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ABSTRACT. The regular impulsive conformable fractional Dirac system is discussed in this study. First,
the uniqueness and existence of solutions for certain kinds of systems are examined. Next, the funda-
mental features of the operator corresponding to these systems are found and its symmetry is shown.
In the end, Green’s function for this problem is determined, and its fundamental characteristics are
provided.
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1. INTRODUCTION

One of the key equations in quantum mechanics is the one-dimensional Dirac system, which expresses
the underlying physics of practical quantum mechanics. In addition, it describes the electron spin and
makes an antimatter prediction. The literature (see [19}24,/28]) has examined a few Dirac system prop-
erties.

One of the key issues covered in differential equation theory is impulsive differential equations. There
are a lot of paper on this topic in the literature because these equations provide fundamental models for
studying the dynamics of processes that are susceptible to abrupt changes in their states ( [8-12}/14}/15,
181|20%2526]). In [4], the authors investigated a coupled system of piecewise-order differential equations
with variable kernel and impulsive conditions. In [22], Shah et al. studied a class of impulsive fractional
order differential equations with integral boundary condition. A nonlinear Cauchy problem is investigated
under impulsive and nonlinear integral boundary conditions in [23]. In [2], the authors is obtained some
results about existence and stability analysis for a nonlinear problem of implicit fractional differential
equations with impulsive and integral boundary conditions. In 3], Ali et al. studied impulsive fractional
order differential equations under nonlocal Caputo fractional boundary conditions.

One of the topics of fractional calculus that is still growing is conformable fractional calculus. Khalil
et al. |17] started the research of conformable fractional calculus. The conformable fractional derivative
is a novel type of simple fractional derivative that was defined by the authors in [17]. Abdeljawad [1]
later defined the fractional chain rule, the fractional integrals of higher orders, and the right and left
conformable fractional derivatives. To the best of our knowledge, however, much less research has been
done on conformable fractional Dirac systems. In [16], Keskin studied the asymptotic formulae for the
solutions, eigenvalues, and nodal points of conformable fractional Dirac-type integro-differential system.
In [13], Goktas et al. investigated the Dirac system in multiplicative fractional calculus. In [21], the
authors studied the spectral structure of a conformable Dirac system with jump conditions and spectral
parameter contained in boundary conditions.
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This paper examined the conformable fractional Dirac system under impulsive boundary conditions.
We looked at the existence and uniqueness of solutions for this system. In order to do this, we have used
the same method as in [25]. Next, the symmetric operator associated with this equation was discovered.
The fundamental characteristics of eigenvalues and eigenfunctions were provided. Ultimately, the Green
function associated with this system was determined, along with a few fundamental characteristics.

In this paper, the classical one-dimensional Dirac equation is analyzed under the framework of con-
formable fractional calculus with impulsive conditions. In [5], the authors have studied the one-dimensional
conformable fractional Dirac equation without impulsive conditions. To the authors’ knowledge, there
is no work in the literature on the conformable fractional Dirac equation under impulsive conditions.
Therefore, this study will be helpful for researchers working on these topics.

2. PRELIMINARIES

We want to review some essential definitions and conformable fractional calculus properties in this
part (see [L,/17]).

Definition 1 ( [1,/17]). Let o € (0,1) and let f : [0,00) — R be a function. Then, the conformable
fractional derivative of f, T, [ is defined as follows:
i LEFET) —F(©)
Taf(g): { gL)I% e f0T€>O, (1)
hmg—>0+ (Taf(g)) for £ =0.

Definition 2 ( [1,[17]). The following defines the conformable fractional integral of f:

£ £
() = / f(t)da(t,a) = / (t— )™ f(t)dt

b

(") (€) = / H)da (b, 1)

3

and

alf

m\@

The space
1/2

b 1/2 b
Bat)= {7411 = (/ |f(£)|2d°‘§> =</ f(g)ﬁ«g“dx) <o

is a Hilbert space with the inner product
b
)= [ fae g€ ey
(see [27])

3. IMPULSIVE CONFORMABLE FRACTIONAL DIRAC SYSTEM

Consider the following impulsive conformable fractional boundary-value problem (CBVP)

I(u) =M, €€l (2)
L1 (u) = U1 (0) + ]€1’LL2 (0) = 0, (3)
Lo (u) = Uy (d—) — kouq (d+) =0, (4)
L3 (u) :=us (d—) — kgug (d+) = 0, (5)
Ly (u) := uq (a) + kquz (a) = 0, (6)

where

! () ::{ —Touz +p(§u ( uy >’
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The following constitute our fundamental assumptions throughout the paper:
(Al) Let k2k3 =p > 0.
(A2) Finite limits p (d+), r (d+) exist for p and r, which are real-valued continuous functions on I.

