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ABSTRACT
This research examines the use of kernel estimation and FindDistribution methods in Mathematica

software to analyze the ratio of taxpayer audits to total taxpayers, focusing on two large populations: one with
approximately 80,000 audits per 100,000 taxpayers and the other with 4.5 million audits per 6 million taxpayers.
Comparing the maximum statistics, the study shows that a larger number of taxpayers leads to more audits.
The dataset also includes a weighted average for audits and taxpayers with a maximum of around 75,000
and 4 million respectively. These numerical values have been determined using the simulation carried out
after modeling the real data sets of the total number of taxpayers and their audits from the years 2012 to
2023. These results show that different taxpayer populations require the targeted audit strategies and highlight
the importance of the statistical models with corresponding estimation method to better understand complex
distributions and improve tax audit processes.
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INTRODUCTION

Kernel density estimation (KDE) has been widely used in various
fields, including income distribution analysis (Papatheodorou et al.
2004), poverty assessment (Minoiu and Reddy 2008), and popu-
lation variance estimation (Hanif and Shahzad 2019). However,
its application to grouped data has been found to introduce biases
in poverty estimates (Minoiu and Reddy 2008). To address this, a
method that combines auxiliary information with a kernel estimate
has been proposed (Kuk 1993). Furthermore, a bipartite recursive
algorithm based on KDE has been developed for measuring the
scale of a given income population (Chen and Wang 2011).

KDE stands as a versatile tool widely deployed across diverse
fields, ranging from income distribution analysis to poverty assess-
ment and population variance estimation. Papatheodorou et al.
(2004) underscores its efficacy in unveiling nuanced disparities
within income distributions across different European countries,
shedding light on the ramifications of income polarization and con-
centration. However, Minoiu and Reddy (2008) brings attention to
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the inherent biases introduced when KDE is applied to grouped
data, particularly in poverty estimation, urging for caution in pa-
rameter selection. Addressing this concern, Kuk (1993) proposes a
method amalgamating auxiliary information with kernel estima-
tion to mitigate such biases, while Chen and Wang (2011) devises
a bipartite recursive algorithm grounded in KDE for gauging the
scale of specific income populations. This confluence of research
highlights the promise KDE holds in estimating taxpayer num-
bers and scrutinizing taxpayer audit. Nevertheless, the discourse
underscores the imperative of meticulous consideration of data
characteristics and parameter choices to ensure robust and reliable
estimations. A merge between a parametric model used for distri-
bution of error term in the polynomial regression model and the
polynomial movement on the data set as time series is studied by
(Çankaya and Aydın 2024).

In Turkiye, the tax audit process is managed by the Presidency
of the Tax Audit Board under the Ministry of Treasury and Finance.
An important element of tax audit is expressed by the term "tax
inspection" as it is understood in the activity reports of the Pres-
idency. Article 134 of the Tax Procedure Act states that the main
objective of tax inspection is to investigate and ensure the correct-
ness of tax payments. Accordingly, tax inspectors check whether
taxpayers have fulfilled their tax obligations in accordance with
the legislation and whether they have correctly determined the
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actual tax base. Tax inspection is not limited to the detection of tax
evasion, but also includes the purpose of informing taxpayers of
their tax obligations and verifying the elements of their tax returns.

A range of studies have explored the distribution of taxpayers
and taxpayer audit. Chamberlain and Prante (2007); Piketty et al.
(2018); Serikova et al. (2020) both highlight the progressive nature
of the U.S. tax system, with the former emphasizing the impact
of government spending on this progressive. Johns and Slemrod
(2010); Davidson and Duclos (1997) delve into the distributional
consequences of income tax noncompliance and the statistical
inference for measuring the incidence of taxes and transfers, re-
spectively. Ruggles and O’Higgins (1981); Piketty et al. (2017) both
examine the distributive impact of government expenditures, with
the latter focusing on the distribution of national income. Chotika-
panich (2008); Perese (2015) provide methodological approaches
for estimating income distributions and analyze the distribution
of household income and federal taxes, respectively. Tax audit
outcomes can lead to considerable adjustments in how companies
recognize and value tax benefits, ultimately affecting their financial
statements and tax strategies (Brushwood et al. 2018; Cowx and
Vernon 2023).

