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Abstract
In this paper, we get new Voronovskaja-type asymptotic formulae for modified Bernstein
operators by using regular summability methods. We also display some significant special
cases of our results including the methods of Cesàro summability, Riesz summability, Abel
summability and Borel summability. At the end, we also discuss the similar results for
the Kantorovich version of the operators.
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1. Introduction
While classical approximation operators generally approach the exact value of the func-

tion being approximated, they frequently struggle at points of discontinuity and converge
to the average of the left and right limits instead of the function’s value. However, there
are notable exceptions, such as the Hermite-Fejér interpolation operator, which fails to
converge at simple discontinuity points (see [5]). In such cases of irregular behavior,
Cesàro-type matrix summability methods are powerful enough to overcome the loss of
convergence. Moreover, even at points of continuity, the Cesàro summability method ef-
fectively corrects the Gibbs phenomenon encountered in certain approximation operators,
such as partial sums of the Fourier series. More precisely, Fourier series of a continuous
and periodic function may diverge; however its Cesàro mean is convergent to the func-
tion itself. This is the main idea of the Fejér approximation, which is well known in the
literature (see [9]). On the other hand, some summability methods, such as subsequence
matrix transformations, are used for the acceleration of convergence rate of a sequence
(see [7, 13, 18, 22]). So, such methods may provide faster convergence. These facts clearly
explain why we need summability methods in the approximation theory. Therefore, they
have been actively used for many years (see, for instance, [1–3,8, 10,15,17,19,20]).

∗Corresponding Author.
Email addresses: malemdar@etu.edu.tr, m.ece.alemdar@gmail.com (M. E. Alemdar), oduman@etu.edu.tr,

okitayduman@gmail.com (O. Duman)
Received: 20.05.2024; Accepted: 22.09.2024

https://orcid.org/0000-0002-7945-7454
https://orcid.org/0000-0001-7779-6877


Asymptotic formulae for modified Bernstein operators 959

In this paper we use general summability methods to approximate continuous functions
by means of the Bernstein operators. In this way we obtain some new Voronovskaja-type
results for the classical Bernstein polynomials. In order to preserve the results in the
classical approach, we will consider regular summability methods throughout the paper.
In particular, we will use the well-known regular methods in summability theory such as
Cesàro, Riesz, Abel and Borel. To the best of our knowledge, this will be the first study
to use summability methods in the Voronovskaja-type results of Bernstein polynomials.

Let us now recall some of the concepts and results we will need in this article.
The classical Bernstein polynomials are defined by

Bn(f ; x) :=
n∑

k=0
f

(
k

n

)
pk,n(x), x ∈ [0, 1], n ∈ N,

where pk,n(x) (k = 0, 1, ..., n) are Bernstein basis functions given by

pk,n(x) =
(

n

k

)
xk(1 − x)n−k.

Then, it is well-known that (see Bernstein [4]), for every f ∈ C[0, 1], the space of all
real-valued continuous functions on [0, 1], the function f can be approximated uniformly
by means of Bn(f), which proves constructively the classical Weierstrass Approximation
Theorem. Since Bernstein polynomials play a key role in approximation theory, they have
been studied intensively until now and still continue to be investigated.

We know from Voronovskaja [21] that the following asymptotic formula for the Bernstein
polynomials

lim
n→∞

n (Bn(f ; x) − f(x)) = x(1 − x)
2

f ′′(x) (1.1)

holds when f is a bounded function on [0, 1] and the second derivative f ′′ exists at a
certain point x of (0, 1). This result of Voronovskaja was a first example of saturation
of the Bernstein polynomials. So far, many significant modifications and generalizations
of this asymptotic formula have been studied. The main goal of the present paper is to
obtain new asymptotic formulae including Bernstein polynomials. To see that we consider
two modifications of the Bernstein polynomials by using matrix summability methods and
power series methods. Readers may find the following information and more from the
summability theory in the books [6, 11].

