σi)
associated with Π, where Πi,0 := Π ∩∆i,0 and pi is the Satake involution. We note that these Satake diagrams
S1 and S2 are described from the common Dynkin diagram of Π.

Definition 4.5. Retain the notation above. The pair (S1, S2) is called the double Satake diagram of (∆, σ1, σ2)
associated with Π.

Let us prove that the double Satake diagram (S1, S2) of (∆, σ1, σ2) is independent of the choice of Π. Let
Π′ be another (σ1, σ2)-fundamental system of ∆, and (S′

1, S
′
2) denote the double Satake diagram of (∆, σ1, σ2)

associated with Π′. It follows from [22, Proposition A in Appendix] that there exist w1 ∈W (∆)σ1
and w2 ∈

W (∆)σ2 satisfying w1(Π) = Π′ = w2(Π), where W (∆)σi := {w ∈W (∆) | σiw = wσi}. Since the action of W (∆) is
simply transitive, we obtain w := w1 = w2 ∈W (∆)σ1 ∩W (∆)σ2 . Thus, we get

S1 = S′
1, S2 = S′

2.

Then we write (S1, S2) = (S′
1, S

′
2).

Definition 4.6. Two double Satake diagrams (S1, S2) and (S′
1, S

′
2) are isomorphic, if there exists a common

isomorphism ψ of Satake diagrams between Si and S′
i for i = 1, 2. Then we write (S1, S2) ∼ (S1, S2) for short.

Such ψ is called an isomorphism of double Satake diagrams. We denote by [(S1, S2)] the isomorphism class of
(S1, S2).
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Theorem 4.7. Let (∆, σ1, σ2) and (∆′, σ′
1, σ

′
2) be two canonical double σ-systems of t and t′, respectively. Let (S1, S2)

and (S′
1, S

′
2) denote their double Satake diagrams. Then, the following three condition are equivalent:

(1) (∆, σ1, σ2) ∼ (∆′, σ′
1, σ

′
2).

(2) There exists an isomorphism φ : t → t′ of root systems between ∆ and ∆′ satisfying σ′
i = φσiφ

−1 for i = 1, 2.

(3) (S1, S2) ∼ (S′
1, S

′
2).

In particular, we have dim(tσ1 ∩ tσ2) = dim(t′σ
′
1 ∩ t′σ

′
2) and ord(σ1σ2) = ord(σ′

1σ
′
2).

Proof. It is sufficient to show (1) ⇒ (2) and (2) ⇔ (3) because (2) ⇒ (1) is clear.
(1) ⇒ (2): Assume that (∆, σ1, σ2) ∼ (∆′, σ′

1, σ
′
2). Then there exist an isomorphism φ : ∆ → ∆′ andw′ ∈W (∆′)

satisfying (4.1). Let Π and Π′ be a (σ1, σ2)-fundamental system of ∆ and a (σ′
1, σ

′
2)-fundamental system of ∆′,

respectively. It follows from Lemma 3.2 that φ(Π) is a (σ′
1, φσ2φ

−1)-fundamental system of ∆′. Then there exist
w′

1 ∈W (∆′)σ′
1

and w′
2 ∈W (∆′)σ′

2
satisfying the following relations:

Π′ = w′
1(φ(Π)), Π′ = w′

2(w
′φ(Π)),

from which we have w′
1(φ(Π)) = w′

2w
′(φ(Π)). This yields w′ = w′−1

2 w′
1. If we put φ′ := w′

1φ, then it is an
isomorphism of root systems which satisfies σ′

1 = w′
1σ

′
1w

′−1
1 = φ′σ1φ

′−1 and

σ′
2 = w′

2σ
′
2w

′−1
2 = w′

2(w
′φσ2φ

−1w′−1)w′−1
2 = w′

2(w
′−1
2 w′

1φσ2φ
−1w′−1

1 w′
2)w

′−1
2 = φ′σ2φ

′−1.

Hence we have the implication (1) ⇒ (2).
(2) ⇒ (3): Let φ : t → t′ be an isomorphism of root systems between ∆ and ∆′ satisfying σ′

i = φσiφ
−1 for

i = 1, 2. If Π is a (σ1, σ2)-fundamental system of ∆, then φ(Π) is a (σ′
1, σ

′
2)-fundamental system of ∆′. This

implies (S1, S2) ∼ (S′
1, S

′
2).

(3) ⇒ (2): Let ψ : Π → Π′ be an isomorphism of double Satake diagrams between (S1, S2) and (S′
1, S

′
2). We

extend ψ to an isomorphism ψ̃ of root systems between ∆ and ∆′ (cf. Lemma 3.4). The ψ̃ satisfies σ′
i = ψ̃σiψ̃

−1

for i = 1, 2. Thus, we have the implication (3) ⇒ (2).
From the above argument we have completed the proof.

For two double σ-systems (∆, σ1, σ2) and (∆′, σ′
1, σ

′
2), we write (∆, σ1, σ2) ≡ (∆′, σ′

1, σ
′
2) if they satisfies the

condition stated in Theorem 4.7, (2). Then ≡ gives an equivalence relation on the set of double σ-systems.
We define the rank and the order for the isomorphism class of a normal double σ-system (∆, σ1, σ2) as

follows: For a canonical representative (∆, σ′
1, σ

′
2) ∈ [(∆, σ1, σ2)],

rank[(∆, σ1, σ2)] := dim(tσ
′
1 ∩ tσ

′
2), ord[(∆, σ1, σ2)] := ord(σ′

1σ
′
2).

It follows from Theorem 4.7 that the values of dim(tσ
′
1 ∩ tσ

′
2) and ord(σ′

1σ
′
2) are independent of the choice of

(∆, σ′
1, σ

′
2). Thus the rank and the order of [(∆, σ, σ2)] are well-defined. Since σ′

1σ
′
2 induces a permutation of ∆,

the order of [(∆, σ1, σ2)] is finite. As will be shown later, in the case when G is simple, the rank and the order of
[(G, θ1, θ2)] coincide with those of [(∆, σ1, σ2)] (see Theorem 6.12).

5. Double Satake diagrams for compact symmetric triads

In Subsection 5.1, we give a normal double σ-system for a compact symmetric triad. In Subsection 5.2, we
define a quasi-canonical compact symmetric triad as a compact symmetric triad which admits a canonical
normal double σ-system. Furthermore, we prove that, for any compact symmetric triad (G, θ1, θ2), there exists
(G, θ′1, θ

′
2) ∼ (G, θ1, θ2) such that (G, θ′1, θ

′
2) is quasi-canonical. In Subsection 5.3, we introduce the notion of

double Satake diagrams for quasi-canonical compact symmetric triads. We will show that the isomorphism
class of a compact symmetric triad uniquely determines the double Satake diagram up to isomorphism
(Propositions 5.5 and 5.11). For its converse, we generalize Theorem 3.9 to compact symmetric triads, which is
given in Theorem 5.12. In Subsection 5.4, we classify compact symmetric triads (G, θ1, θ2) such that G is simple
in terms of double Satake diagrams. Our classification will be given in Corollary 5.19. In addition, we give
some results by means of the classification.
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5.1. Double σ-systems for compact symmetric triads

5.1.1. Construction of double σ-systems from compact symmetric triads Let (G, θ1, θ2) be a compact symmetric triad
and t be a maximal abelian subalgebra of g such that t ∩mi is a maximal abelian subspace of mi (cf. Lemma 2.4).
Denote by ∆ the root system of g with respect to t. Then, for each i = 1, 2, (∆, σi) := (∆,−dθi|t) gives a normal
σ-system of ∆. Hence (∆, σ1, σ2) becomes a normal double σ-system. We call (∆, σ1, σ2) the double σ-system
of (G, θ1, θ2) with respect to t. We will show that the double σ-system (∆, σ1, σ2) is uniquely determined up to
isomorphism, that is, we have the following lemma.

Lemma 5.1. Let t′ be another maximal abelian subalgebra of g such that t′ ∩mi is a maximal abelian subspace of mi and
(∆′, σ′

1, σ
′
2) denote the corresponding normal double σ-system. Then we have (∆, σ1, σ2) ∼ (∆, σ′

1, σ
′
2).

Proof. By the choices of t and t′, there exist ν1 ∈ Int(k1) and ν2 ∈ Int(k2) satisfying ν1(t) = t′ = ν2(t) (cf. [23,
Proposition 5]). In particular, ν−1

1 ν2(t) = t holds. Thus we obtain

(∆′, σ′
1, σ

′
2) = (ν1(∆),−ν1dθ1ν−1

1 |ν1(t),−ν1(ν
−1
1 dθ2ν1)ν

−1
1 |ν1(t))

∼ (∆,−dθ1|t, (ν−1
1 ν2)|t(−dθ2|t)(ν−1

2 ν1)|t)
∼ (∆, σ1, σ2).

Hence we have the assertion.

Lemma 5.2. Let (G, θ′1, θ′2) ∼ (G, θ1, θ2) be another compact symmetric triad and t′ be a maximal abelian subalgebra of
g such that t′ ∩m′

i (i = 1, 2) is a maximal abelian subspaces of m′
i. Let (∆′, σ′

1, σ
′
2) be the corresponding normal double

σ-system of (G, θ′1, θ′2). Then we have (∆, σ1, σ2) ∼ (∆′, σ′
1, σ

′
2).

Proof. It is sufficient to consider the case when θ′1 = θ1 and θ′2 = τθ2τ
−1 for some τ ∈ Int(G). Then τ(t) is θ′2-

invariant and τ(t) ∩m′
2 is a maximal abelian subspace of m′

2. Furthermore, τ(∆) is the root system of g with
respect to τ(t). If we put σ′′

2 = −dθ1|τ(t) and σ′′
2 = −dθ′2|τ(t), then (τ(∆), σ′′

1 , σ
′′
2 ) gives the normal double σ-system

of (G, θ′1, θ′2) corresponding to τ(t). By Lemma 5.1 we have (∆′, σ′
1, σ

′
2) ∼ (τ(∆), σ′′

1 , σ
′′
2 ). On the other hand, we

have (τ(∆), σ′′
1 , σ

′′
2 ) ∼ (∆, σ1, σ2). Indeed, there exists ν1 ∈ Int(k1) such that ν1(t) = τ(t), from which τ−1ν1(t) = t

holds. Hence we have

(τ(∆), σ′′
1 , σ

′′
2 ) ≡ (∆,−τ−1θ1τ |t,−dθ2|t) ∼ (∆, (τ−1ν1)|t(−dθ1|t)(ν−1

1 τ)|t,−dθ2|t).