Consider the Hilbert space H = L2(0,d) + L2 (d, a) that has the following inner product

d T a T—
(f.g) = / FOTgmane 1 p /d FOT g@ane,
0

where

_ [ W), ¢en _{g<1>(§), el
f(g){ fA), ¢eb, 9(&) = g@(), €€l

Theorem 1. The following impulsive conformable fractional initial-value problem
I(u) =Au, AeC,
up (0) = s1, uz (0) = s2, $1,82 €R,
uy (d—) — kouy (d+) =0,

uz (d—) — ksug (d+) =0,
has a unique solution .

Proof. From [5], we see that the following conformable fractional initial-value problem
L(u(§)) = Au(§), € € (0,d),
U1 (O) = 81, U2 (0) = S92,

_ ¢11
Y1 = ( V1o )

Consider the following conformable fractional initial-value problem

has a unique solution

I(u) =Au, €€ (d,al, (7)
wn (d4) = ot (), (8)
ua (d4) = -t (d-). (9)
Set
Un (fa )‘) = UO (Ea /\)
e[ (&N @ (7,0
+/ M (’7) Unfl (’Y, )‘) da’V?
o = (&N F (v, A)
where

Uot (6, \) = éwu (d=,\) + kis (€~ d)ihrp (), E€ I,

Uos (6, )) = é(é —d) (A N) + ,}gwlz (d-,N), €€ b,

cos fg )\d“t)

_ &N\ _ ( 0

& (57 )\) a < Zi; (57 )\) > a sin(f()5 )\do‘t) ,
X

_sin( [ Ad™t)

-

_ 21 (6, 2)
S ( ’ A cos (fog )\dat)

P92 (€, A)
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_(pr O
u=(5 1),

and the matrix transpose operation is shown by the symbol 7. Here ¢; and ¢, are the fundamental
solutions of Eq. for
_(r 0)_
(%)=

Let A € C be fixed. Then positive numbers A and N ()) exist such that
M (&)] < A,

|<Pij fa/\)’ < —

IUs (€, M) < N (), € € L.
Hence, we obtain

HUl (57 )‘) - Uy (67 )‘)”

cos fg Adt 7&“(]3)\)@%)
IN p () Uot (v, A) d*y
sm {)\d t
os (fy Ad*t)
<
cos fo Adat cos (fy Adet)
~ I 7 (7) Uoz2 (7, A) d*y
bm f,\da t) sin( [ Ad*t)
by
— | r¢ —~— ()™
<2N (\) AN( < 2N (N) AN (\) / d*y| < 2N (M) AN (X) (2 .
d 0
Similarly, we obtain
A2N2 2c
10 (60~ U (€ W] < 22N () S
Hence (AN ()£
n N)E"
[Unt1 (& A) = Un (&N <2 N(A)W7 (10)
where n = 1,2, 3, .... By Weierstrass’s test, we see that the series
— a™n!
is uniformly convergent. Consequently, the series
Ut (€A + D {Uns1 (6,) = Un (6, 1)} (11)

n=1

is uniformly convergent with respect to £ on (d, a]. Then we obtain
T U, (6.3) = 5 (6. 1),
ie.

Yo (6 2) = U (6N + Y AUnt1 (60 = Un (6, M)}

Now we prove that 1, satisfies Eq. @
TocUn+1 (67 )\) - TaUn (€a )‘>

¢
:/d [Tapy (€ X) 1 (7, 0) — Tty (§,2) @3 (7,0)] x
XM () [Un (7, A) = Un—1 (7, A)] d™.
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(10) implies that the series
o0
Z {TaUTH-l (Ea )‘) - TaUn (57 A)}
=1

is uniformly convergent with respect to £ on (d,a]. Hence, we find

Tathyy (€, 0) Z{T Unt1.1 (§A) = TaUni (6, M)}

Z{Unlf)\ nll(g)‘)}
= (=71 () + N ¥ (5N,

due to

Taar (§A) = (=7 (&) + A) ¥g2 (6, A)
In a similar manner, the other equation in is shown to be true. 1, is obviously satisfied by —@. O

Hence, we conclude that

wl(f,A)a 5611
w(f’)\):{ ¢2(§7)‘)7 5612 (12)

satisfies —.