Let A = [ajn] (j, n ∈ N) be an infinite matrix. For a given sequence (xn), we say that
(xn) is A-convergent (or A-summable) to a number L provided that

lim
j→∞

∞∑
n=1

ajnxn = L, (1.2)

where the series
∑∞

n=1 ajnxn is assumed to be convergent for each j ∈ N. In this case, A is
said to be a matrix summability method. Throughout the paper we consider nonnegative
matrix summability methods, that is, ajn ≥ 0 for all j, n ∈ N. Also, a matrix method A is
said to be regular if it preserves the (usual) convergence and the corresponding limit value,
that is, (1.2) holds whenever limn→∞ xn = L. It is well-known that a matrix summability
method is regular if and only if it satisfies the Silverman-Toeplitz conditions given as
follows:

(i) limj→∞ ajn = 0 for every n ∈ N,
(ii) limj→∞

∑∞
n=1 ajn = 1,

(iii) supj∈N
∑∞

n=1 |ajn| < ∞.

Now let p0 > 0 and pn ≥ 0 for n ∈ N. Assume that the power series

P (t) :=
∞∑

n=0
pntn
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has radius of convergence R with 0 < R ≤ ∞. Then, for a given sequence (xn), we say
that (xn) is Pp-convergent to a number L if

lim
0<t→R−

1
P (t)

∞∑
n=0

pnxntn = L, (1.3)

where the power series
∑∞

n=0 pnxntn is assumed to have radius of convergence ≥ R. In
this case, the method Pp is said to be a power series method. It is known that a power
series method is regular if and only if lim0<t→R−

pntn

P (t) = 0 for every n ∈ N0 = N∪ {0}. We
should note that, in (1.3), one can write xn+1 instead of xn if the sequence is defined on
N.

With this terminology, in the next section we give the modifications of the Bernstein
polynomials and obtain their new asymptotic formulae. Later, we display some special
cases of our results. At the end of the paper, we also discuss similar results for the Kan-
torovich version of the operators. The last section is devoted to the concluding remarks.

2. Modifications of the operators and their asymptotic formulae
Now using the nonnegative regular matrix summability methods and power series meth-

ods, we consider the following modifications of Bernstein polynomials:

B
[A]
j (f ; x) :=

∞∑
n=1

ajnBn(f ; x), j ∈ N, (2.1)

and

B
[P ]
t (f ; x) := 1

P (t)

∞∑
n=0

pntnBn+1(f ; x), 0 < t < R. (2.2)

Observe that the operators B
[P ]
t preserves linear functions while B

[A]
j do not. Hence,

we need the next condition:
∞∑

n=1
ajn = 1 (j ∈ N), (2.3)

which is stronger than (ii). Under this assumption, the operators B
[A]
j preserve linear

functions, too. From the regularity, one can immediately say that both operators (2.1)
and (2.2) are uniformly convergent to f for every f ∈ C[0, 1], i.e.,

lim
j→∞

B
[A]
j (f ; x) = f(x) uniformly with respect to x ∈ [0, 1]

and
lim

0<t→R−
B

[P ]
t (f ; x) = f(x) uniformly with respect to x ∈ [0, 1].

Now let

τj,r :=
∞∑

n=1

ajn

nr
(j ∈ N and r > 0)

and

βr(t) := 1
P (t)

∞∑
n=0

pntn

(n + 1)r
(0 < t < R and r > 0) .

We first obtain the following result which gives the (uniform) approximation of contin-
uous functions by our modified operators. This result also provides an error estimate for
the rate of convergence.

Theorem 2.1. Let f ∈ C[0, 1] and x ∈ [0, 1].
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(a) For every j ∈ N, we have∣∣∣B[A]
j (f ; x) − f(x)

∣∣∣ = O

( ∞∑
n=1

ajnω

(
f,

1√
n

))
.

Furthermore, if f ∈ Lip1, then∣∣∣B[A]
j (f ; x) − f(x)

∣∣∣ = O
(
τj,1/2

)
.

(b) For every t ∈ (0, R), we have∣∣∣B[P ]
t (f ; x) − f(x)

∣∣∣ = O

(
1

P (t)

∞∑
n=0

pntnω

(
f,

1√
n + 1

))
.

Furthermore, if f ∈ Lip1, then∣∣∣B[P ]
t (f ; x) − f(x)

∣∣∣ = O
(
β1/2(t)

)
.