We have complete the proof.

5.1.2. Another interpretation of the rank for compact symmetric triads As shown in Section 2, the rank of a compact
symmetric triad (G, θ1, θ2) coincides with the cohomogeneity of the Hermann action induced from (G, θ1, θ2).
We give another interpretation of the rank in terms of the double σ-system of (G, θ1, θ2). More precisely, we
prove the following proposition.

Proposition 5.3. Let t be a maximal abelian subalgebra of g such that t ∩mi (i = 1, 2) is a maximal abelian subspace of
mi, and (∆, σ1, σ2) := (∆,−dθ1|t,−dθ2|t). Then we have:

rank(G, θ1, θ2) = max{dim(tσ1 ∩ stσ2) | s ∈W (∆)}.

Proof. First, we prove
rank(G, θ1, θ2) ≥ max{dim(tσ1 ∩ stσ2) | s ∈W (∆)}. (5.1)

Let s be in W (∆) and g be an element of G with Ad(g)|t = s. If we put θ′2 = τgθ2τ
−1
g , then (G, θ1, θ

′
2) is a compact

symmetric triad which is isomorphic to (G, θ1, θ2). Furthermore, we find that tσ1 ∩ stσ2 = t ∩ (m1 ∩m′
2) is an

abelian subspace of m1 ∩m′
2. Hence we have

rank(G, θ1, θ2) = rank(G, θ1, θ
′
2) ≥ dim(tσ1 ∩ stσ2).

By the arbitrariness of s, this yields (5.1).
Next, we show the reverse inequality of (5.1). It follows from Lemma 2.4 that there exist a compact

symmetric triad (G, θ′1, θ
′
2) ∼ (G, θ1, θ2) and a maximal abelian subalgebra t′ such that t′ ∩m′

i (i = 1, 2) is a
maximal abelian subspace of m′

i, and that t′ ∩ (m′
1 ∩m′

2) is a maximal abelian subspace of m′
1 ∩m′

2. We write
(∆′, σ′

1, σ
′
2) := (∆′,−θ′1|t′ ,−θ′2|t′) as the double σ-system of (G, θ′1, θ′2). From Lemma 5.1, (G, θ1, θ2) ∼ (G, θ′1, θ

′
2)
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yields (∆, σ1, σ2) ∼ (∆′, σ′
1, σ

′
2). Then there exist an isomorphism φ : ∆ → ∆′ of root systems and s ∈W (∆)

satisfying σ′
1 = φσ1φ

−1 and σ′
2 = φsσ2s

−1φ−1, from which we get

dim(tσ
′
1 ∩ tσ

′
2) = dim(φ(tσ1) ∩ φ(stσ2)) = dim(tσ1 ∩ stσ2).

Hence we obtain
rank(G, θ1, θ2) = dim(tσ

′
1 ∩ tσ

′
2) ≤ max{dim(tσ1 ∩ stσ2) | s ∈W (∆)}.

From the above we have complete the proof.

5.2. Quasi-canonical forms in compact symmetric triads

5.2.1. Definition and existence for quasi-canonical compact symmetric triads Let us introduce the notion of a quasi-
canonical compact symmetric triad as follows.

Definition 5.4. A compact symmetric triad (G, θ1, θ2) is said to be quasi-canonical, if there exists a maximal
abelian subalgebra t of g which satisfies the following conditions:

(1) t ∩mi is a maximal abelian subspace of mi for i = 1, 2.

(2) The normal double σ-system (∆, σ1, σ2) := (∆,−dθ1|t,−dθ2|t) is canonical, that is, there exists a (σ1, σ2)-
fundamental system of ∆.

Then, t is said to be quasi-canonical with respect to (G, θ1, θ2). A quasi-canonical form of [(G, θ1, θ2)] is a
representative (G, θ′1, θ

′
2) of the isomorphism class [(G, θ1, θ2)] such that (G, θ′1, θ

′
2) is quasi-canonical as a

compact symmetric triad.

Proposition 5.5. For a compact symmetric triad (G, θ1, θ2), there exists a quasi-canonical compact symmetric triad
(G, θ1, θ

′
2) ∼ (G, θ1, θ2).

Proof. Let (G, θ1, θ2) be a compact symmetric triad and t be a maximal abelian subalgebra of g such that t ∩mi

is a maximal abelian subspace of mi. Denote by (∆, σ1, σ2) the corresponding normal double σ-system of
(G, θ1, θ2). Let Πi be a σi-fundamental system of ∆. Since N(t) acts transitively on the set of fundamental
systems of ∆, there exists g ∈ N(t) satisfying Π1 = Ad(g)(Π2). If we put θ′2 := τgθ2τ

−1
g , then it is verified that

(G, θ1, θ
′
2) ∼ (G, θ1, θ2) is quasi-canonical.

In Section 6, we will define the notion of a canonicality for compact symmetric triads, which is a stronger
condition than the quasi-canonicality (see Definition 6.1). Furthermore, in the case when G is simple, we will
prove that the existence of a representative of [(G, θ1, θ2)] which is canonical as a compact symmetric triad (see
Theorem 6.6).

5.2.2. Commutative compact symmetric triads are quasi-canonical The following proposition means that a quasi-
canonical compact symmetric triad is a generalization of a commutative one.

Proposition 5.6. Any commutative compact symmetric triad is quasi-canonical.

The proof of this proposition consists of the following three lemmas, which are essentially due to
Oshima-Sekiguchi ([21]). Roughly speaking, the first lemma states that Lemma 2.4 holds without changing
representatives of [(G, θ1, θ2)] in the case when (G, θ1, θ2) is commutative.

Lemma 5.7. Assume that (G, θ1, θ2) is commutative. Then there exists a maximal abelian subalgebra t of g such that
t ∩mi and t ∩ (m1 ∩m2) are maximal abelian subspaces of mi and m1 ∩m2, respectively. In particular, (G, θ1, θ2) satisfies
the condition (1) as in Definition 5.4.

Proof. From θ1θ2 = θ2θ1 we have g = (k1 ∩ k2)⊕ (m1 ∩m2)⊕ (k1 ∩m2)⊕ (m1 ∩ k2). Let a be a maximal abelian
subspace of m1 ∩m2. Let ai be a maximal abelian subspace of mi containing a. In a similar argument in the
proofs of [21, Lemmas (2.2) and (2.4)], it is shown that a1 and a2 are (θ1, θ2)-invariant and that [a1, a2] = {0}. In
particular, a1 + a2 is an abelian subalgebra of g. Let t be a maximal abelian subalgebra of g containing a1 + a2.
Since t contains a1 and a2, it is shown that t is (θ1, θ2)-invariant. We also obtain t ∩mi = ai and t ∩ (m1 ∩m2) = a.
Hence we get the assertion.

Lemma 5.8. Assume that (G, θ1, θ2) is commutative. Let t be a maximal abelian subalgebra of g which satisfies the
condition stated in Lemma 5.7. Set a2 := t ∩m2 and a := t ∩ (m1 ∩m2). Then, we have the followings:
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(1) We denote by Σ2 the restricted root system of (G, θ2) with respect to a2. For λ ∈ Σ2 with ⟨λ, a⟩ = {0}, we have
g(a2, λ) ⊂ kC1 , where

g(a2, λ) := {X ∈ gC | [H,X] =
√
−1⟨λ,H⟩X,H ∈ a2}.

(2) We denote by ∆ the root system of g with respect to t. For α ∈ ∆ with ⟨α, a⟩ = {0}, if ⟨α, a2⟩ ≠ {0} holds, then we
obtain ⟨α, a1⟩ = {0}.

We omit its proof since one can prove this lemma by a similar argument in the proofs of [21, Lemmas (2.7)
and (2.8)].

Lemma 5.9. Retain the notations (G, θ1, θ2) and t as in Lemma 5.7. Let ∆ be the root system of g with respect to t, and
σi := −dθi|t for i = 1, 2. Then there exists a (σ1, σ2)-fundamental system of ∆. Hence (G, θ1, θ2) satisfies the condition
(2) as in Definition 5.4.

Proof. Let ai := t ∩mi (i = 1, 2), and a := t ∩ (m1 ∩m2). Then t is decomposed into t = a⊕ (a1 ∩ k2)⊕ (a2 ∩ k1)⊕
(t ∩ (k1 ∩ k2)). Take a ordered basis of {Xj , Yk, Zl,Wr} such that {Xj}, {Yk}, {Zl} and {Wr} are bases of a,
a1 ∩ k2, a2 ∩ k1 and t ∩ (k1 ∩ k2), respectively. We denote by ∆+ the set of positive roots in ∆ with respect to
the lexicographic ordering > of t with respect to this basis. We obtain a fundamental system Π of ∆ such that
∆+ = {

∑
α∈Πmαα ∈ ∆ | mα ∈ Z≥0}. A similar argument as in [21, p. 453] shows that Π becomes a (σ1, σ2)-

fundamental system of ∆ by means of Lemma 5.8.

From the above argument we conclude that Proposition 5.6 holds.

5.3. Double Satake diagrams for compact symmetric triads

Let us explain our construction of the double Satake diagram from a quasi-canonical compact symmetric
triad. Let (G, θ1, θ2) be a quasi-canonical compact symmetric triad and t be a quasi-canonical maximal abelian
subalgebra of g with respect to (G, θ1, θ2). Denote by ∆ the root system of g with respect to t. Then we obtain a
normal double σ-system (∆, σ1, σ2) := (∆,−dθ1|t,−dθ2|t). It follows from the quasi-canonicality of (G, θ1, θ2)
that (∆, σ1, σ2) becomes canonical in the sense of Definition 4.2. We define the double Satake diagram of
(G, θ1, θ2) as that of (∆, σ1, σ2). Then the definition of the double Satake diagram of (G, θ1, θ2) is independent of
the choice of t. Indeed, we can show the following lemma.

Lemma 5.10. Let t′ be another quasi-canonical maximal abelian subalgebra of g with respect to (G, θ1, θ2). We denote by
(∆′, σ′

1, σ
′
2) := (∆′,−dθ1|t′ ,−dθ2|t′) the corresponding canonical normal double σ-system of (G, θ1, θ2). Then we have

(∆, σ1, σ2) ≡ (∆′, σ′
1, σ

′
2). Therefore the double Satake diagram of (∆, σ1, σ2) is isomorphic to that of (∆′, σ′

1, σ
′
2).