Similarly, we can derive the subsequent theorem.

Theorem 2. There is a solution

X(§7)‘) — { ;(C; (f?i)v 56 Il (13)

to Eq. (@ that satisfies —(@ for any A € C.

Currently, we examine the subsequent set:

u; and T,yu; are continuous functions
Dpax =qu€ H: onl, uj(dt) exist (j = 1,2) and finite,
Ly(u)=Ls(u)=0andl(u) € H

Then the mazimal operator Lyax on Dpayx is defined by Lpaxu = [(u), w € Dpax. If we restrict the
operator La.x to the set

Dinin = {tt € Dpax : u1 (0) = uz (0) = uy (@) = ug (a) =0},

then we obtain the minimal operator Lymin.
The conformable Green formula is defined as ( [5])

([ (u),2) = (u,1(2))
= [u, 2] (a) = [u, 2] (d+) + [u, 2] (d=) = [u, 2] (0), (14)

Ul 21
u= z = u,z €D
() e= (2 ). use

[, 2] (€) = Wa (v, Z) (§) = w1 (§) 22 (§) — 21 (uz () -
Let us take the operator £ and its domain u € Dpyax, (Lu = I(u)) vectors satisfying (3))-(6]). Next,
using and the conditions -@, the following theorem is derived.

where

and

Theorem 3. L is a symmetric operator.

Corollary 1. (i) The CBVP @-@ has eigenvalues that are all real.

(i1) For the CBVP @)-@, if \1 and Ao are two distinct eigenvalues, then the corresponding eigenfunctions
uy and ug are orthogonal.

(iii) From a geometric perspective, all of the eigenvalues of the CBVP (@—(@ are simple.
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4. THE CHARACTERISTIC FUNCTION

Let us define the following entire functions

w1 (A) = Wa (Y1, x1) (§) s w2 (A) = Wa (¢9, x2) (€)
where
Wa (0:x) (€) = ¥1 (&) X2 (§) — X1 (§) ¥ (€) -

Combining () - (§), we see that wy (A) = pwa (A) . Thus, the characteristic function of the CBVP (2)-(6)
is given by w (A) := wy (A) = pwa (A).
Lemma 1. Let

Liyy Lixy Liy Lixo

A (/\) L L21/11 L2X1 L2"/’2 L2X2

Lspy  Laxy Lsty  Lsxy

Loy Laxy Lavy  Laxo
Then, every A € C, we see that A (\) = —%w?’ N).

Proof. Combining and , we conclude that
AN =
0 —w1 (N) 0 0
Y11 (d=A) xq1 (A= A)  —kathgy (d+,A)  —kaxoy (d+,A)

1o (d=,A) X2 (d=,A)  —k3thgy (d4,X)  —k3xas (d+, N)
0 0 wa (V) 0

VY11 (d—,A)  —katgy (d+,A)  —kaxay (d+,N)
=wi (A)| Y1 (d=A)  —k3tgq (d+,N)  —kzXaa (d+, )
0 wo ()\) 0

P11 (d—A)  —kaxoy (d+,N)
= —w1 (AN w2 (A) Vo (d—, N ksizz( d+, X) ‘

= —wr (Vw2 (V) iﬁgﬁiijii )ﬁ; d— i ‘

= —w? wa :flw‘i .
=—wi(Nw2 () p (A)

O

Theorem 4. The zeros of w(\) are the same as the eigenvalues of (@—(@ Hence the eigenvalues of
(@—(@ form a finite or infinite sequence without a finite accumulation point.

Proof. Let A be a zero of w (A\). Then ws (A(O)) = Wa2 (9, x2) = 0, Le., ¥y = (xo for some ¢ # 0.

Therefore 1), satisfies @ Hence A© is an eigenvalue, i.e.,

,(/)1 €aA(O) ) 6611
7)\(0) —
o(27) { wzém@ . fel
satisfies the CBVP —@.

Let A% be an eigenvalue and 7 (f , )\(0)) be any corresponding eigenfunction. Suppose that w ()\(O)) #*

0. Then we see that w; ()\(0)) # 0 and wo ()\(0)) # 0. Thus there exist constants ¢;, ¢ = 1,2, 3,4, at least
one of which is not zero, such that

(5 )\(0)> C1¢1 ga A(O) + <2X1 g, A(O) s § S Il
n y =
C31/}2 §7 A(O) + C4X2 57 A(O) 5 5 S 12.