Proof. For the classical Bernstein polynomials, the following facts are well-known (see
[14]):

|Bn(f ; x) − f(x)| ≤ 5
4

ω

(
f,

1√
n

)
for f ∈ C[0, 1],

which gives

|Bn(f ; x) − f(x)| ≤ C√
n

for some C > 0 whenever f ∈ Lip1. From the similarity we just prove (a). Using definini-
tions (2.1), (2.2) and assumption (2.3) , we get∣∣∣B[A]

j (f ; x) − f(x)
∣∣∣ ≤

∞∑
n=1

ajn |Bn(f ; x) − f(x)|

≤ 5
4

∞∑
n=1

ajnω

(
f,

1√
n

)
,

which gives the first part of (a). The remaining part of (a) is clear from the fact that
ω (f, δ) ≤ Cδ for some C > 0 whenever f ∈ Lip1. □

In the next result, we see that the rate of convergence accelerates when the function
has a first-order continuous derivative.

Theorem 2.2. Let f ∈ C1[0, 1] and x ∈ [0, 1].
(a) For every j ∈ N, we have∣∣∣B[A]

j (f ; x) − f(x)
∣∣∣ = O

( ∞∑
n=1

ajn√
n

ω

(
f ′,

1√
n

))
.

Furthermore, if f ′ ∈ Lip1, then∣∣∣B[A]
j (f ; x) − f(x)

∣∣∣ = O (τj,1) .

(b) For every t ∈ (0, R), we have∣∣∣B[P ]
t (f ; x) − f(x)

∣∣∣ = O

(
1

P (t)

∞∑
n=0

pntn

√
n + 1

ω

(
f ′,

1√
n + 1

))
.

Furthermore, if f ∈ Lip1, then∣∣∣B[P ]
t (f ; x) − f(x)

∣∣∣ = O (β1(t)) .
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Proof. The proofs are easily obtained from the following fact about the classical Bernstein
polynomials (see [14]):

|Bn(f ; x) − f(x)| ≤ 3
4
√

n
ω

(
f ′,

1√
n

)
for f ∈ C1[0, 1],

which gives
|Bn(f ; x) − f(x)| ≤ C

n
for some C > 0 whenever f ′ ∈ Lip1. □

Now we also need the following assumptions for these operators, respectively:

lim
j→∞

τj,2
τj,1

= 0 (2.4)

and
lim

0<t→R−

β2(t)
β1(t)

= 0. (2.5)

Then, here is our main theorem. This shows how Voronovskaja-type results can be
improved with the help of regular summability methods.

Theorem 2.3. Assume that f is a bounded function on [0, 1] and the second derivative
f ′′ exists at a certain point x of (0, 1). Then, we get the following:

(a) If A = [ajn] (j, n ∈ N) is a nonnegative regular matrix summability method satis-
fying (2.3) and (2.4), then

lim
j→∞

τ−1
j,1

(
B

[A]
j (f ; x) − f(x)

)
= x(1 − x)

2
f ′′(x)

holds. In particular, if f ′′(x) ̸= 0, then the difference B
[A]
j (f ; x) − f(x) is exactly

of order τj,1.
(b) If Pp is a nonnegative regular power series method satisfying (2.5), then we get

lim
0<t→R−

(β1(t))−1
(
B

[P ]
t (f ; x) − f(x)

)
= x(1 − x)

2
f ′′(x).

In particular, if f ′′(x) ̸= 0, then the difference B
[P ]
t (f ; x) − f(x) is exactly of order

β1(t).

Proof. (a) From Taylor’s theorem, there exists a bounded function µx on [0, 1] satisfying
lim
y→x

µx(y) = 0 such that

f(y) = f(x) + (y − x) f ′(x) + (y − x)2

2
f ′′(x) + (y − x)2µx(y)

holds for all y ∈ [0, 1]. Then, we obtain from (2.1) and (2.3) that

B
[A]
j (f ; x) − f(x) = B

[A]
j (f(y) − f(x); x)

= x(1 − x)f ′′(x)
2

τj,1

+
∞∑

n=1
ajn

n∑
k=0

(
k

n
− x

)2
µx

(
k

n

)
pk,n(x).

Hence we get

τ−1
j,1

(
B

[A]
j (f ; x) − f(x)

)
= x(1 − x)

2
f ′′(x) + Ψj(x),

where
Ψj(x) = τ−1

j,1

∞∑
n=1

ajn

n∑
k=0

(
k

n
− x

)2
µx

(
k

n

)
pk,n(x).
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For the proof, it is enough to show that

lim
j→∞

Ψj(x) = 0. (2.6)

From the boundedness of µx on [0, 1], there exists M > 0 such that |µx(y)| ≤ M . Also,
since lim

y→x
µx(y) = 0, for a given ε > 0 there exists δ > 0 such that |y − x| < δ implies

|µx(y)| < ε. Then, we get

|Ψj(x)| ≤ τ−1
j,1

∞∑
n=1

ajn

n∑
k=0

(
k

n
− x

)2 ∣∣∣∣µx

(
k

n

)∣∣∣∣ pk,n(x)