The proof is omitted since it is immediate from Theorem 4.7 and Lemma 5.1.
We next show that the double Satake diagram of a quasi-canonical compact symmetric triad is independent

of the choice of the representative of its isomorphism class, namely, we have the following proposition, which
is immediate from Theorem 4.7 and Lemma 5.2.

Proposition 5.11. Let (G, θ′1, θ′2) ∼ (G, θ1, θ2) be another quasi-canonical compact symmetric triad and (∆′, σ′
1, σ

′
2) be

the corresponding canonical normal double σ-system of (G, θ′1, θ′2). Then we have (∆, σ1, σ2) ≡ (∆′, σ′
1, σ

′
2).

It follows from Propositions 5.5 and 5.11 that, for a compact symmetric triad (G, θ1, θ2), its isomorphism class
[(G, θ1, θ2)] uniquely determines the double Satake diagram up to isomorphism. In fact, the converse also holds
as shown in the following theorem.

Theorem 5.12. Let (G, θ1, θ2) and (G, θ′1, θ
′
2) be two compact symmetric triads. We write (∆, σ1, σ2) and (∆′, σ′

1, σ
′
2)

as the corresponding canonical normal double σ-systems of the isomorphism classes [(G, θ1, θ2)] and [(G, θ′1, θ
′
2)],

respectively. We also write (S1, S2) and (S′
1, S

′
2) as the double Satake diagrams of (∆, σ1, σ2) and (∆′, σ′

1, σ
′
2), respectively.

Then the following conditions are equivalent:

(1) (G, θ1, θ2) and (G, θ′1, θ
′
2) are locally isomorphic, namely, there exist φ ∈ Aut(g) and τ ∈ Int(g) satisfying dθ′1 =

φdθ1φ
−1 and dθ′2 = τφdθ2φ

−1τ−1.

(2) (∆, σ1, σ2) ∼ (∆′, σ′
1, σ

′
2).

(3) (S1, S2) ∼ (S′
1, S

′
2).

In addition, in the case when G is simply-connected or when G is the adjoint group, (G, θ1, θ2) and (G, θ′1, θ
′
2) are

isomorphic if and only if one of the above conditions (1)–(3) holds.
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Proof. The implication (1) ⇒ (2) follows from Propositions 5.5 and 5.11. We obtain (2) ⇔ (3) from Theorem 4.7.
We prove the implication (2) ⇒ (1). Without loss of generalities we may assume that (G, θ1, θ2) and (G, θ′1, θ

′
2)

are quasi-canonical. We write (∆, σ1, σ2) = (∆,−dθ1|t,−dθ2|t) and (∆′, σ′
1, σ

′
2) = (∆′,−dθ′1|t′ ,−dθ′2|t′). It follows

from Theorem 4.7 that there exists an isomorphism φ : t → t′ of root systems between ∆ and ∆′ satisfying
σ′
i = φσiφ

−1 for i = 1, 2.
Let φ̃ be an automorphism of g with φ̃|t = φ. Since dθ′1|t′ = φ̃dθ1φ̃

−1|t′ holds, it follows from Theorem 3.5 that
there exists H ′

1 ∈ t′ ∩m′
1 such that

dθ′1 = ead(H
′
1)φ̃dθ1φ̃

−1e−ad(H′
1). (5.2)

In addition, from dθ′2|t′ = ead(H
′
1)φ̃dθ2φ̃

−1e−ad(H′
1)|t′ there also exists H ′

2 ∈ t′ ∩m′
2 such that

dθ′2 = ead(H
′
2)ead(H

′
1)φ̃dθ2φ̃

−1e−ad(H′
1)e−ad(H′

2). (5.3)

By combining (5.2) and (5.3), we find that (G, θ1, θ2) and (G, θ′1, θ
′
2) are locally isomorphic. Therefore we have

completed the proof.

5.4. The classification of compact symmetric triads by double Satake diagrams

In this subsection, we consider the classification problem for compact symmetric triads at the Lie algebra
level.

5.4.1. Reduction of the problem A compact symmetric triad (g, θ1, θ2) is said to be irreducible, if it does not admit
non-trivial (θ1, θ2)-invariant ideals of g (cf. [16, p. 48]). Any compact symmetric triad (g, θ1, θ2) is decomposed
into irreducible ones, namely, there exist unique irreducible compact symmetric triads (g(1), θ

(1)
1 , θ

(1)
2 ), . . . ,

(g(k), θ
(k)
1 , θ

(k)
2 ) such that g = g(1) ⊕ · · · ⊕ g(k) and that θi = θ

(j)
i holds on g(j) for i = 1, 2 and j = 1, . . . , k. Then

we write
(g, θ1, θ2) = (g(1), θ

(1)
1 , θ

(1)
2 )⊕ · · · ⊕ (g(k), θ

(k)
1 , θ

(k)
2 ).

This decomposition is called the irreducible decomposition of (g, θ1, θ2). The equivalence relation ∼ is
compatible with the irreducibility of a compact symmetric triad, that is, if (g, θ1, θ2) ∼ (g, θ′1, θ

′
2) and (g, θ1, θ2) is

irreducible, then (g, θ′1, θ
′
2) is also irreducible. This means that the classification problem for compact symmetric

triads reduces to that for irreducible ones. Clearly, (g, θ1, θ2) is irreducible if g is simple. Irreducible compact
symmetric triads (g, θ1, θ2) can be classified depending on whether g is simple or not. In the present paper, we
only deal with the classification problem for compact symmetric triads (g, θ1, θ2) such that g is simple.

Let g be any fixed compact simple Lie algebra. We write Inv(g) as the set of all the involutions on g. We will
explain our strategy to find all elements of the setT(g) := {[(g, θ1, θ2)] | θ1, θ2 ∈ Inv(g)}. Denote by Inv(g)/Aut(g)
the set of conjugacy classes in Aut(g) of the elements in Inv(g). Let [θi] be in Inv(g)/Aut(g) for i = 1, 2, and ki
denote the fixed point subalgebra of θi in g. We set

T(g, k1, k2) := {[(g, φ1θ1φ
−1
1 , φ2θ2φ

−1
2 )] | φ1, φ2 ∈ Aut(g)}.

Then T(g) has the following decomposition:

T(g) =
⋃

[θ1],[θ2]∈Inv(g)/Aut(g)

T(g, k1, k2) (disjoint union).

Thus, it is sufficient to determine T(g, k1, k2) for each [θ1], [θ2] ∈ Inv(g)/Aut(g).
For this purpose we make use of the classification of Inv(g)/Aut(g) and a one-to-one correspondence between

T(g, k1, k2) and the set DS(S1, S2) which is defined as follows: We may assume that (g, θ1, θ2) is quasi-canonical
(cf. Proposition 5.5). Let (∆, σ1, σ2) be the double σ-system of (g, θ1, θ2) and Π be a (σ1, σ2)-fundamental system
of ∆. We write (S1, S2) = (S(Π,Π1,0, p1), S(Π,Π2,0, p2)) as the double Satake diagram associated with Π. We
define

DS(S1, S2) = {[(ψ1 · S1, ψ2 · S2)] | ψ1, ψ2 ∈ Aut(Π)}
= {[(S1, ψ · S2)] | ψ ∈ Aut(Π)}, (5.4)

where ψi · Si is the Satake diagram defined by ψi · Si = S(Π, ψi(Πi,0), ψi · pi) with ψi · pi = ψipiψ
−1
i |Π−ψi(Πi,0).

Here, we describe the one-to-one correspondence between T(g, k1, k2) and DS(S1, S2). Let [(g, θ′1, θ
′
2)] be in

T(g, k1, k2) such that (g, θ′1, θ′2) is quasi-canonical. Denote by (S′
1, S

′
2) the double Satake diagram of (g, θ′1, θ

′
2).
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By Theorem 3.9 it follows from (g, θi) ≃ (g, θ′i) that there exists an isomorphism ψi : Si → S′
i of Satake

diagrams. Then we have (S′
1, S

′
2) = (ψ1 · S1, ψ2 · S2) ∼ (S1, ψ

−1
1 ψ2 · S2), so that [(S′

1, S
′
2)] = [(S1, ψ

−1
1 ψ2 · S2)] is

in DS(S1, S2) from (5.4). Furthermore, it can be shown that the following correspondence is well-defined in
terms of Theorem 5.12, (1) ⇒ (3):

T(g, k1, k2) → DS(S1, S2); [(g, θ
′
1, θ

′
2)] 7→ [(S′

1, S
′
2)]. (5.5)

Lemma 5.13. The correspondence (5.5) is bijective.

Proof. We first prove that (5.5) is injective. Let [(g, θ′1, θ′2)], [(g, θ′′1 , θ′′2 )] be in T(g, k1, k2) such that (g, θ′1, θ′2) and
(g, θ′′1 , θ

′′
2 ) are quasi-canonical. We write (S′

1, S
′
2) and (S′′

1 , S
′′
2 ) as the double Satake diagrams of (g, θ′1, θ′2) and

(g, θ′′1 , θ
′′
2 ), respectively. If [(S′

1, S
′
2)] = [(S′′

1 , S
′′
2 )] holds, then we obtain [(g, θ′1, θ

′
2)] = [(g, θ′′1 , θ

′′
2 )] from Theorem

5.12, (3) ⇒ (1).
Next, we prove that (5.5) is surjective. Let [(S′

1, S
′
2)] be in DS(S1, S2). Then, for each i = 1, 2, there

exists ψi ∈ Aut(Π) satisfying S′
i = ψi · Si. Let φi be an automorphism of g such that φi|Π = ψi holds. Then

(g, φ1θ1φ
−1
1 , φ2θ2φ

−1
2 ) gives a compact symmetric triad. Let (∆, σ′

1, σ
′
2) be its double σ-system. Since Π becomes a

(σ′
1, σ

′
2)-fundamental system, (g, φ1θ1φ

−1
1 , φ2θ2φ

−1
2 ) is quasi-canonical and its double Satake diagram coincides

with (S′
1, S

′
2). Thus we have complete the proof.