Since n (E, )\(0)> is the eigenfunction, we conclude that L;n (f, )\(0)) =0, i=1,2,3,4. Hence

det (Lm (5, /\(0))) —A (A(O)) —0,
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because at least one of the constants ¢;, i = 1,2, 3,4 is not zero. By Lemma 1, we deduce that A (/\(O)) #+
0, a contradiction. O

5. GREEN’S FUNCTION

Let us consider the following CBVP

—Touz +{A+p(§)}u =Ey, (15)
Touq +{)\+T(f)}UQ = Do, (16)
w1 (0) + kiug (O) =0, (17)

(5% (d*) - k2u1 (d+) == O, (18)
(%) (d—) — k3U2 (d+) = 0, (19)
uy (a) + kqus (a) =0, (20)

where ¢ € I and

Theorem 5. Suppose that X is not an eigenvalue of (@)—(@ The CBVP —(@) has a unique solution
u defined as

d a
u@xwaécuammavww7+géc%ammzcnw% (21)

where

Proof. 1t follows from that

b (1 NEG) Y e
ﬁ)ﬁl (f)\)ﬁf( 1 g,y A . 773 )d Y
d X (v,A Y o
raton @O ( S0 TARD) )
+JﬂwmaMpﬁ< NS0 Ya cen,

(23)
e i ( A= Y

satpas €N ff (SN0 Yany

()
ratyvae ol (2R
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From , we find

A E
a(l,\)'X21 &N f(f < fl/i;(zﬂ;’ ))\) 512((73) ) d®y
A E o
e (L )
X12 (- A) E1 (7) o
otV (GNP [ ( Nz () )T EE

(21)
A€ i (TR0 e

+ﬁX22 (5; /\) pfd +,¢22 ( ,)\
(

vt @0l (S TR0 e cen
Tour (€, 0)
o €0 f5 (S EAR 0 )i
FatnTatu (60 ¢ < fi;(zyf A))EElz(Zv)) ) "
eontoess (SIS Yo
+Wa,1 (0, ¥) (§) B2, € € I,

Ui (HLAEL(D) N e
At €08 (S GRLT) ) e

e
teons (A e
a( Xi2(A)E1 () o
JFﬁToﬂ/flz (ﬁvA)Pfg ( ‘5‘;22 (7, \) Z2 (9) d%y
+oWa2 (X 9) (§) E2, £ € Ia,
13 ¢11 (7) /\) E'l (7) a
sy =r @b e (G0 )i
1 7)‘ E1 «
b A= (€} (€ f;’( AN SR )d y
doty @b e i ( 2GRS0 Y

+EQa 6 S Ila

1 A) 2 o
m {>\ - ( }X22 53 fo < _;6;;1 '(7 ’))\) (’7’3/) ) d vy
sty @b ol (R i

sty O r@pemte Nl ( 2 AR
+Zo, f e I,
={A=r(@}tu2(§) +E2(8).

The validity of (15 is proved similarly. Therefore, u (£, \) is the solution of —. It is clear that
O

uga)

satisfies ((17])-(20]

The Green’s function defined by has the following properties:

Lemma 2. %) The function defined by (@ s unique.
1) G (&,7,\) is continuous at the point (0,0) .

i)

G (&7, A =G" (1,6 N).
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Proof. The proof is similar to ( [5], Theorem 18). O
Example 1. Let « — 1. Then the CBVP (@-(@ becomes

0 -1 du(() (©) 0
(1 0 ) d¢ +(p0 r(())“(C =Au((), C€1,
U 0)+k1u2(0

(
) -
(a

[\
3

(d

Uy

)
)
)
)
)+k4U2( ) ) k13k27k37k4 e R (29)

With regard to the CBVP @—(@, Theorems 1 and 5 provide the following insights: Theorem 1 estab-
lishes the existence of the solution, while Theorem 5 presents the Green’s function. For similar results,
the following sources can be consulted (see, [6,|7,/20]).

6. CONCLUSION

In this paper, we have explored the conformable Dirac equation under impulsive boundary conditions.
We began by examining the uniqueness and existence of solutions relevant to the problem, followed by
the derivation of the symmetric operator. Subsequently, we constructed the Green’s function associated
with the problem and its fundamental characteristics are provided. The Titchmarsh—Weyl theory for this
type of problem may be the subject of future research.
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