≤ τ−1
j,1

∞∑
n=1

ajn

ε
∑

k:| k
n

−x|<δ

(
k

n
− x

)2
pk,n(x)

+M
∑

k:| k
n

−x|≥δ

(
k

n
− x

)2
pk,n(x)


≤ τ−1

j,1

∞∑
n=1

ajn

{
ε

n∑
k=0

(
k

n
− x

)2
pk,n(x)

+M

δ2

n∑
k=0

(
k

n
− x

)4
pk,n(x)

}
.

We may also write from Theorem 1.5.1 in [14] that

n∑
k=0

(
k

n
− x

)2
pk,n(x) ≤ 1

n
and

n∑
k=0

(
k

n
− x

)4
pk,n(x) ≤ C

n2

for some C > 0. Combining the above facts we observe that

|Ψj(x)| ≤ ε + MC

δ2
τj,2
τj,1

. (2.7)

Therefore, (2.6) follows from (2.4) and (2.7), which completes the proof.
(b) Using the same idea as in (a), from the definition of operators (2.2), there exists a

bounded function µx on [0, 1] satisfying lim
y→x

µx(y) = 0 such that

(β1(t))−1
(
B

[P ]
t (f ; x) − f(x)

)
= x(1 − x)

2
f ′′(x) + Θ(x, t),

holds, where

Θ(x, t) := (β1(t))−1
∞∑

n=0
pntn

n+1∑
k=0

(
k

n + 1
− x

)2
µx

(
k

n + 1

)
pk,n+1(x).

Now it is enough to show that

lim
0<t→R−

Θ(x, t) = 0. (2.8)
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Then, using the boundedness of µx and the limit condition lim
y→x

µx(y) = 0, we may write
that, for every ε > 0,

|Θ(x, t)| ≤ (β1(t))−1
∞∑

n=0
pntn

{
ε

n+1∑
k=0

(
k

n + 1
− x

)2
pk,n+1(x)

+ M

δ2

n+1∑
k=0

(
k

n + 1
− x

)4
pk,n+1(x)

}

≤ ε + MC

δ2
β2(t)
β1(t)

,

where M, C and δ are the same as in (a). Now taking limit as 0 < t → R− on the both
sides of the last inequality and also using (2.5), we immediately get (2.8), which is the
desired result. □

Remark 2.4. As can be seen, we needed condition (2.4) (or, (2.5) respectively) to prove
Theorem 2.3. In the next section we will give examples of the existence of regular summa-
bility methods that do not satisfy condition (2.4). On the other hand, taking

εn(x) := n(Bn(f ; x) − f(x)) − x(1 − x)
2

f ′′(x), (2.9)

one can easily see from (1.1) that

lim
n→∞

εn(x) = 0.

Then, using (2.1), (2.3) and (2.9), we may write that

B
[A]
j (f ; x) =

∞∑
n=1

ajn

(
f(x) + εn(x) + x(1 − x)f ′′(x)/2

n

)

= f(x) + τj,1
x(1 − x)

2
f ′′(x) +

∞∑
n=1

ajn
εn(x)

n
,

which implies

τ−1
j,1

(
B

[A]
j (f ; x) − f(x)

)
= x(1 − x)

2
f ′′(x) + τ−1

j,1

∞∑
n=1

ajn
εn(x)

n
.

Then, in order to obtain an alternative proof of Theorem 2.3 we now need the following:

lim
j→∞

τ−1
j,1

∞∑
n=1

ajn
εn(x)

n
= 0. (2.10)

Although

lim
j→∞

τj,1 = 0 and lim
j→∞

∞∑
n=1

ajn
εn(x)

n
= 0

are known from regularity of the method A = [ajn], we cannot guarantee the truth of
(2.10) for any regular method A. We therefore arrive at the following open problems.