5.4.2. The classification Under the above argument we first determine DS(S1, S2) for [θ1], [θ2] ∈ Inv(g)/Aut(g).
This can be easily obtained by means of the structure of Aut(Π) and the table of Satake diagrams of compact
symmetric pairs (cf. [7, TABLE VI]). Our determination will be given in Theorem 5.18.

Following to [7, Chapter X, Theorem 3.29] the structure of Aut(Π) is given as follows:

Aut(Π) =


{1} (g = su(2), so(2m+ 1), sp(n), e7, e8, f4, g2),

Z2 (g = su(n) (n ≥ 3), so(2m) (m ≥ 5), e6),

S3 (g = so(8)),

where Z2 and S3 are the cyclic group of order two and the symmetric group of order three, respectively. Clearly,
in the case when Aut(Π) = {1}, DS(S1, S2) consists of only one element, that is, DS(S1, S2) = {[(S1, S2)]}. For
the others, we will obtain DS(S1, S2) by a case-by-case verification based on the classification of Inv(g)/Aut(g)
as shown in Table 1.

Let us consider the case when Aut(Π) = Z2. We first determine DS(S1, S2) for (g, k1) = (g, k2) =
(so(4m), u(2m)) with m ≥ 3.

Example 5.14. Let (g, k1) = (g, k2) = (so(4m), u(2m)) with m ≥ 3. Denote by (∆, σ1, σ2) the double σ-system of
a quasi canonical form (g, θ1, θ2). Let Π be a (σ1, σ2)-fundamental system of ∆. If we write Π = {α1, . . . , α2m} as
in Notation 1, then Aut(Π) is generated by

τ : Π → Π; (α1, . . . , α2m−2, α2m−1, α2m) 7→ (α1, . . . , α2m−2, α2m, α2m−1).

Denote by Si = S(Π,Πi,0, pi) the Satake diagram of (∆, σi) associated with Π. Then, for each i = 1, 2, the
graph of Si coincides with that of S(Π,Π0, p) or S(Π, τ(Π0), τ · p)) as in Table 2. It can be shown that
(S(Π,Π0, p), S(Π,Π0, p)) and (S(Π,Π0, p), S(Π, τ(Π0), τ · p)) give a complete representative of DS(S1, S2).

Table 2. Satake diagram of (so(4m), u(2m)) with m ≥ 3

S(Π,Π0, p) S(Π, τ(Π0), τ · p))

α1
•

α2
◦

α2m−3

• α2m−2◦

α2m−1•

α2m◦

α1
•

α2
◦

α2m−3

• α2m−2◦

α2m−1◦

α2m•

Except for this example among compact symmetric triads (g, θ1, θ2) with Aut(Π) = Z2, it is verified that
DS(S1, S2) = {[(S1, S2)]} holds by means of the following lemma.
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Lemma 5.15. Assume that S1 or S2 is invariant under the action of Aut(Π), that is, there exists i ∈ {1, 2} such that
Si = ψ · Si holds for all ψ ∈ Aut(Π). Then we have DS(S1, S2) = {[(S1, S2)]}.

We omit its proof since this lemma is easily shown by the definition of DS(S1, S2).

Example 5.16. Let us consider the case when (g, k1) = (su(n), so(n)) and (g, k2) = (su(n), s(u(a)⊕ u(b))) with
n ≥ 3. Since the Satake diagram S1 contains no black circles and no curved arrows, S1 is invariant under the
action of Aut(Π). From Lemma 5.15 we get DS(S1, S2) = {[(S1, S2)]}.

From the above argument we conclude that DS(S1, S2) have been determined in the case when Aut(Π) = Z2.
Finally, we consider the case when Aut(Π) = S3.

Example 5.17. Let g = so(8). From Table 1 we have {[(so(8), θ)] | θ ∈ Inv(so(8))} = {[(so(8), so(a)⊕ so(8− a))] |
a = 1, 2, 3, 4}. Here, we have used a special isomorphism u(4) ≃ so(2)⊕ so(6). Our argument proceeds by a
case-by-case argument as follows.

We first consider the case when (g, k1) or (g, k2) is isomorphic to (so(8), so(4)⊕ so(4)). A similar manner as in
Example 5.16 obeys DS(S1, S2) = {[(S1, S2)]}.

Next, let us consider the case when (g, k1) = (so(8), so(a)⊕ so(8− a)) and (g, k2) = (so(8), so(c)⊕ so(8− c))
for some a, c ∈ {1, 2, 3}. Denote by (∆, σ1, σ2) the double σ-system of a quasi-canonical form (g, θ1, θ2). Let
Π be a (σ1, σ2)-fundamental system of ∆. If we write Π = {α1, α2, α3, α4} as in Notation 1, then Aut(Π) =
{1, κ, κ2, τ, κτκ−1, κ2τκ−2} holds, where κ, τ ∈ Aut(Π) are defined by κ : (α1, α2, α3, α4) 7→ (α4, α2, α1, α3) and
by τ : (α1, α2, α3, α4) 7→ (α1, α2, α4, α3). Denote by Si the Satake diagram of (∆, σi) associated with Π. Then,
there exist ψ,ψ′ ∈ {1, κ, κ2} satisfying S1 = S(Π, ψ(Π

(a)
0 ), ψ · p(a)) and S2 = S(Π, ψ′(Π

(c)
0 ), ψ′ · p(c)), where the

Satake diagram S(Π, ψ(Π
(∗)
0 ), ψ · p(∗)) are in Table 3 for ψ ∈ {1, κ, κ2}. We write S∗,ψ := S(Π, ψ(Π

(∗)
0 ), ψ · p(∗)) for

short. Then it can be verified that DS(S1, S2) = {[(Sa,1, Sc,1)], [(Sa,1, Sc,κ)]} holds by a case-by-case verification.
For example, in the case when a = 1, c = 2, we have (S1,1, S2,1) ̸∼ (S1,1, S2,κ)

τ∼ (S1,1, S2,κ2

). This implies that
(S1,1, S2,1) and (S1,1, S2,κ) give a complete representative of DS(S1, S2).

Table 3. Satake diagram of (so(8), so(a)⊕ so(8− a)) with a = 1, 2, 3

a S(Π,Π
(a)
0 , p(a)) S(Π, κ(Π

(a)
0 ), κ · p(a)) S(Π, κ2(Π

(a)
0 ), κ2 · p(a))

1
α1
◦

α2
•

α3
•

α4
•

α1
•

α2
•

α3
•

α4
◦

α1
•

α2
•

α3
◦

α4
•

2
α1
◦

α2
◦

α3
•

α4
•

α1
•

α2
◦

α3
•

α4
◦

α1
•

α2
◦

α3
◦

α4
•

3
α1
◦

α2
◦

α3
◦

α4
◦

XX

��

α1
◦

α2
◦

α3
◦

α4
◦

��

//
α1
◦

α2
◦

α3
◦

α4
◦

__

//

From the above argument we conclude:

Theorem 5.18. Fix a compact simple Lie algebra g. Let [θ1], [θ2] ∈ Inv(g)/Aut(g) such that (g, θ1, θ2) is quasi-canonical.
Denote by (S1, S2) the double Satake diagram corresponding to (g, θ1, θ2). Then we obtain DS(S1, S2) as follows:
(1) Let g ̸= so(4m) with m ≥ 2: DS(S1, S2) = {[(S1, S2)]} holds.
(2) Let g = so(4m) with m ≥ 3:

(2-a) In the case when (g, ki) = (so(4m), u(2m)) for i = 1, 2, the two double Satake diagrams (S(Π,Π0, p), S(Π,Π0, p))
and (S(Π,Π0, p), S(Π, τ(Π0), τ · p)) as in Example 5.14 give a complete representative of DS(S1, S2).

(2-b) Otherwise, DS(S1, S2) = {[(S1, S2)]} holds.
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(3) Let g = so(8):

(3-a) In the case when k1 or k2 is isomorphic to so(4)⊕ so(4), DS(S1, S2) = {[(S1, S2)]} holds.

(3-b) Otherwise, there exist a, c ∈ {1, 2, 3} such that (g, k1) = (so(8), so(a)⊕ so(8− a)) and (g, k2) =

(so(8), so(c)⊕ so(8− c)). Then, the two double Satake diagrams (S(Π,Π
(a)
0 , p(a)), S(Π,Π

(c)
0 , p(c))) and

(S(Π,Π
(a)
0 , p(a)), S(Π, κ(Π

(c)
0 ), κ · p(c))) as in Example 5.17 give a complete representative of DS(S1, S2).

As a corollary of Theorem 5.18 we can obtain T(g, k1, k2) for [θ1], [θ2] ∈ Inv(g)/Aut(g). In order to present our
determination of T(g, k1, k2) we prepare the following notation.

Notation 2. In order to give involutions on a compact simple Lie algebra g, we utilize the following notation:
If In denotes the unit matrix of order n, then we put

Ia,b =

(
Ia O
O −Ib

)
∈ GL(a+ b,R), Jn =

(
O −In
In O

)
∈ GL(2n,R), (5.6)

and J ′
n = In−1,n+1Jn ∈ GL(2n,R).

Corollary 5.19. Fix a compact simple Lie algebra g. Then we have:
(1) Let g ̸= so(4m) with m ≥ 2: T(g, k1, k2) = {[(g, θ1, θ2)]} holds.
(2) Let g = so(4m) with m ≥ 3:

(2-a) In the case when (g, ki) = (so(4m), u(2m)) for i = 1, 2, (S(Π,Π0, p), S(Π,Π0, p)), (S(Π,Π0, p), S(Π, τ(Π0), τ ·
p)) as in Example 5.14 correspond to the two compact symmetric triads

(so(4m),Ad(J2m),Ad(J2m)), (so(4m),Ad(J2m),Ad(J ′
2m)), (5.7)

respectively. Furthermore, the compact symmetric triads (5.7) give a complete representative of
T(so(4m), u(2m), u(2m)).

(2-b) Otherwise, T(so(4m), k1, k2) = {[(so(4m), θ1, θ2)]} holds.

(3) Let g = so(8):

(3-a) In the case when k1 or k2 is isomorphic to so(4)⊕ so(4), we have T(so(8), k1, k2) = {[(so(8), θ1, θ2)]}.