The organization of the paper is given in the following order:
The first section is for the introductory knowledges from literature.
The second section gives real data. The method and objective are
represented by third section. The forthcoming sections provide the
statistical evaluations and their numerical results. The last section
is divided into section for the conclusion.

DATA ON TAXPAYERS IN TURKIYE

Within the scope of the study, the data were obtained from the
annual reports published on the official website of the Presidency
of the Tax Audit Board. The reports covering the period between
2012 and 2023 contain informations which are total number of
taxpayers and taxpayer audit.

■ Table 1 Taxpayers and their Audit by Years (VDK 2023)

Year Total number of taxpayers Taxpayer audit

2012 2,422,975 46,845

2013 2,460,281 71,352

2014 2,472,658 55,284

2015 2,527,084 58,676

2016 2,541,016 49,817

2017 2,636,370 44,182

2018 2,727,208 44,376

2019 2,813,452 40,763

2020 3,004,329 47,597

2021 3,221,084 54,065

2022 3,443,964 77,610

2023 3,621,478 60,242

Table 1 presents the total number of taxpayers and the number
of taxpayers audited for certain years. In general, the table shows

that the number of taxpayers increases each year and that the
number of taxpayer audit generally shows an increasing trend.
This may imply that tax controls cannot be applied to all taxpayers
due to the limited resources of the tax administration or other
priorities. In particular, there can be a significant decrease in the
numbers of audit in years 2013-2014, 2015-2016, 2018-2019 and
2022-2023. There is an increase in trending of taxpayer audit from
years 2012-2013 and 2021-2022. These numbers may indicate that
the tax administration’s strategies or resources have changed or
that it has turned to other ways of administrative process of tax
management system.

The continuous increase in the total number of taxpayers may
reflect the expansion of the tax system or the fact that more people
are becoming taxpayers as the economy grows. However, low
numbers of audit may indicate that tax compliance is not at the
desired level or that the tax administration is not using its audit
resources effectively. The next section provides the modeling of
data sets in Table 1 and the artificial data sets generated from the
estimated functions determined by modeling.

METHOD AND OBJECTIVE

Kernel Estimation Method
One of the key advantages of the kernel mixture distribution is its
ability to fit complex and multimodal data distributions. Unlike
traditional parametric models, which make assumptions about
the underlying data distribution, the kernel mixture distribution
is non-parametric, meaning that it can adapt to the shape and
structure of the data without imposing strict constraints, that is, it
is data-adaptive and so the smoothness property will guarantee to
fit data set well. This flexibility makes it particularly suitable for
analyzing data sets with different patterns and characteristics.

It also provides a versatile framework for a variety of statistical
tasks, including kernel mixture distribution, density estimation,
clustering, and anomaly detection. By adjusting parameters such
as the bandwidth of the kernels and the number of components
in the mixture, analysts can fine-tune the distribution to capture
different aspects of the data and achieve the desired level of granu-
larity (Wand and Jones 1994).

In cases where the sample size is small, it is considered prudent
to use applied techniques and artificial datasets to avoid bad effects.
It should be noted, however, that for the smoothing technique, the
alternative smoothing function can also be tried to obtain a possi-
bly more accurate modeling; the figures will be close to the results
already obtained, since the number of replications is increased
to generate the artificial data. In addition, the parametric model
proposed provides a comparison between the parametric function
and the smoothing function. The results of the proposed distribu-
tion show that the smooth function is able to perform an accurate
fit compared to the trimodal normal distribution as a parametric
model (Vila et al. 2024b).