Open Problems:
(a) For any nonnegative regular matrix summability method, does Theorem 2.3 hold

true without condition (2.4) or (2.10)?
(b) For any nonnegative regular power series method, does Theorem 2.3 hold true

without condition (2.5)?
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Remark 2.5. If f is a bounded function on [0, 1] and the second derivative f ′′ exists at
a certain point x of (0, 1), then (1.1) says that the rate of convergence for the classical
Bernstein polynomials is exactly of order 1/n while, according to Theorem 2.3 (a), it is
of order τj,1 for the modified Bernstein operators. For example, if we consider the Cesàro
matrix summability method A = C1 = [cjn] defined by

cjn :=
{

1
j , if n = 1, 2, ..., j

0, otherwise, (2.11)

then we see that our rate of convergence for the modified Bernstein operators become

τj,1 = 1 + (1/2) + · · · + (1/j)
j

,

which is slower than the rate of 1/n for the classical Bernstein polynomials. But this is not
always the case. Now, if we make a small change in the definition of Bernstein polynomials
as follows

B∗
n(f ; x) :=

{
2Bn(f ; x), if n even
0, if n odd,

then it will no longer be possible to approximate the function f by means of the sequence
{B∗

n(f)} (in the classical sense). However, it is possible to approximate f by the Cesàro
transform of {B∗

n(f)} given by

B
∗[C1]
j (f ; x) := 1

j

j∑
n=1

B∗
n(f ; x).

So, this points to the existence of an alternative method to compensate for the loss of
convergence. On the other hand, in order to accelerate the convergence, one can consider
the following regular subsequence matrix transformation A = G = [gjn] given by

gjn :=
{

1, if n = j2

0, otherwise.

In this case, the rate of convergence for the modified operators B
[G]
j (f ; x) becomes τj,1 =

1/j2, which is faster than 1/n for the classical operators Bn(f ; x).

3. Special cases
Now we give some important special cases of Theorem 2.3, which are also new in the

literature.
First of all, if we take A = I, the identity matrix, Theorem 2.3 (a) reduces to the

asymptotic formula (1.1).

3.1. Cesàro matrix summability
Now consider the Cesàro matrix summability method given by (2.11). Then it is easy

to check that conditions (2.3) and (2.4) hold. Hence, we get from Theorem 2.3 (a) that if
f is a bounded function on [0, 1] and the second derivative f ′′ exists at a certain point x
of [0, 1], then the following new asymptotic formula is satisfied:

lim
j→∞

1
j

j∑
n=1

1
n

−11
j

j∑
n=1

Bn(f ; x) − f(x)

 = x(1 − x)
2

f ′′(x), (3.1)

where Bn(f ; x) is the classical Bernstein polynomial. This asymptotic approximation is
indicated in Figure 1 for the function f(x) = 3x2 −2 sin(πx) and the values j = 10, 30, 120.
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j = 120

j = 10 j = 30

g

0.2 0.4 0.6 0.8 1.0

0.5
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2.5

3.0

Figure 1. Asymptotic approximation in (3.1) for the function f(x) = 3x2 −
2 sin(πx) and the values j = 10, 30, 120. In this figure, g(x) := x(1−x)

2 f ′′(x).

3.2. Riesz matrix summability
For another special case of Theorem 2.3 (a), assume that (qn) is a real sequence with

q1 > 0 and qn ≥ 0 (n = 2, 3, ...), and also Qj :=
∑j

n=1 qn. Now, take A = Rq = [rjn], the
Riesz matrix summability method defined by

rjn :=
{

qn

Qj
, if n = 1, 2, ..., j

0, otherwise.

Then, observe that the matrix Rq satisfies (2.3). Also, (2.4) is equivalent to the next
condition:

lim
j→∞

∑j
n=1

qn

n2∑j
n=1

qn

n

= 0, (3.2)

Hence, if (3.2) holds, then Theorem 2.3 (a) implies

lim
j→∞

 1
Qj

j∑
n=1

qn

n

−1 1
Qj

j∑
n=1

qnBn(f ; x) − f(x)

 = x(1 − x)
2

f ′′(x). (3.3)

For example, if we take qn = 1 for all n ∈ N, observe that (2.4) holds and (3.3) reduces to
(3.1). On the other hand, if we take qn = n (n ∈ N), then it is easy to check that (3.2)
holds, and we get

lim
j→∞

j + 1
2

 2
j(j + 1)

j∑
n=1

nBn(f ; x) − f(x)

 = x(1 − x)
2

f ′′(x).

We should remark that condition (2.4) or (3.2) does not hold for all nonnegative matrix
summability methods. For example, consider the case of qn = 1

n (n ∈ N). Then, we
observe that

lim
j→∞

∑j
n=1

qn

n2∑j
n=1

qn

n

=
∑∞

n=1
1

n3∑∞
n=1

1
n2

≥ 6
π2 .

