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Abstract. The regular impulsive conformable fractional Dirac system is discussed in this study. First,
the uniqueness and existence of solutions for certain kinds of systems are examined. Next, the funda-

mental features of the operator corresponding to these systems are found and its symmetry is shown.

In the end, Green’s function for this problem is determined, and its fundamental characteristics are
provided.
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1. Introduction

One of the key equations in quantum mechanics is the one-dimensional Dirac system, which expresses
the underlying physics of practical quantum mechanics. In addition, it describes the electron spin and
makes an antimatter prediction. The literature (see [19, 24, 28]) has examined a few Dirac system prop-
erties.

One of the key issues covered in differential equation theory is impulsive differential equations. There
are a lot of paper on this topic in the literature because these equations provide fundamental models for
studying the dynamics of processes that are susceptible to abrupt changes in their states ( [8–12, 14, 15,
18, 20, 25, 26]). In [4], the authors investigated a coupled system of piecewise-order differential equations
with variable kernel and impulsive conditions. In [22], Shah et al. studied a class of impulsive fractional
order differential equations with integral boundary condition. A nonlinear Cauchy problem is investigated
under impulsive and nonlinear integral boundary conditions in [23]. In [2], the authors is obtained some
results about existence and stability analysis for a nonlinear problem of implicit fractional differential
equations with impulsive and integral boundary conditions. In [3], Ali et al. studied impulsive fractional
order differential equations under nonlocal Caputo fractional boundary conditions.

One of the topics of fractional calculus that is still growing is conformable fractional calculus. Khalil
et al. [17] started the research of conformable fractional calculus. The conformable fractional derivative
is a novel type of simple fractional derivative that was defined by the authors in [17]. Abdeljawad [1]
later defined the fractional chain rule, the fractional integrals of higher orders, and the right and left
conformable fractional derivatives. To the best of our knowledge, however, much less research has been
done on conformable fractional Dirac systems. In [16], Keskin studied the asymptotic formulae for the
solutions, eigenvalues, and nodal points of conformable fractional Dirac-type integro-differential system.
In [13], Göktaş et al. investigated the Dirac system in multiplicative fractional calculus. In [21], the
authors studied the spectral structure of a conformable Dirac system with jump conditions and spectral
parameter contained in boundary conditions.
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This paper examined the conformable fractional Dirac system under impulsive boundary conditions.
We looked at the existence and uniqueness of solutions for this system. In order to do this, we have used
the same method as in [25]. Next, the symmetric operator associated with this equation was discovered.
The fundamental characteristics of eigenvalues and eigenfunctions were provided. Ultimately, the Green
function associated with this system was determined, along with a few fundamental characteristics.

In this paper, the classical one-dimensional Dirac equation is analyzed under the framework of con-
formable fractional calculus with impulsive conditions. In [5], the authors have studied the one-dimensional
conformable fractional Dirac equation without impulsive conditions. To the authors’ knowledge, there
is no work in the literature on the conformable fractional Dirac equation under impulsive conditions.
Therefore, this study will be helpful for researchers working on these topics.

2. Preliminaries

We want to review some essential definitions and conformable fractional calculus properties in this
part (see [1, 17]).

Definition 1 ( [1, 17]). Let α ∈ (0, 1) and let f : [0,∞) → R be a function. Then, the conformable
fractional derivative of f, Tαf is defined as follows:

Tαf(ξ) =

{
lim
ε→0

f(ξ+εξ1−α)−f(ξ)
ε for ξ > 0,

limξ→0+(Tαf(ξ)) for ξ = 0.
(1)

Definition 2 ( [1, 17]). The following defines the conformable fractional integral of f :

(Iaαf) (ξ) =

ξ∫
a

f(t)dα (t, a) =

ξ∫
a

(t− a)α−1f(t)dt

and

(bIαf) (ξ) =

b∫
ξ

f(t)dα (b, t) =

b∫
ξ

(b− t)α−1f(t)dt.

The space

L2
α(a, b) =

f : ∥f∥ :=

(∫ b

a

|f (ξ)|2 dαξ

)1/2

=

(∫ b

a

|f (ξ)|2 ξα−1dx

)1/2

<∞.


is a Hilbert space with the inner product

(f, g) :=

∫ b

a

fgdαξ, f, g ∈ L2
α(a, b)

(see [27])

3. Impulsive Conformable Fractional Dirac System

Consider the following impulsive conformable fractional boundary-value problem (CBVP)

l (u) = λu, ξ ∈ I, (2)

L1 (u) := u1 (0) + k1u2 (0) = 0, (3)

L2 (u) := u1 (d−)− k2u1 (d+) = 0, (4)

L3 (u) := u2 (d−)− k3u2 (d+) = 0, (5)

L4 (u) := u1 (a) + k4u2 (a) = 0, (6)

where

l (u) :=

{
−Tαu2 + p (ξ)u1
Tαu1 + r (ξ)u2,

u :=

(
u1
u2

)
,

k1, k2, k3, k4 ∈ R, 0 < d < a <∞, I := I1 ∪ I2, I1 := [0, d), I2 := (d, a] and λ ∈ C.
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The following constitute our fundamental assumptions throughout the paper:
(A1) Let k2k3 = ρ > 0.
(A2) Finite limits p (d±) , r (d±) exist for p and r, which are real-valued continuous functions on I.