Various techniques and measures are used in data analysis to
overcome the difficulties of working with small sample sizes. The
use of artificial datasets can be very useful in such cases, allowing
the creation of additional data points to supplement the original
sample. This can help to correct for irregularities or gaps in the
data and increase the robustness of the analysis. In addition, the
use of smoothing techniques can improve the modelling process
by reducing noise and highlighting important patterns in the data.
Exploring alternative smoothing functions can further improve the
modelling process and potentially lead to more accurate results.
The comparison between parametric models and smooth functions,
as proposed by Vila et al. (2024b), sheds light on the effectiveness
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of different modelling approaches. The smooth function appears
to outperform the parametric model, especially when compared to
the tri-modal normal distribution.

Kernel estimation as a non-parametric method is a statistical
method used to estimate the probability density function, f (x),
of a random variable based on a sample of data. It uses kernel
functions to set a smoothness in order to fit the data and create
estimates for the parameters such as location, scale, etc. of the
underlying distribution.

Given a data sample, x1, x2, . . . , xn, the kernel density estimate
of the function f (x) at a point x is calculated as:

f (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(1)

• f (x) is the estimated density at point x for the function f (x).
• n is the number of data points in the sample.
• h is the bandwidth parameter, which controls the width of the

kernel.
• K(·) is the kernel function, a smooth, symmetric function cen-

tered around zero. Common choices for the kernel function
include the Gaussian, Epanechnikov, and uniform kernels.
The choice of kernel affects the shape of the estimated density
(Wand and Jones 1994; Wolfram 2003).

In Mathematica, the KernelMixtureDistribution function is
used to create a kernel mixture model for density estimation. By
default, KernelMixtureDistribution uses a Gaussian (normal)
kernel for the estimation (Wand and Jones 1994; Wolfram 2003).
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Figure 1 Kernel functions

Since the kernel functions used in Mathematica are very close
to each other, the mixture form of the normal distribution was
preferred due to the number of pages and the complexity of the
results in the Figures at this paper. On the other hand, Gaussian
(normal) kernel have an ability to fit the data where take the values
at the interval [−2, 2] when compared with other kernel functions
such as Epanechnikov, Triangular, Biweight, etc. In addition, the
function FindDistribution is also used to be able to perform a
precise evaluation while getting the weights from differences of
cumulative distribution function (see codes in Appendix).

Robust Estimations for Location and Scale Parameters

Robust statistics and kernel estimation share the goal of dealing
with non-standard data distributions and mitigating the effects
of outliers. Robust statistics focuses on developing methods that
are resistant to outliers and deviations from standard assumptions.
Robust estimators, such as the median or trimmed mean, are less
affected by extreme values than traditional estimators such as the
mean (Maronna et al. 2019).

Kernel estimation, often used in non-parametric density es-
timation, involves smoothing the data using a kernel function
to estimate the underlying probability density function. This ap-
proach provides flexibility in modelling complex data distributions
without assuming a specific parametric form. However, kernel
estimation can be sensitive to outliers, leading to biased estimates,
especially in regions of sparse data (Wand and Jones 1994).

The connection between robust statistics and kernel estimation
lies in their complementary roles in dealing with challenging data
scenarios. While kernel estimation provides flexibility and adapt-
ability in modelling diverse data distributions, robust statistical
techniques provide stability and resistance to outliers. By com-
bining the principles of robust statistics with kernel estimation,
researchers can develop methods that are both flexible and robust,
enabling more reliable inference and analysis in the presence of
non-standard data distributions and outliers.

The log-likelihood form of location and scale family is used to
obtain the weighted mean and the weighted variance. The mean is
given by

weightedMean(w) =
∑n

i=1 (Sort(ND(w))i · weights(w)i)

∑n
i=1 weights(w)i

(2)

• ND(w): Function that returns the numerical data derived
from w.

• weights(w): Function that returns the weights corresponding
to the elements of ND(w).