3.3. Abel power series method
Now we give some special cases of Theorem 2.3 (b). First, taking pn = 1 for all n ∈ N0,

we get the Abel method. In this case, observe that P (t) = 1
1−t for −1 < t < 1 and
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β1(t) = (t−1) ln(1−t)
t for 0 < t < 1. We check that condition (2.5) is satisfied. Then,

Theorem 2.3 (b) gives the following:

lim
0<t→1−

t

(t − 1) ln(1 − t)

(
(1 − t)

∞∑
n=0

tnBn+1(f ; x) − f(x)
)

= x(1 − x)
2

f ′′(x).

3.4. Borel power series method
For a final special case, take pn = 1

n! , n ∈ N0, which gives the Borel method. Then, we
get P (t) = et for −∞ < t < ∞ and β1(t) = t+et

tet for t ̸= 0. Since (2.5) is satisfied, Theorem
2.3 (b) implies

lim
0<t→∞

(
tet

t + et

)(
1
et

∞∑
n=0

tnBn+1(f ; x)
n!

− f(x)
)

= x(1 − x)
2

f ′′(x).

4. Kantorovich version of the operators
The Kantorovich version (see [12]) of the classical Bernstein polynomials, which are

known in the literature as Bernstein-Kantorovich polynomials, are defined by

Kn(f ; x) := (n + 1)
n∑

k=0
pk,n(x)

∫ (k+1)/(n+1)

k/(n+1)
f(u)du, x ∈ [0, 1], n ∈ N. (4.1)

These operators enable us to approximate uniformly to not only continuous functions but
also integrable functions on [0, 1]. We also know that the asymptotic formula

lim
n→∞

n (Kn(f ; x) − f(x)) =
(

−x + 1
2

)
f ′(x) + x(1 − x)

2
f ′′(x)

holds when f is a bounded function on [0, 1] and the derivatives f ′ and f ′′ exists at a
certain point x of (0, 1).

Then our new operators based on nonnegative regular matrix summability and power
series methods are given respectively by

K
[A]
j (f ; x) :=

∞∑
n=1

ajnKn(f ; x), j ∈ N, (4.2)

and

K
[P ]
t (f ; x) := 1

P (t)

∞∑
n=0

pntnKn+1(f ; x), 0 < t < R. (4.3)

We now obtain the next asymptotic formulae for (4.2) and (4.3).

Theorem 4.1. Assume that f is a bounded function on [0, 1] and the first and second
derivatives f ′ and f ′′ exist at a certain point x of (0, 1). Then, we get the following:

(a) If A = [ajn] (j, n ∈ N) is a nonnegative regular matrix summability method satis-
fying (2.3) and (2.4), then

lim
j→∞

τ−1
j,1

(
K

[A]
j (f ; x) − f(x)

)
=
(

−x + 1
2

)
f ′(x) + x(1 − x)

2
f ′′(x)

holds.
(b) If Pp is a nonnegative regular power series method satisfying (2.5), then

lim
0<t→R−

(β1(t))−1
(
K

[P ]
t (f ; x) − f(x)

)
=
(

−x + 1
2

)
f ′(x) + x(1 − x)

2
f ′′(x)

holds.
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Proof. (a) We may write from (4.2) and Taylor’s theorem that

K
[A]
j (f ; x) − f(x) = K

[A]
j (f(y) − f(x); x)

= f ′(x)K[A]
j (y − x; x) + f ′′(x)

2
K

[A]
j

(
(y − x)2 ; x

)
+K

[A]
j

(
(y − x)2µx(y); x

)
.

By a direct computation, we get

K
[A]
j (y − x; x) =

∞∑
n=1

ajnKn(y − x; x)

=
(

−x + 1
2

) ∞∑
n=1

ajn

n + 1

and

K
[A]
j

(
(y − x)2 ; x

)
=

∞∑
j=1

ajnKn

(
(y − x)2 ; x

)

= −x2
∞∑

n=1

(n − 1) ajn

(n + 1)2 + 2x
∞∑

n=1

najn

(n + 1)2

−x
∞∑

n=1

ajn

n + 1
+ 1

3

∞∑
n=1

ajn

(n + 1)2 .