(3-b) Otherwise, we have (g, k1) = (so(8), so(a)⊕ so(8− a)) and (g, k2) = (so(8), so(c)⊕ so(8− c)) for some a, c ∈
{1, 2, 3}. Then, (S(Π,Π(a)

0 , p(a)), S(Π,Π
(c)
0 , p(c))) and (S(Π,Π

(a)
0 , p(a)), S(Π, κ(Π

(c)
0 ), κ · p(c))) as in Example 5.17

correspond to the two compact symmetric triads

(so(8),Ad(Ia,8−a),Ad(Ic,8−c)), (so(8),Ad(Ia,8−a), κ̃Ad(Ic,8−c)κ̃
−1), (5.8)

respectively, where κ̃ denotes the extension of κ to an automorphism of so(8). Furthermore, (5.8) give a complete
representative of T(so(8), k1, k2).

From Corollary 5.19, with a few exceptions, the isomorphism class [(g, θ1, θ2)] is uniquely determined
by means of the Lie algebra structures of k1 and k2. Then, there is no confusion when we write
[(g, k1, k2)] in place of [(g, θ1, θ2)] except for compact simple symmetric triads as in Corollary 5.19, (2-
a) and (3-b). On the other hand, in the case of (2-a) in Corollary 5.19, we shall use the symbols
[(so(4m), u(2m), u(2m))] and [(so(4m), u(2m), u(2m)′)] as the isomorphism classes of (so(4m),Ad(J2m),Ad(J2m))
and (so(4m),Ad(J2m),Ad(J ′

2m)), respectively. In the case of (3-b) in Corollary 5.19, we shall also
write [(so(8), so(a)⊕ so(8− a), so(c)⊕ so(8− c))] and [(so(8), so(a)⊕ so(8− a), κ̃(so(c)⊕ so(8− c)))] as the
isomorphism classes of (so(8),Ad(Ia,8−a),Ad(Ic,8−c)) and (so(8),Ad(Ia,8−a), κ̃Ad(Ic,8−c)κ̃

−1), respectively.

5.4.3. Determination of rank and order for double σ-systems Based on the classification, we will determine the rank
and the order of the double σ-system (∆, σ1, σ2) for compact symmetric triads (g, θ1, θ2) such that g is simple.
Since (∆, σ1, σ2) is canonical, we have rank[(∆, σ1, σ2)] = rank(∆, σ1, σ2) and ord[(∆, σ1, σ2)] = ord(∆, σ1, σ2).

First, we consider the case when θ1 ∼ θ2. Then (∆, σ1, σ2) ∼ (∆, σ1, σ1) holds. Since (∆, σ1, σ1) is canonical, by
Theorem 4.7, we obtain rank(∆, σ1, σ2) = rank(∆, σ1, σ1) = rank(g, θ1) and ord(∆, σ1, σ2) = ord(∆, σ1, σ1) = 1. In
addition, we have the value of rank(g, θ1) from TABLE V in [7]. Thus, we have determined rank[(∆, σ1, σ2)] and
ord[(∆, σ1, σ2)] in the case when θ1 ∼ θ2.

Secondly, we consider the case when θ1 ̸∼ θ2. In a similar manner as in Subsection 3.3, (∆, σ1, σ2) can be
reconstructed from its double Satake diagram. Then, a direct calculation gives the rank and the order of
(∆, σ1, σ2).
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Example 5.20. Let (g, k1, k2) = (so(8), so(1)⊕ so(7), κ̃(so(2)⊕ so(6))) and (∆, σ1, σ2) denote its double σ-system.
Then, (S(Π,Π(1)

0 , p(1)), S(Π, κ(Π
(2)
0 ), κ · p(2))) as in Table 3 gives the double Satake diagram of (∆, σ1, σ2). We

write Π = {α1, . . . , α4} by means of the standard basis e1, . . . , e4 of R4 as in Notation 1. Under this setting, we
have

σ1(e1, e2, e3, e4) = (e1,−e2,−e3,−e4), σ2(e1, e2, e3, e4) = (e2, e1, e4, e3). (5.9)

Since we have
tσ1 ∩ tσ2 = Re1 ∩ (R(e1 + e2)⊕R(e3 + e4)) = {0},

rank(∆, σ1, σ2) = 0 holds. We also obtain ord(∆, σ1, σ2) = 4 by means of (5.9).

We can carry out a similar calculation for the other compact symmetric triads (g, θ1, θ2) such that g is simple
and that θ1 ̸∼ θ2. Then, we have the following proposition.

Proposition 5.21. Table 4 exhibits the ranks and the orders of the isomorphism classes of the double σ-systems
corresponding to compact symmetric triads (g, θ1, θ2) such that g is simple and that θ1 ̸∼ θ2.

Remark 5.22. As will be shown later, Table 4 exhibits the ranks and the orders of the isomorphism classes of
compact symmetric triads (G, θ1, θ2) such that G is simple. Indeed, this is shown by means of Theorems 6.6 and
6.12 in the next section.

Table 4. Rank and order for double σ-system corresponding to (g, θ1, θ2) with θ1 ̸∼ θ2

(g, k1, k2) Rank Order Remark

(su(2m), so(2m), sp(m)) m − 1 2

(su(n), so(n), s(u(a) ⊕ u(b))) a 2 n ≥ 2a

(su(2m), sp(m), s(u(a) ⊕ u(b)))

[ a

2

] 4 (a: odd, m > a),

2 (otherwise)
m ≥ a

(su(n), s(u(a) ⊕ u(b)), s(u(c) ⊕ u(d))) a 2 a < c ≤ d < b

(so(n), so(a) ⊕ so(b), so(c) ⊕ so(d)) a 2 a < c ≤ d < b

(so(8), so(a) ⊕ so(b), κ̃(so(c) ⊕ so(d)))


0 ((a, c) = (1, {1, 2, 3})),
1 ((a, c) = (2, {2, 3})),
2 ((a, c) = (3, 3))


2 ((a, c) = (2, 2)),

3 ((a, c) = (1, 1), (3, 3)),

4 ((a, c) = (1, 2), (2, 3)),

6 ((a, c) = (1, 3))

(so(2m), so(a) ⊕ so(b), u(m))

[ a

2

] 4 (a: odd, m > a),

2 (otherwise)
m ≥ a

(so(4m), u(2m), u(2m)′) m − 1 2

(sp(n), u(n), sp(a) ⊕ sp(b)) a 2 n ≥ 2a

(sp(n), sp(a) ⊕ sp(b), sp(c) ⊕ sp(d)) a 2 a < c ≤ d < b

(e6, sp(4), su(6) ⊕ su(2)) 4 2

(e6, sp(4), so(10) ⊕ so(2)) 2 2

(e6, sp(4), f4) 2 2

(e6, su(6) ⊕ su(2), so(10) ⊕ so(2)) 2 2

(e6, su(6) ⊕ su(2), f4) 1 2

(e6, so(10) ⊕ so(2), f4) 1 2

(e7, su(8), so(12) ⊕ su(2)) 4 2

(e7, su(8), e6 ⊕ so(2)) 3 2

(e7, so(12) ⊕ su(2), e6 ⊕ so(2)) 2 2

(e8, so(16), e7 ⊕ su(2)) 4 2

(f4, su(2) ⊕ sp(3), so(9)) 1 2

5.4.4. Special isomorphism and self-duality First, we consider special isomorphisms for compact symmetric
triads. In the theory of compact Lie algebras, there are some special isomorphisms for low-dimensional
compact Lie algebras (cf. [7, pp. 519–520]). Hence we find that there are some overlaps in Table 1. This obeys
special isomorphisms for compact symmetric triads with low rank as follows.

Corollary 5.23. The following relations hold:
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(1) (so(8), u(4), so(4)⊕ so(4)) ∼ (so(8), so(2)⊕ so(6), so(4)⊕ so(4)).

(2) (so(5), so(1)⊕ so(4), so(2)⊕ so(3)) ∼ (sp(2), sp(1)⊕ sp(1), u(2)).

(3) (su(4), so(4), sp(2)) ∼ (so(6), so(3)⊕ so(3), so(1)⊕ so(5)).

(4) (su(4), so(4), s(u(2)⊕ u(2))) ∼ (so(6), so(3)⊕ so(3), so(2)⊕ so(4)).

(5) (su(4), so(4), s(u(1)⊕ u(3))) ∼ (so(6), so(3)⊕ so(3), u(3)).

(6) (su(4), sp(2), s(u(2)⊕ u(2))) ∼ (so(6), so(1)⊕ so(5), so(2)⊕ so(4)).

(7) (su(4), sp(2), s(u(1)⊕ u(3))) ∼ (so(6), so(1)⊕ so(5), u(3)).

(8) (su(4), s(u(2)⊕ u(2)), s(u(1)⊕ u(3))) ∼ (so(6), so(2)⊕ so(4), u(3)).

Proof. (1) For i = 1, 2, let θi and θ′i be the involutions of g = so(8) defined by

θ1 = Ad(I2,6), θ′1 = Ad(J4), θ2 = θ′2 = Ad(I4,4).

Then we have k1 ≃ so(2)⊕ so(6) ≃ u(4) ≃ k′1 and k2 = k′2 ≃ so(4)⊕ so(4). It follows from Corollary 5.19, (3-a)
that (g, θ1, θ2) ∼ (g, θ′1, θ

′
2) holds. In a similar argument we get (2)–(8).

A compact symmetric triad (g, θ1, θ2) is said to be self-dual, if it satisfies (g, θ1, θ2) ∼ (g, θ2, θ1). Secondly, we
classify self-dual compact symmetric triads (g, θ1, θ2) in the case when g is simple. It is verified that, if two
compact symmetric triads (g, θ1, θ2) and (g, θ′1, θ

′
2) are isomorphic, and (g, θ1, θ2) is self-dual, then so is (g, θ′1, θ′2).

In the case when θ1 ∼ θ2, it follows from (g, θ1, θ1) ∼ (g, θ1, θ2) that (g, θ1, θ2) is self-dual. In the case when
θ1 ̸∼ θ2, we can determine whether (g, θ1, θ2) is self-dual or not by means of our classification as follows.

Corollary 5.24. Let θ1 and θ2 be involutions on a compact simple Lie algebra with θ1 ̸∼ θ2. The only self-dual compact
symmetric triads are given by (so(4m),Ad(J2m),Ad(J ′

2m)) with m ≥ 3, and by (so(8),Ad(Ia,8−a), κ̃Ad(Ia,8−a)κ̃
−1)

with a ∈ {1, 2, 3}.
In particular, k1 ≃ k2 implies that (g, θ1, θ2) is self-dual.