• Sort(ND(w)): Sorted version of ND(w) in ascending order.

The square root of the weighted variance is defined as weighted
standard deviation given by the following form:

weightedStD(w) =

√
1
n

n

∑
i=1

weights(w)i (Sort(ND(w))i − weightedMean(w))2 (3)

• ND(w): Function that returns the numerical data derived
from w.

• weights(w): Function that returns the weights corresponding
to the elements of ND(w).

• Sort(ND(w)): Sorted version of ND(w) in ascending order.
• weightedMean(w): Weighted mean of w, as defined previ-

ously.
• n: Length of ND(w).

The theory of robust statistics is based on weights from the
assumed or the chosen function (Maronna et al. 2019). In our case,
the weights come from two separate functions. One is the kernel es-
timator and the other is the FindDistribution function included
with Mathematica software 12.0.0.0. The FindDistribution is
a powerful tool for fitting a probabilistic model to a given dataset.
Implemented in version 12.0.0.0, this function automatically iden-
tifies the most appropriate distribution from a set of candidate
distributions using the statistical goodness-of-fit tests. It allows
users to quickly determine the underlying statistical properties of
their data, simplifying the statistical modelling (Wolfram 2003).
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Kernel Mixture and Find Distributions in Mathematica

In Mathematica, the functions KernelMixtureDistribution and
FindDistribution can be used to estimate a distribution based on
a data sample and a chosen kernel function.

The syntaxes for the function are:

1 KernelMixtureDistribution[data,Automatic,"SemiCircle"]

2 FindDistribution[data]

• ’data’ is the input data sample.
• ’Automatic’ allows Mathematica to automatically select an

appropriate bandwidth.
• ’"SemiCircle"’ specifies the semi-circle kernel function, which

may be useful for specific types of data.
• The function FindDistribution returns the name or symbolic

representation of the distribution that best fits the data. It can
handle a wide range of distribution families, including but
not limited to normal, uniform, exponential, gamma, beta,
and many others.

The ‘KernelMixtureDistribution‘ function returns a nonpara-
metric distribution that can be used for further analysis. Consider-
ation of factors such as numerical optimization and manufacturing
process is crucial to ensure the validity and reliability of the results.
The numerical values obtained from Figures 2-13 are likely to rep-
resent the results of these optimization processes and can give an
idea of the performance of the modeling techniques automatically
performed by the functions in Mathematica 12.0.0.0. By follow-
ing these steps, you will have a comprehensive understanding of
the characteristics of your synthetic datasets and be able to analyze
their statistical properties effectively (Wolfram 2003).

Algorithmic Schema in Order

1 Transfer data set into the case where the unit interval is set:
If your original data is not in the unit interval (i.e., the range
[0, 1]), you’ll need to scale it to fit within this range. The
number of taxpayer audit is proportioned to the total number
of taxpayers, thus obtaining data will be in the unit interval. If
the randomly generated ratio values from estimated density,
f (x), are multiplied by the total number of taxpayers, then
the number of taxpayer audit is obtained. If the number of
taxpayers is divided by the randomly generated ratio values
from estimated density, f (x), the total number of taxpayers is
obtained.

2 Model the unit interval data set:
Once your data is in the unit interval, you
can model it using a kernel estimation
method. Since using Mathematica, the function,
‘SK=KernelMixtureDistribution[x,Automatic,"SemiCircle"]‘,
could be used to create a smooth kernel density estimate of
your data. Using the model generated in the previous step,
generate a synthetic dataset with the same characteristics as
your original data.

3 Generate artificial data set with sample size n = 12:
’RandomVariate[SK,n=12]’; Use the ‘RandomVariate‘ function
in Mathematica to generate random samples from your esti-
mated density, f (x).

4 Once you have generated one synthetic dataset, replicate this
process 10,000 times by using ‘SK‘. For each iteration, generate
a new synthetic dataset. Multiplication by total taxpayers with
generated ratio values gives the taxpayer audit and division
of taxpayer audit with ratio values gives the total number of
taxpayers (see also step 1).