Then, it follows from (2.4) that

lim
j→∞

τ−1
j,1 K

[A]
j (y − x; x) = −x + 1

2
and

lim
j→∞

τ−1
j,1 K

[A]
j

(
(y − x)2 ; x

)
= x(1 − x).

We also know from (4.1) that there exist positive constants C1 and C2 such that

Kn

(
(y − x)2 ; x

)
≤ C1

n
and Kn

(
(y − x)4 ; x

)
≤ C2

n2 .

Using this and also the fact that limy→x µx(y) = 0, we obtain that

K
[A]
j

(
(y − x)2µx(y); x

)
=

∞∑
n=1

ajnKn

(
(y − x)2µx(y); x

)
≤ ε

∞∑
n=1

ajnKn

(
(y − x)2; x

)
+M

δ2

∞∑
n=1

ajnKn

(
(y − x)4; x

)
≤ C1ετj,1 + MC2

δ2 τj,2,

where ε, δ and M are the same as in the proof of Theorem 2.3. Now, from (2.4), we
immediately get

lim
j→∞

τ−1
j,1 K

[A]
j

(
(y − x)2µx(y); x

)
= 0.

Combining the above results, the proof is completed.
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(b) We first observe that

K
[Pp]
t (y − x; x) = 1

P (t)

∞∑
n=0

pntnKn+1(y − x; x)

=
(

−x + 1
2

) 1
P (t)

∞∑
n=0

pntn

n + 2

and

K
[Pp]
t

(
(y − x)2 ; x

)
= 1

P (t)

∞∑
n=0

pntnKn+1
(
(y − x)2 ; x

)
= − x2

P (t)

∞∑
n=0

npntn

(n + 2)2 + 2x

P (t)

∞∑
n=0

(n + 1)pntn

(n + 2)2

− x

P (t)

∞∑
n=0

pntn

n + 2
+ 1

3P (t)

∞∑
n=0

pntn

(n + 2)2 .

Also from condition (2.5) one can obtain the following:

lim
0<t→R−

1
β1(t)P (t)

∞∑
n=0

pntn

n + 2
= 1,

lim
0<t→R−

1
β1(t)P (t)

∞∑
n=0

npntn

(n + 2)2 = 1,

lim
0<t→R−

1
β1(t)P (t)

∞∑
n=0

(n + 1)pntn

(n + 2)2 = 1,

lim
0<t→R−

1
β1(t)P (t)

∞∑
n=0

pntn

(n + 2)2 = 0.

Therefore, the above results imply that

lim
0<t→R−

(β1(t))−1 K
[Pp]
t (y − x; x) = −x + 1

2
and

lim
0<t→R−

(β1(t))−1 K
[Pp]
t

(
(y − x)2 ; x

)
= x(1 − x).

Now, as in the proof of (a), it follows from (4.3) and Taylor’s theorem that

K
[Pp]
t (f ; x) − f(x) = K

[Pp]
t (f(y) − f(x); x)

= f ′(x)K[Pp]
t (y − x; x) + f ′′(x)

2
K

[Pp]
t

(
(y − x)2 ; x

)
+K

[Pp]
t

(
(y − x)2µx(y); x

)
holds. Now, if we first multiply both sides of the above equality by (β1(t))−1 and then
take the limit as 0 < t → R−, we get the desired result. □

Finally, we should note that all the special cases given for Theorem 2.3 in Section 3 are
also valid for Theorem 4.1; but we omit the details.

5. Concluding remarks
In this study, we have investigated the effects of regular summability methods on the

approximation of functions by Bernstein polynomials. This has allowed us to obtain some
new Voronovskaja results. In particular, we have for the first time used well-known regular
methods such as Cesàro, Riesz, Abel and Borel in asymptotic formulae of a Voronovskaja
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type. When we compare our results with the classical ones, we have found that in cases
where the classical convergence works, regular summability methods sometimes decelerate
convergence and sometimes accelerate it. But more importantly, our approach has also
responded to situations where the classical convergence fails.

In the future we plan to do similar work on the q-Bernstein polynomials, which were
introduced by Phillips [16]. It is well known that to approximate continuous functions
by means of q-Bernstein polynomials, instead of a fixed number q ∈ (0, 1), one needs
a sequence (qn) whose terms lie in the interval (0, 1) and satisfy the limit condition
limn→∞ qn = 1. Therefore, the work we plan to do may be more interesting because
it is possible to weaken this limit condition with the help of regular summability methods.
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