Proof. It is clear that, if (g, θ1, θ2) is self-dual, then k1 ≃ k2 holds. Conversely, from the classification for compact
symmetric triads, the only compact symmetric triads (g, θ1, θ2) satisfying k1 ≃ k2 are ones as in the statement.
Furthermore, it is verified that they are self-dual as follows: By using Ad(I2m−1,2m+1)

2 = 1 we have

(g, θ1, θ2) = (so(4m),Ad(J2m),Ad(I2m−1,2m+1)Ad(J2m)Ad(I2m−1,2m+1)
−1)

∼ (so(4m),Ad(I2m−1,2m+1)Ad(J2m)Ad(I2m−1,2m+1)
−1,Ad(J2m))

= (g, θ2, θ1).

It is shown that the double Satake diagram for (so(8),Ad(Ia,8−a), κ̃Ad(Ia,8−a)κ̃
−1) and that for

(so(8), κ̃Ad(Ia,8−a)κ̃−1,Ad(Ia,8−a)) are isomorphic. Thus, by Theorem 5.12, (3) ⇒ (1) we have
(so(8),Ad(Ia,8−a), κ̃Ad(Ia,8−a)κ̃

−1) ∼(so(8), κ̃Ad(Ia,8−a)κ̃
−1,Ad(Ia,8−a)). Hence we have the assertion.

6. Canonical forms in compact symmetric triads

In Subsection 6.1, we define the canonicality for compact symmetric triads, and give concrete examples of
canonical compact symmetric triads. In Subsection 6.2, for any compact symmetric triad (G, θ1, θ2), we prove
the existence of a canonical one (G, θ1, θ

′
2) ∼ (G, θ1, θ2) in the case when G is simple. In Subsection 6.3, we give

properties of canonical compact symmetric triads (Theorem 6.12).

6.1. Definition and examples for canonical compact symmetric triads

Let G be a compact connected semisimple Lie group, and g denote its Lie algebra.

Definition 6.1. A compact symmetric triad (G, θ1, θ2) is said to be canonical, if there exists a maximal abelian
subalgebra t of g which satisfies the following conditions:

(C1) t is quasi-canonical with respect to (G, θ1, θ2), that is, t satisfies the conditions (1) and (2) as in Definition
5.4.
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(C2) ord(θ1θ2) = ord(dθ1dθ2|t).
Then, t is said to be canonical with respect to (G, θ1, θ2). A canonical form of [(G, θ1, θ2)] is a representative
(G, θ′1, θ

′
2) of the isomorphism class [(G, θ1, θ2)] such that (G, θ′1, θ′2) is canonical as a compact symmetric triad.

In the case when (G, θ1, θ2) is canonical, the condition (C2) implies that ord(θ1θ2) and ord[(G, θ1, θ2)] are finite.
Here, we give examples of canonical compact symmetric triads as follows.

Example 6.2. For any involution θ on G, (G, θ, θ) is canonical. Indeed, let t be a maximal abelian subalgebra
of g such that t ∩m is a maximal abelian subspace of m. Then (G, θ, θ) and t satisfy the two conditions as in
Definition 6.1.

Example 6.3. Any commutative compact symmetric triad (G, θ1, θ2) with θ1 ̸∼ θ2 is canonical. Indeed, it follows
from Lemma 5.7 that there exists a maximal abelian subalgebra t of g such that t ∩mi and t ∩ (m1 ∩m2) are
maximal abelian subspaces of mi and m1 ∩m2, respectively. We have shown that t is quasi-canonical with
respect to (G, θ1, θ2). In addition, from Lemma 2.12 we obtain 2 ≤ ord(dθ1dθ2|t) ≤ ord(θ1θ2) = 2. In particular, t
satisfies the condition (C2).

In some sense, the canonical forms are not uniquely determined, namely, there exist two compact symmetric
triads (G, θ1, θ2) ∼ (G, θ′1, θ

′
2) such that they are canonical and that (G, θ1, θ2) and (G, θ′1, θ

′
2) are not equivalent

under the following equivalence relation ≡.

Definition 6.4. Two compact symmetric triads (G, θ1, θ2), (G, θ′1, θ′2) satisfy (G, θ1, θ2) ≡ (G, θ′1, θ
′
2), if there exists

φ ∈ Aut(G) satisfying θ′1 = φθ1φ
−1 and θ′2 = φθ2φ

−1. In a similar manner, we define an equivalence relation on
the set of compact symmetric triads at the Lie algebra level. By the definition (G, θ1, θ2) ≡ (G, θ′1, θ

′
2) implies

(G, θ1, θ2) ∼ (G, θ′1, θ
′
2). The converse does not hold in general.

The following example gives compact symmetric triad (G, θ1, θ2) ∼ (G, θ′1, θ
′
2) such that they are canonical

and that (G, θ1, θ2) ̸≡ (G, θ′1, θ
′
2) at the Lie algebra level. We find that another example is given in [2, Examples

2.14–16].

Example 6.5. Let g = su(4m) with m ≥ 1. We define two involutions θ and θ′ of g as follows:

θ(Z) = Z, θ′(Z) = I2m,2mZI2m,2m (Z ∈ g),

where I2m,2m is defined in (5.6). Then we have θθ′ = θ′θ. Furthermore, gθ = so(4m) and

gθ
′
=

{(
Z1 O
O Z2

) ∣∣∣∣ Z1, Z2 ∈ u(2m),
Tr(Z1 + Z2) = 0

}
= s(u(2m)⊕ u(2m)).

If we put

I ′2m,2m =
1√
2

(
I2m

√
−1I2m√

−1I2m I2m

)
∈ SU(4m),

then the product I ′2m,2mI2m,2m(I ′2m,2m)−1 has the following expression:

I ′2m,2mI2m,2m(I ′2m,2m)−1 =

(
O −

√
−1I2m√

−1I2m O

)
=: I ′′2m,2m ∈ SU(4m).

Since (I ′′2m,2m)2 = I4m holds, we have another involution θ′′ := Ad(I ′′2m,2m) of g. Then θ′′ satisfies θθ′′ = θ′′θ and
θ′ ∼ θ′′. In addition, we have gθ

′′ ≃ gθ
′
= s(u(2m)⊕ u(2m)).

Now, let us consider the following two compact symmetric triads:

(g, θ1, θ2) = (su(4m), θ, θ′), (g, θ′1, θ
′
2) = (su(4m), θ, θ′′).

It follows from Corollary 5.19 that (g, θ1, θ2) ∼ (g, θ′1, θ
′
2) holds. In addition, by Example 6.3 they are canonical.

A direct calculation shows that

k1 ∩ k2 =

{(
X1 O
O X2

) ∣∣∣∣ X1, X2 ∈ so(2m)

}
= so(2m)⊕ so(2m),

k′1 ∩ k′2 =

{(
X1 X2

−X2 X1

) ∣∣∣∣ X1 ∈ so(2m),
X2 ∈ gl(2m,R);X2 = tX2

}
≃ u(2m).

This implies that k1 ∩ k2 is not isomorphic to k′1 ∩ k′2. Thus, we have (g, θ1, θ2) ̸≡ (g, θ′1, θ
′
2).

It can be proved the uniqueness of canonical forms by imposing an additional condition on the definition.
However, when we observe at least the commutative case, we do not need to determine a canonical form
uniquely.
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6.2. Existence for canonical compact symmetric triads

The purpose of this subsection is to prove the following.

Theorem 6.6. Assume that G is simple. For any compact symmetric triad (G, θ1, θ2), there exists a canonical compact
symmetric triad (G, θ1, θ

′
2) ∼ (G, θ1, θ2).

Without loss of generalities we may assume that (G, θ1, θ2) is quasi-canonical by Proposition 5.5. Let t be a
maximal abelian subalgebra of g which is quasi-canonical with respect to (G, θ1, θ2). Denote by (∆, σ1, σ2) =
(∆,−dθ1|t,−dθ2|t) the double σ-system of (G, θ1, θ2). Let Π be a (σ1, σ2)-fundamental system of ∆.

Lemma 6.7. Let n = ord(θ1θ2|t) ∈ N. Then, we have:

(1) For any β ∈ Π1,0 ∪Π2,0, we have (θ1θ2)n = 1 on the root space g(t, β).

(2) The order of the automorphism θ1θ2 on g satisfies (θ1θ2)
n = 1 if and only if (θ1θ2)n = 1 holds on g(t, α) for all

α ∈ Π− (Π1,0 ∪Π2,0).

Proof. (1) Let β be in Π1,0 ∪Π2,0. It can be verified that (θ1θ2)n = 1 holds on g(t, β) by a case-by-case verification.
Let us consider the case when n is odd and β ∈ Π1,0. It is sufficient to show (θ2θ1)

n = 1 on g(t, β). If we write
n = 2l + 1, then (θ1θ2)

n(β) = β yields θ2((θ1θ2)l(β)) = (θ1θ2)
l(β). Hence we get g(t, β) ⊂ kC1 and g(t, (θ1θ2)l(β)) ⊂

kC2 by Lemma 3.7, (2). For any X ∈ g(t, β), we obtain

(θ2θ1)
n(X) = (θ2θ1)

2lθ2X = (θ2θ1)
lθ2((θ1θ2)

l(X)) = X.

For the other cases, a similar argument shows that (θ1θ2)n = 1 on g(t, β) for each β ∈ Π1,0 ∪Π2,0.
(2) The necessity is clear. We will only prove the sufficiency. From (1), we have (θ1θ2)

n = 1 on
∑

α∈Π g(t, α).
This yields (θ1θ2)

n = 1 on gC, equivalently, (θ1θ2)n = 1 on g. Thus we have the assertion.

In order to prove Theorem 6.6 we need to give a refinement of Lemma 6.7, (2) (see Lemma 6.11). Let (G, θ1, θ2)
be a quasi-canonical compact symmetric triad and t be a quasi-canonical maximal abelian subalgebra of g with
respect to (G, θ1, θ2). Denote by (S1(Π,Π1,0, p1), S2(Π,Π2,0, p2)) the corresponding double Satake diagram of
(G, θ1, θ2). We put n = ord(θ1θ2|t). Let pr : t → t ∩ (m1 ∩m2) be the orthogonal projection. Then, for any α ∈ t,
we have

pr(α) =
1

n

n−1∑
k=0

{(θ1θ2)k(α)− θ1(θ1θ2)
k(α)} =

1

n

n−1∑
k=0

{(θ1θ2)k(α)− θ2(θ1θ2)
k(α)},

which is also expressed as

pr(α) =
1

n

n−1∑
k=0

(θ1θ2)
k(H − θi(H)). (6.1)

The following lemma is fundamental in our argument.