5 Provide statistics: Once you have your 10,000 synthetic
datasets, calculate statistics such as the first moment (mean),
scale estimate (standard deviation), minimum, maximum, 1th,
25th, 75th and 99th percentiles for each dataset. You can also
use functions like first moment and scale estimated from the
estimated density, ’Min’, ’Max’, ’Quantiles (1%, 25%, 75% and
99%)’, etc., in Mathematica to evaluate these statistics sum-
marizing the general representation of the generated data set
from estimated density.

When the smooth function from kernel method is used, the corre-
sponding statistics such as first moment, scale estimate, etc. are
calculated. Therefore, these statistics are more accurate due to
the precise fitting performed with the smooth function. Since the
artificial data set is replicated with a sample size of n = 12, the
minimum and maximum values are selected for each set. The
same process is done for the data sets at the 1th, 25th, 75th and
99th percentiles so that we can observe the behavior of the data
set at these percentiles as probability values indicating what the
values generated for these percentiles are. In other words, we can
see the overall picture of the data generated for these values. Note
that the computational and methodological processes are also used
by references (Vila et al. 2024b; Özen and Çankaya 2023; Aydın and
Çankaya 2024).

STATISTICAL EVALUATIONS

The kernel smoothing method in Mathematica is capable of per-
forming a fitting on the data set. Further, since the assumed non-
parametric density in this software is used to generate artificial
data sets, we have a well-defined computational schema for evalu-
ating various statistics and properties of your synthetic datasets.
To summarize:

1 Empirical First Moment and Scale Estimate from Data Gener-
ated SK:
These statistics are computed using built-in functions in
Mathematica (′Moment[data, 1]′ and ′Sqrt[Moment[data, 2]−
Moment[data, 1]2]′) and are considered more accurate due to
the precise fitting performed by the smooth function.

2 Minimum and Maximum Values:
For each replicated artificial dataset, the minimum and maxi-
mum values are chosen. This provides insight into the range
of values generated by the model.

3 Quantiles at 1th, 25th, 75th and 99th Percentiles:
Similarly, for each replicated artificial dataset, the values at 1th,
25th, 75th and 99th percentiles are determined. This provides
a picture of the overall distribution of the generated data and
allows the behavior of the dataset around these quantities
to be observed. It should also be noted that this calculation
scheme is used with references (Vila et al. 2024b; Özen and
Çankaya 2023; Aydın and Çankaya 2024), which shows its
validity and suitability in practice. By following this scheme,
you can effectively analyze the characteristics and behavior of
your synthetic datasets and help your optimization process.

4 Weighted Statistics for Location Scale Parameters:
The weighted mean and the weighted standard deviation
based on the differences of cumulative distribution function
from kernel smooth (KS) and FindDistribution (FD) are calcu-
lated.

The statistical evaluations are detailed quantitatively in the follow-
ing section ’Numerical Results’. This section presents the empirical
findings, providing a comprehensive analysis of the data and their
implications for the study.
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NUMERICAL RESULTS OF STATISTICAL EVALUATIONS

The generation of accurate simulated data can have a significant im-
pact on various stakeholders, including policymakers, researchers,
and industry professionals. These stakeholders rely on the quality
and precision of the data to make fully informed decisions. While
the simulated data are confidential, it is important to thoroughly
and fully document the methods and approaches used to generate
them. This documentation allows for reproducibility and valida-
tion of the outputs of simulation by other researchers or analysts
in the field.