Consider the Hilbert space H = L2
α(0, d)

·
+ L2

α(d, a) that has the following inner product

⟨f, g⟩ :=
∫ d

0

f (1)
T

g(1)dαξ + ρ

∫ a

d

f (2)
T

g(2)dαξ,

where

f(ξ) =

{
f (1)(ξ), ξ ∈ I1
f (2)(ξ), ξ ∈ I2,

g(ξ) =

{
g(1)(ξ), ξ ∈ I1
g(2)(ξ), ξ ∈ I2.

Theorem 1. The following impulsive conformable fractional initial-value problem

l (u) = λu, λ ∈ C,

u1 (0) = s1, u2 (0) = s2, s1, s2 ∈ R,
u1 (d−)− k2u1 (d+) = 0,

u2 (d−)− k3u2 (d+) = 0,

has a unique solution ψ.

Proof. From [5], we see that the following conformable fractional initial-value problem

l (u(ξ)) = λu(ξ), ξ ∈ (0, d),

u1 (0) = s1, u2 (0) = s2,

has a unique solution

ψ1 =

(
ψ11

ψ12

)
.

Consider the following conformable fractional initial-value problem

l (u) = λu, ξ ∈ (d, a], (7)

u1 (d+) =
1

k2
ψ11 (d−) , (8)

u2 (d+) =
1

k3
ψ12 (d−) . (9)

Set

Un (ξ, λ) = U0 (ξ, λ)

+

∫ ξ

d

 φ2 (ξ, λ)φ
T
1 (γ, λ)

−φ1 (ξ, λ)φ
T
2 (γ, λ)

M (γ)Un−1 (γ, λ) d
αγ,

where

U01 (ξ, λ) =
1

k2
ψ11 (d−, λ) +

1

k3
(ξ − d)ψ12 (d−, λ) , ξ ∈ I2,

U02 (ξ, λ) =
1

k2
(ξ − d)ψ11 (d−, λ) +

1

k3
ψ12 (d−, λ) , ξ ∈ I2,

φ1 (ξ, λ) =

(
φ11 (ξ, λ)
φ12 (ξ, λ)

)
=

 cos
(∫ ξ

0
λdαt

)
sin(

∫ ξ
0
λdαt)

λ

 ,

φ2 (ξ, λ) =

(
φ21 (ξ, λ)
φ22 (ξ, λ)

)
=

 − sin(
∫ ξ
0
λdαt)

λ

cos
(∫ ξ

0
λdαt

)
 ,



REGULAR CONFORMABLE FRACTIONAL DIRAC SYSTEMS WITH IMPULSIVE BOUNDARY CONDITIONS 231

M =

(
p 0
0 r

)
,

and the matrix transpose operation is shown by the symbol T . Here φ1 and φ2 are the fundamental
solutions of Eq. (7) for

M =

(
p 0
0 r

)
= 0.

Let λ ∈ C be fixed. Then positive numbers A and N (λ) exist such that

∥M (ξ)∥ ≤ A,∣∣φij (ξ, λ)
∣∣ ≤ √

N (λ)

2
, i, j = 1, 2,

∥U0 (ξ, λ)∥ ≤ Ñ (λ), ξ ∈ I2.

Hence, we obtain

∥U1 (ξ, λ)− U0 (ξ, λ)∥

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ ξ

d

 cos
(∫ ξ

0
λdαt

)
sin(

∫ γ
0

λdαt)
λ

− sin(
∫ ξ
0
λdαt)

λ cos
(∫ γ

0
λdαt

)
 p (γ)U01 (γ, λ) d

αγ

−
∫ ξ

d

 cos
(∫ ξ

0
λdαt

)
cos
(∫ γ

0
λdαt

)
+

sin(
∫ ξ
0
λdαt)

λ

sin(
∫ γ
0

λdαt)
λ

 r (γ)U02 (γ, λ) d
αγ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

≤ 2N (λ)AÑ (λ)

∣∣∣∣∣
∫ ξ

d

dαγ

∣∣∣∣∣ ≤ 2N (λ)AÑ (λ)

∣∣∣∣∣
∫ ξ

0

dαγ

∣∣∣∣∣ ≤ 2N (λ)AÑ (λ)
(ξ)

α

α
.