Lemma 6.8. Under the above settings, we have:

(1) Fix i ∈ {1, 2}. For any α, β ∈ Π−Πi,0, α = pi(β) yields pr(α) = pr(β).

(2) pr(α) = 0 holds for all α ∈ Π1,0 ∪Π2,0

This lemma can be shown by means of the expression (6.1). We omit the detail.
We set Π0 = {α ∈ Π | pr(α) = 0}. By Lemma 6.8, (2), we have Π1,0 ∪Π2,0 ⊂ Π0. In fact, it is verified that Π0 is

expressed as
Π0 = Π1,0 ∪Π2,0 ∪ {α ∈ Π− (Π1,0 ∪Π2,0) | p1(α) ∈ Π2,0 or p2(α) ∈ Π1,0}.

In the case when (G, θ1, θ2) is commutative, it follows from Lemma 5.8, (2) that Π0 = Π1,0 ∪Π2,0 holds.
Let Π∗ be a subset of Π−Π0 satisfying

{α, p1(α), p2(α) | α ∈ Π∗} = Π−Π0

with minimum cardinality among all such subsets. We call such Π∗ a core of Π−Π0. Clearly, if Π = Π0, then we
have Π∗ = ∅. By means of the Satake involutions p1, p2, we can reconstruct Π0 and Π−Π0 from Π1,0 ∪Π2,0 and
Π∗, respectively, Then, Π is obtained from Π∗ ∪Π1,0 ∪Π2,0 and so is ∆+.

By Lemma 5.8, we get t ∩ (m1 ∩m2) = pr(spanRΠ) = spanR{pr(α) | α ∈ Π−Π0}. Furthermore, we have the
following proposition.
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Proposition 6.9. Assume that G is simple. Then, there exists a core Π∗ ⊂ Π−Π0 satisfying the following conditions:

(1) {pr(α) | α ∈ Π∗} are linearly independent.

(2) t ∩ (m1 ∩m2) = spanR{pr(α) | α ∈ Π∗}.

In particular, the cardinality of Π∗ is equal to the dimension of t ∩ (m1 ∩m2).

The proof is given by a case-by-case verification based on the classification.

Example 6.10. Let us consider the case when (g, k1, k2) = (so(8), so(3)⊕ so(5), κ̃(so(3)⊕ so(5))). Its double
Satake diagram is given by (S(Π, ψ(Π

(3)
0 ), p(3)), S(Π, κ(Π

(3)
0 ), κ · p(3))) as in Table 3. Then Π∗ = {α2, α3} gives

a core of Π−Π0. Since we have

pr(α2) = α2, pr(α3) =
1

3
(α1 + α3 + α4),

{pr(α2), pr(α3)} are linearly independent. From dim(t ∩ (m1 ∩m2)) = 2, we have t ∩ (m1 ∩m2) =
spanR{pr(α2), pr(α3)}.

In a similar manner, we can prove Proposition 6.9 for the other cases. We omit the details.
The following is a refinement of Lemma 6.7, (2).

Lemma 6.11. Let n = ord(θ1θ2|t) ∈ N and Π∗ ⊂ Π−Π0 be a core. Then the order of the automorphism θ1θ2 on g
satisfies (θ1θ2)n = 1 if and only if (θ1θ2)n = 1 holds on g(t, α) for all α ∈ Π∗.

Proof. We will only prove the sufficiency. We define a subspace h of gC as follows:

h = tC ⊕
∑

β∈Π1,0∪Π2,0

(g(t, β)⊕ g(t,−β))⊕
∑
α∈Π∗

(g(t, α)⊕ g(t,−α)) .

By the definition, we have (θ1θ2)
n = 1 on h. This implies that (θ1θ2)

n = 1 holds on h+ θ1(h) + θ2(h). Since
h+ θ1(h) + θ2(h) generates gC, we get (θ1θ2)n = 1 on gC. Thus we have the assertion.

We are ready to prove Theorem 6.6.

Proof of Theorem 6.6. Without loss of generalities we may assume that (G, θ1, θ2) is quasi-canonical. Let t be a
maximal abelian subalgebra of g which is quasi-canonical with respect to (G, θ1, θ2). Let n = ord(θ1θ2|t) and
Π∗ ⊂ Π−Π0 be a core as in Proposition 6.9.

First, we show ord(θ1θ2) = n in the case when Π∗ = ∅. Indeed, we get ord(θ1θ2) ≥ ord(θ1θ2|t) = n. In addition,
Lemma 6.7, (1), we have (θ1θ2)

n = 1. Hence, we obtain ord(θ1θ2) = n, so that (G, θ1, θ2) is canonical.
Secondly, we consider the case when Π∗ ̸= ∅. For any H ∈ t ∩ (m1 ∩m2), if we put g = exp(H), then Ad(g)

gives the identity transformation on t. Hence t is also quasi-canonical with respect to (G, θ1, τgθ2τ
−1
g ) =:

(G, θ1, θ
′
2). Then it is sufficient to show that there exists H ∈ t ∩ (m1 ∩m2) such that (θ1θ′2)n = 1 holds.

Let H be any element in t ∩ (m1 ∩m2). Let {Xα}α∈∆ be a Chevalley basis of gC with Xα = −X−α (cf. Lemma
3.6). For each α ∈ ∆, we define a complex numbers Sα by (θ1θ2)

nXα = SαXα. By the definition, we have
(θ1θ

′
2)
nXα = e

√
−1⟨2n · pr(α),H⟩SαXα for each α ∈ ∆. Then, it follows from Lemma 6.11 that (θ1θ

′
2)
n = 1 holds

if and only if e
√
−1⟨2n · pr(n)(α),H⟩Sα = 1 for all α ∈ Π∗. From Lemma 3.7 it is shown that |Sα| = 1 holds, so

that there exists uα ∈ R such that Sα = e
√
−1uα . It follows from Proposition 6.9, (1) that the square matrix

(⟨pr(α), pr(β)⟩)α,β∈Π∗ is invertible, so that the following equation has a solution H :

⟨2n · pr(α), H⟩+ uα = 0 (α ∈ Π∗).

Then (θ1θ
′
2)
n = 1 holds for the solution H .

From the above argument, we have complete the proof.

6.3. Properties of canonical compact symmetric triads

The purpose of this subsection is to prove the following.

Theorem 6.12. Assume that G is simple. Let (G, θ1, θ2) be a canonical compact symmetric triad. Then, the followings
hold:
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(1) Let t be a maximal abelian subalgebra of g which is canonical with respect to (G, θ1, θ2). Then, t ∩ (m1 ∩m2) is a
maximal abelian subspace of m1 ∩m2.

(2) ord[(G, θ1, θ2)] = ord(θ1θ2).

Remark 6.13. Let (G, θ1, θ2) be a canonical compact symmetric triad and t be a canonical maximal abelian
subalgebra of g with respect to (G, θ1, θ2). Then, if θ1 and θ2 is commutative on t, then [(G, θ1, θ2)] is commutable.
In addition, Theorem 6.12, (2) implies that the converse is also true in the case when G is simple. Thus, we have
the complete classification of commutable compact symmetric triads [(G, θ1, θ2)] by means of Table 4. We note
that, if the simple Lie group G is of exceptional type, then [(G, θ1, θ2)] is commutable.

6.3.1. Proof of Theorem 6.12, (1) We give two sufficient conditions for tσ1 ∩ tσ2 to be a maximal abelian subspace
of m1 ∩m2. One is that (G, θ1, θ2) is commutative as shown in Lemma 5.7. The other is the following lemma.

Lemma 6.14. Let (G, θ1, θ2) be a compact symmetric triad and t be a maximal abelian subalgebra of g such that t ∩mi

(i = 1, 2) is a maximal abelian subspace of mi. We denote by (∆, σ1, σ2) the double σ-system of (G, θ1, θ2) with respect to
t. Then the following holds:

dim(tσ1 ∩ tσ2) ≤ min{rank(G, θi) | i = 1, 2}. (6.2)

Furthermore, if the equality in this inequality holds, then tσ1 ∩ tσ2 = t ∩ (m1 ∩m2) becomes a maximal abelian subspace
of m1 ∩m2.

Proof. By the definition we have the inequality (6.2). Assume that the equality in (6.2) holds. Let a be a maximal
abelian subspace of m1 ∩m2 containing tσ1 ∩ tσ2 . From dim(a) ≤ rank(G, θi), we have dim(tσ1 ∩ tσ2) ≤ dim(a) ≤
min{rank(G, θi) | i = 1, 2}. By the assumption we obtain tσ1 ∩ tσ2 = a. Thus, we have the assertion.

There are some non-commutative, canonical compact symmetric triads such that the equality in (6.2) does
not hold. In the case when G is simple, we can classify such compact symmetric triads at the Lie algebra level
by means of Table 4, which are listed in Table 5.

Table 5. Canonical compact symmetric triads (G, θ1, θ2) satisfying ord(θ1θ2) ≥ 3 and dim(tσ1 ∩ tσ2) <
min{rank(G, θi) | i = 1, 2}

(g, k1, k2) Remark

(su(2a+ 2b+ 2), sp(a+ b+ 1), s(u(2a+ 1)⊕ u(2b+ 1))) 0 ≤ a < b

(so(2a+ 2b+ 2), so(2a+ 1)⊕ so(2b+ 1), u(a+ b+ 1)) 0 ≤ a < b

(so(8), so(1)⊕ so(7), κ̃(so(c)⊕ so(8− c))) c = 1, 2, 3

(so(8), so(2)⊕ so(6), κ̃(so(c)⊕ so(8− c))) c = 2, 3

(so(8), so(3)⊕ so(5), κ̃(so(3)⊕ so(5)))

For these canonical compact symmetric triads, we will prove Theorem 6.12, (1) by a case-by-case verification.

Example 6.15. Let us consider the case when (g, k1, k2) = (so(8), so(3)⊕ so(5), κ(so(3)⊕ so(5))). Then we have

2 = dim(tσ1 ∩ tσ2) ≤ max{dim(tσ1 ∩ stσ2) | s ∈W (∆)} ≤ 3.