Each of Figures 2-13 shows summary statistics from the arti-
ficially generated data set for the sample size n = 12, replicated
10,000 times. There are two types of Figures. One of them rep-
resents the statistical values for taxpayer audit given by Figs. 2
- 5. The second one represents the statistical values for taxpayer
given by Figs. 6 - 9. Further, note that we focus on the maximum
values of the generated data set for the sake of the fact that the
future probable prediction can also be evaluated and suggested
as well. In such case, the maximum, 1%, 25%, 75% and 99% as
order statistics for taxpayer audit and taxpayer are an open issue
which should be studied intensively. We prefer to omit the topic
about order statistics and Figures 2-13 give the general appearance,
as mentioned above. Consequently, the numerical results can be
the values shown in Figures 2-13, taking into account the numer-
ical optimization and generation procedure from the estimated
density, f (x) estimated by using two estimation method which
are non-parametric being kernel smooth and parametric being
FindDistribution. The simulated data are therefore considered
confidential as they are the best possible match to the observed
data.

Figures 2a-2b and 6a-6b show the empirical first moment on
average from the measure of central tendency and the scale esti-
mate from the measure of dispersion. Figures 3 and 7 represent
the minimum and maximum values of the data at a sample size
of n = 12. Figures 4-5 and 8-9 represent the simulated data for
n = 12 at 1%, 25%, 75% and 99% cut-offs, respectively.

When comparing Figures 3b and 7b for maximum of the artifi-
cial numbers from taxpayers audit and taxpayers, respectively, the
more taxpayers lead to have detection of the more taxpayer audit,
as expected.
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Figure 2 The simulated data for statistics of the taxpayer audit
within years 2012-2023

Figures 10-13 show the robust estimates replicated at 10,000
times for location and scale parameters. When Figure 10a is com-
pared with Figure 11a, the results show that the values of weighted
mean from FD tends to take lower values, which shows that the
chosen function for fitting data set affects the results we will get,
because the function chosen plays role in determining the weights
for the robust estimation. In addition, the scale estimate given
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Figure 3 The simulated data for minimum and maximum of the
taxpayer audit within years 2012-2023
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Figure 4 The simulated data for quartiles at 1% & 99% of the
taxpayer audit within years 2012-2023
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Figure 5 The simulated data for quartiles at 25% & 75% of the
taxpayer audit within years 2012-2023
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Figure 6 The simulated data for statistics of the taxpayers within
years 2012-2023

by Figure 2b have values which are bigger than that of values in
Figure 10b. The same situation for taxpayers at Figures 6b and 12b
is observed. Figures 10-11 represent the case where the numbers
of taxpayer audit are around. Figures 12-13 represent the case
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Figure 7 The simulated data for minimum and maximum of the
taxpayers within years 2012-2023
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Figure 8 The simulated data for quartiles at 1% & 99% of the
taxpayers within years 2012-2023
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Figure 9 The simulated data for quartiles at 25% & 75% of the
taxpayers within years 2012-2023
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Figure 10 The weighted forms of location and scale estimates
from Smooth Kernel, n = 12 for the taxpayer audit

where the numbers of taxpayer are around.
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Figure 11 The weighted forms of location and scale estimates
from Find Distribution, n = 12 for the taxpayer audit
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Figure 12 The weighted forms of location and scale estimates
from Smooth Kernel, n = 12 for the taxpayers
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Figure 13 The weighted forms of location and scale estimates
from Find Distribution, n = 12 for the taxpayers

Number of Taxpayers at per square Kilometer of Turkiye
To find the number of taxpayers per square kilometre, you must
first find the total number of taxpayers in a given area, and then
divide that number by the total area of that area, measured in
square kilometre. This calculation will give you the density of
taxpayers, which indicates how many taxpayers live or are based
in each square kilometre of the area in question.

Considering the maximum value in the simulated data from
kernel estimation method, there are approximately 6 million tax-
payers from Figure 7b. Turkiye, with a population of 85.8 million,
is in the taxpayer’s role at a rate of 6/85.8 = 0.06993.

Since there are 110 people per square kilometre in Turkey,
110 · 0.06993 = 7.69, approximately 8 out of 110 people per square
kilometre will be identified as taxpayers if they are evenly dis-
tributed across the regions of Turkey (Wolfram 2003). This measure
is essential for understanding the distribution of taxpayers across
the country, which can help in effective policy making, resource
allocation and economic planning.
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CONCLUSION

The study has highlighted the importance of using sophisticated
statistical methods to accurately model these complex, multimodal
data distributions which can be modeled by using the kernel esti-
mation methods which provide robust and versatile framework
for statistical analysis. They can handle complex/multimodal data
distributions such as the ratio values between the taxpayer audit
and its total numbers. Firstly, the kernel estimation method has
been used. After that, the FindDistribution function included
with Mathematica software 12.0.0.0 is used to model the gener-
ated data artificially from SK=KernelMixtureDistribution with
RandomVariate[SK, n=12].

The values of ratio give an advantage for us to fit the data set
well. In addition, the total taxpayers and the taxpayer audit can
be calculated from the values of ratio. When the results for the
maximum number of taxable persons and taxpayers are compared,
the more taxable persons lead to the detection of the more taxpayer
audit, as expected. According to the maximum statistic of the
simulated data, the total numbers of taxpayers can go up to 6
million, which can occur in the near future. The taxpayer audit
will be around 120,000 from maximum statistics. The simulation
results for the taxpayer audit have shown that there are two blocks
for the numbers which are 80,000 and 100,000. The values around
100,000 are few when compared with that of 80,000, which shows
that the audit on the taxpayers is commented as two populations
and some precautions for tax audit can be necessary when the
maximum statistics are taken into account.

In the same way, when observing the number of taxpayers,
there can be two populations which are 4.5 million and 6 million.
Additional statistics, including the weighted means for taxpayer
audits and overall taxpayer population, which are approximately
75,000 and 4 million respectively, are also provided to summarize
general characteristics of the data set. As a result, more taxpayers
should be surveyed. Further, by improving our understanding
of these populations; policymakers and tax authorities can imple-
ment more effective policies to optimize tax audit processes and
ensure fair tax compliance among different taxpayer groups. Our
ability for modeling, estimating and understanding the number
of taxpayers and its audit form with precision and confidence in-
tervals will continue to improve with the continued research and
improvements in this area.

APPENDIX

The Mathematica codes for computation and statistical evalua-
tions
Mathematica, developed by Wolfram Research, is a comprehen-
sive computational software system widely used in various fields
of science, engineering, mathematics and computing. It features
a high-level programming language, powerful computational ca-
pabilities, and a wide range of built-in functions, making it an
indispensable tool for research, education, and industrial applica-
tions.

The codes were used to model the proportional data using the
kernel mixture distribution in Mathematica 12.0.0.0 software.

For[w=1, w <= rep, w++,

(* Fitting via Smooth Kernel Method *)

SK[w]=KernelMixtureDistribution[x, Automatic, "SemiCircle"];

(* Vector for scaling the generated random numbers *)

vec={data};

(* Generate random numbers based on the kernel

distribution and scale them by vec *)

ND[w]=RandomVariate[SK[w], 12] * vec;

(* Calculate the CDF of the kernel distribution for

sorted ND[w] *)

CDFSK[w]=CDF[KernelMixtureDistribution[ND[w]],Sort[ND[w]]];

(* Calculate the CDF of a fitted distribution for

sorted ND[w] *)

CDFFD[w]=CDF[FindDistribution[ND[w]],Sort[ND[w]]];

(* Calculate weights based on the differences in the CDF

for the kernel distribution *)

weights1SK[w]=Differences[CDFSK[w]];

(* Calculate the remaining weight to ensure the weights

sum to 1 *)

weights2SK[w]=1 - Total[weights1SK[w]];

(* Combine the weights and ensure they sum up to 1 *)

weightsSK[w]=Join[weights1SK[w], {weights2SK[w]}];

(* Calculate weights based on the differences in the CDF

for the fitted distribution *)

weights1FD[w]=Differences[CDFFD[w]];