We will show that max{dim(tσ1 ∩ stσ2) | s ∈W (∆)} = 2. Under Notation 1 we have

tσ1 = Re3 ⊕R(e1 − e2)⊕R(e2 − e3), t
σ2 = R(e1 − e2 + e3 − e4)⊕R(e2 − e3)⊕R(e3 + e4).

Suppose for contradiction that there exists s ∈W (∆) satisfying dim(tσ1 ∩ stσ2) = 3. Then we have s−1tσ1 = tσ2 .
It follows from the expression of tσ1 that there exists j ∈ {1, 2, 3, 4} satisfying ej ∈ w−1tσ1 . This contradicts
that tσ2 does not contain all the vectors e1, e2, e3, e4. In addition, by Proposition 5.3 we obtain dim(tσ1 ∩ tσ2) =
max{dim(tσ1 ∩ stσ2) | s ∈W (∆)} = rank(G, θ1, θ2).

In a similar manner as in Example 6.15, we have Theorem 6.12, (1) for (g, k1, k2) = (so(8), so(a)⊕ so(8−
a), κ̃(so(c)⊕ so(8− c))) with (a, c) = (1, {1, 2, 3}), (2, {2, 3}).
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Example 6.16. Let us consider the case when (g, k1, k2) = (so(2a+ 2b+ 2), so(2a+ 1)⊕ so(2b+ 1), u(a+ b+ 1))
with 0 ≤ a < b. We will show the following relation:

rank(g, k1, k2) = a(= dim(t ∩ (m1 ∩m2))).

We define two involutions θ′1, θ′2 on so(2a+ 2b+ 2) as follows:

θ′1(X) = I2a+1,2b+1XI2a+1,2b+1, θ′2(X) = Ja+b+1XJ
−1
a+b+1.

Then we have gθ
′
1 = so(2a+ 1)⊕ so(2b+ 1) and gθ

′
2 = u(a+ b+ 1). By the classification, (g, θ′1, θ

′
2) is in

[(g, k1, k2)]. From

m′
1 ∩m′

2 = g−θ
′
1 ∩ g−θ

′
2 =


O2a+1 O W O

O Ob−a O O
W O O2a+1 O
O O O Ob−a


∣∣∣∣∣∣∣W ∈ so(2a+ 1)

 ,

we obtain

[m′
1 ∩m′

2,m
′
1 ∩m′

2] =


X O

X
O


∣∣∣∣∣∣∣X ∈ so(2a+ 1)

 = so(2a+ 1)

For any Z ∈ [m′
1 ∩m′

2,m
′
1 ∩m′

2] and Y ∈ m′
1 ∩m′

2 with

Z =

X O
X

O

 , Y =

O2a+1 O W O
O Ob−a O O
W O O2a+1 O
O O O Ob−a

 ,

we have

[Z, Y ] =

O2a+1 O [X,W ] O
O Ob−a O O

[X,W ] O O2a+1 O
O O O Ob−a

 .

This yields

([m′
1 ∩m′

2,m
′
1 ∩m′

2]⊕m′
1 ∩m′

2, [m
′
1 ∩m′

2,m
′
1 ∩m′

2])

≃ (so(2a+ 1)⊕ so(2a+ 1),∆(so(2a+ 1)⊕ so(2a+ 1))).

Hence we get
rank(g, k1, k2) = rank(g, θ′1, θ

′
2) = rank(so(2a+ 1)) = a,

so that t ∩ (m1 ∩m2) is a maximal abelian subspace of m1 ∩m2.

Example 6.17. Let us consider the case when (g, k1, k2) = (su(2a+ 2b+ 2), sp(a+ b+ 1), s(u(2a+ 1)⊕ u(2b+ 1)))
with 0 ≤ a < b. It is sufficient to show rank(g, k1, k2) = a. We define two involutions θ′1, θ′2 on su(2a+ 2b+ 2) as
follows:

θ′1(X) = Ja+b+1X̄J
−1
a+b+1, θ′2(X) = I2a+1,2b+1XI2a+1,2b+1.

Then we have gθ
′
1 = sp(a+ b+ 1) and gθ

′
2 = s(u(2a+ 1)⊕ u(2b+ 1)), from which (g, θ′1, θ

′
2) is in [(g, k1, k2)]. A

direct calculation shows

m′
1 ∩m′

2 = g−θ
′
1 ∩ g−θ

′
2 =


O2a+1 O Y O

O Ob−a O O
Ȳ O O2a+1 O
O O O Ob−a


∣∣∣∣∣∣∣Y = −tY ∈M(2a+ 1,C)

 .

In the case when a = 0, we have m1 ∩m2 = {0}. This implies that rank(g, k1, k2) = rank(g, θ′1, θ
′
2) = 0 = a. In what

follows, we assume that a ≥ 1. Since u(2a+ 1) can be expressed by

u(2a+ 1) = spanR{XȲ − Y X̄ | X,Y ∈ gl(n,C), tX = −X, tY = −Y },
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we have

[m′
1 ∩m′

2,m
′
1 ∩m′

2] =


X O

X̄
O


∣∣∣∣∣∣∣X ∈ u(2a+ 1)

 = u(2a+ 1).

Hence we get

([m′
1 ∩m′

2,m
′
1 ∩m′

2]⊕m′
1 ∩m′

2, [m
′
1 ∩m′

2,m
′
1 ∩m′

2]) ≃ (so(4a+ 2), u(2a+ 1)),

from which rank(g, k1, k2) = rank(so(4a+ 2), u(2a+ 1)) = a.

From the above argument we have complete the proof of Theorem 6.12, (1).

6.3.2. Proof of Theorem 6.12, (2) In the rest of this paper, we give the proof of Theorem 6.12, (2). In the case
when rank(G, θ1, θ2) = 0, we have ord[(G, θ1, θ2)] = ord(θ1θ2) by Proposition 2.7. In what follows, we will prove
ord[(G, θ1, θ2)] = ord(θ1θ2) in the case when rank(G, θ1, θ2) ≥ 1. Our proof is based on a case-by-case verification
for the order of a canonical one (G, θ1, θ2). We note that n := ord(θ1θ2) ∈ {1, 2, 3, 4, 6} holds by the classification.

In the case when n = 1, we have 1 ≤ ord[(G, θ1, θ2)] ≤ ord(θ1θ2) = 1. This yields ord[(G, θ1, θ2)] = ord(θ1θ2).
Next, we consider the case when n = 2. Suppose for a contradiction that there exists (G, θ′1, θ

′
2) ∼ (G, θ1, θ2)

such that ord(θ′1θ′2) = 1. Then we have θ′1 = θ′2. As explained in Example 6.2, (G, θ′1, θ′1) is canonical. If we denote
by (∆′, σ′

1, σ
′
1) = (∆′,−dθ′1|t′ ,−dθ′1|t′) the double σ-system of (G, θ′1, θ′1), then we have (∆, σ1, σ2) ≡ (∆′, σ′

1, σ
′
1)

by Proposition 5.11. This yields 1 = ord(dθ′1dθ
′
1|t′) = ord(dθ1dθ2|t) = 2, which is a contradiction. Thus we have

2 ≤ ord[(G, θ1, θ2)] ≤ ord(θ1θ2) = 2, that is, ord[(G, θ1, θ2)] = ord(θ1θ2).
Here, we note that n = 6 implies rank(G, θ1, θ2) = 0 by the classification. Hence the rest of our proof consists

of the case when n ∈ {3, 4}, so that (G, θ1, θ2) or (G, θ2, θ1) is locally isomorphic to one of the following two
cases among the compact symmetric triads:

(Case 1) (g, k1, k2) = (so(8), so(a)⊕ so(8− a), κ̃(so(3)⊕ so(5))) for a = 2, 3: First, we consider the case when
a = 2. Then we have ord(θ1θ2) = 4. Since k1 ̸≃ k2 obeys θ1 ̸∼ θ2, we have ord[(G, θ1, θ2)] ≥ 2. Suppose for a
contradiction that there exists (G, θ′1, θ

′
2) ∼ (G, θ1, θ2) such that ord(θ′1θ

′
2) = 2. As explained in Example 6.3,

(G, θ′1, θ
′
2) is canonical. Let (∆′, σ′

1, σ
′
2) = (∆′,−dθ′1|t′ ,−dθ′2|t′) denote the double σ-system of (G, θ′1, θ

′
2). From

(∆, σ1, σ2) ≡ (∆′, σ′
1, σ

′
2), we have 2 = ord(dθ′1dθ

′
2|t′) = ord(dθ1dθ2|t) = 4, which is contradiction. Furthermore,

from (θ1θ2)
4 = 1, it can be verified that there exist no compact symmetric triads (G, θ′1, θ′2) ∼ (G, θ1, θ2) satisfying

ord(θ′1θ
′
2) = 3 by Proposition 2.6. Thus we have ord[(G, θ1, θ2)] = ord(θ1θ2).

Secondly, we consider the case when a = 3. Then we have rank(G, θ1, θ2) = 2 and ord(θ1θ2) = 3. Suppose for
a contradiction that there exists (G, θ′1, θ′2) ∼ (G, θ1, θ2) such that ord(θ′1θ′2) = 1, that is, θ′1 = θ′2. Let (∆′, σ′

1, σ
′
1) =

(∆′,−dθ′1|t′ ,−dθ′1|t′) denote the double σ-system of (G, θ′1, θ
′
1). From (∆, σ1, σ2) ≡ (∆′, σ′

1, σ
′
1), we have 2 =

dim(tσ1 ∩ tσ2) = dim(tσ
′
1 ∩ tσ

′
1) = 3, which is contradiction. In a similar argument as in the case when a = 2,

it can be shown that there exist no compact symmetric triads (G, θ′1, θ
′
2) ∼ (G, θ1, θ2) satisfying ord(θ′1θ

′
2) = 2.

Thus, we have ord[(G, θ1, θ2)] = ord(θ1θ2).

(Case 2) (g, k1, k2) = (su(2m), sp(m), s(u(2a+ 1)⊕ u(2b+ 1))) or (so(2m), so(2a+ 1)⊕ so(2b+ 1), u(m)) for a <
b, m = a+ b+ 1: Then we have ord(θ1θ2) = 4 and θ1 ̸∼ θ2. By a similar argument as in (Case 1), a = 2, it can be
shown that ord[(G, θ1, θ2)] = ord(θ1θ2).

From the above argument we have complete the proof of Theorem 6.12, (2).
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