(* Calculate the remaining weight to ensure the weights

sum to 1 *)

weights2FD[w]=1 - Total[weights1FD[w]];

(* Combine the weights and ensure they

sum up to 1 *)

weightsFD[w]=Join[weights1FD[w], {weights2FD[w]}];

(* Calculate various statistics for ND[w] *)

sta1[w]:=Moment[ND[w], 1]; (* First moment (mean) *)

ta1=Table[sta1[w], {w, rep}];

sta2[w]:=Mean[ND[w]]; (* Mean *)

ta2=Table[sta2[w], {w, rep}];

sta3[w]:=Median[ND[w]]; (* Median *)

ta3=Table[sta3[w], {w, rep}];

(* Standard deviation based on moments *)

sta4[w]:=Sqrt[Moment[ND[w], 2] - Moment[ND[w], 1]^2];

ta4=Table[sta4[w], {w, rep}];

(* Standard deviation *)

sta5[w]:=StandardDeviation[ND[w]];

ta5=Table[sta5[w], {w, rep}];

(* Median absolute deviation from the median *)

sta6[w]:=Median[Abs[ND[w] - Median[ND[w]]]];

ta6=Table[sta6[w], {w, rep}];

(* Median absolute deviation from the mean *)

sta61[w]:=Median[Abs[ND[w] - sta1[w]]];

ta61=Table[sta61[w], {w, rep}];

(* Mean absolute deviation from the mean *)
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sta62[w]:=Mean[Abs[ND[w] - sta1[w]]];

ta62=Table[sta62[w], {w, rep}];

(* Minimum value *)

sta7[w]:=Min[ND[w]];

ta7=Table[sta7[w], {w, rep}];

(* Maximum value *)

sta8[w]:=Max[ND[w]];

ta8=Table[sta8[w], {w, rep}];

(* Calculate various quantiles *)

(* 1st percentile *)

staquan1[w]:=Quantile[ND[w], 0.01];

taga1=Table[staquan1[w], {w, rep}];

(* 25th percentile *)

staquan2[w]:=Quantile[ND[w], 0.25];

taga2=Table[staquan2[w], {w, rep}];

(* 50th percentile / median *)

staquan3[w]:=Quantile[ND[w], 0.5];

taga3=Table[staquan3[w], {w, rep}];

(* 75th percentile *)

staquan4[w]:=Quantile[ND[w], 0.75];

taga4=Table[staquan4[w], {w, rep}];

(* 99th percentile *)

staquan5[w]:=Quantile[ND[w], 0.99];

taga5=Table[staquan5[w], {w, rep}];

(* Calculate the weighted mean based on

the smooth kernel (SK) distribution weights *)

weightedMeanSK[w]:=

Total[Sort[ND[w]] * weightsSK[w]]

/

Total[weightsSK[w]];

taWeMeSK=Table[weightedMeanSK[w], {w, rep}];

(* Calculate the weighted standard deviation

based on the smooth kernel distribution weights *)

weightedStDSK[w]:=

Sqrt[Total[weightsSK[w]*(Sort[ND[w]]-weightedMeanSK[w])^2]

/

Length[ND[w]]];

taWeSDSK=Table[weightedStDSK[w], {w, rep}];

(* Calculate the weighted mean based

on the fitted distribution (FD) weights *)

weightedMeanFD[w]:=

Total[Sort[ND[w]] * weightsFD[w]]

/

Total[weightsFD[w]];

taWeMeFD=Table[weightedMeanFD[w], {w, rep}];

(* Calculate the weighted standard deviation

based on the fitted distribution weights *)

weightedStDFD[w]:=

Sqrt[Total[weightsFD[w]*(Sort[ND[w]]-weightedMeanFD[w])^2]

/

Length[ND[w]]];

taWeSDFD=Table[weightedStDFD[w], {w, rep}];

]
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