Similarly, we obtain

∥U3 (ξ, λ)− U2 (ξ, λ)∥ ≤ 22Ñ (λ)
A2N2 (λ) (ξ)

2α

α22!
.

Hence

∥Un+1 (ξ, λ)− Un (ξ, λ)∥ ≤ 2nÑ (λ)
(AN (λ) ξα)

n

αnn!
, (10)

where n = 1, 2, 3, .... By Weierstrass’s test, we see that the series
∞∑

n=1

2nÑ (λ)
(AN (λ) ξα)

n

αnn!

is uniformly convergent. Consequently, the series

U1 (ξ, λ) +

∞∑
n=1

{Un+1 (ξ, λ)− Un (ξ, λ)} (11)

is uniformly convergent with respect to ξ on (d, a]. Then we obtain

lim
n→∞

Un (ξ, λ) = ψ2 (ξ, λ) ,

i.e.,

ψ2 (ξ, λ) = U1 (ξ, λ) +

∞∑
n=1

{Un+1 (ξ, λ)− Un (ξ, λ)} .

Now we prove that ψ2 satisfies Eq. (7).

TαUn+1 (ξ, λ)− TαUn (ξ, λ)

=

∫ ξ

d

[
Tαφ2 (ξ, λ)φ

T
1 (γ, λ)− Tαφ1 (ξ, λ)φ

T
2 (γ, λ)

]
×

×M (γ) [Un (γ, λ)− Un−1 (γ, λ)] d
αγ.



232 B. P. ALLAHVERDIEV, H. TUNA

(10) implies that the series
∞∑

n=1

{TαUn+1 (ξ, λ)− TαUn (ξ, λ)}

is uniformly convergent with respect to ξ on (d, a]. Hence, we find

Tαψ21 (ξ, λ) =

∞∑
n=1

{TαUn+1,1 (ξ, λ)− TαUn,1 (ξ, λ)}

= (−r (ξ) + λ)

∞∑
n=1

{Un,1 (ξ, λ)− Un−1,1 (ξ, λ)}

= (−r (ξ) + λ)ψ22 (ξ, λ) ,

due to

Tαψ21 (ξ, λ) = (−r (ξ) + λ)ψ22 (ξ, λ) ,

In a similar manner, the other equation in (7) is shown to be true. ψ2 is obviously satisfied by (8)-(9). □

Hence, we conclude that

ψ (ξ, λ) =

{
ψ1 (ξ, λ) , ξ ∈ I1
ψ2 (ξ, λ) , ξ ∈ I2

(12)

satisfies (2)-(5).
Similarly, we can derive the subsequent theorem.

Theorem 2. There is a solution

χ (ξ, λ) =

{
χ1 (ξ, λ) , ξ ∈ I1
χ2 (ξ, λ) , ξ ∈ I2

(13)

to Eq. (2) that satisfies (4)-(6) for any λ ∈ C.

Currently, we examine the subsequent set:

Dmax =

u ∈ H :
uj and Tαuj are continuous functions

on I, uj (d±) exist (j = 1, 2) and finite,
L2 (u) = L3 (u) = 0 and l (u) ∈ H

 .

Then the maximal operator Lmax on Dmax is defined by Lmaxu = l(u), u ∈ Dmax. If we restrict the
operator Lmax to the set

Dmin = {u ∈ Dmax : u1 (0) = u2 (0) = u1 (a) = u2 (a) = 0} ,

then we obtain the minimal operator Lmin.
The conformable Green formula is defined as ( [5])

⟨l (u) , z⟩ − ⟨u, l(z)⟩

= [u, z] (a)− [u, z] (d+) + [u, z] (d−)− [u, z] (0) , (14)

where

u =

(
u1
u2

)
, z =

(
z1
z2

)
, u, z ∈ Dmax

and

[u, z] (ξ) :=Wα (u, z) (ξ) = u1 (ξ) z2 (ξ)− z1 (ξ)u2 (ξ) .

Let us take the operator L and its domain u ∈ Dmax, (Lu = l(u)) vectors satisfying (3)-(6). Next,
using (14) and the conditions (3)-(6), the following theorem is derived.

Theorem 3. L is a symmetric operator.

Corollary 1. (i) The CBVP (2)-(6) has eigenvalues that are all real.
(ii) For the CBVP (2)-(6), if λ1 and λ2 are two distinct eigenvalues, then the corresponding eigenfunctions
u1 and u2 are orthogonal.
(iii) From a geometric perspective, all of the eigenvalues of the CBVP (2)-(6) are simple.
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4. The Characteristic Function

Let us define the following entire functions

ω1 (λ) =Wα (ψ1, χ1) (ξ) , ω2 (λ) =Wα (ψ2, χ2) (ξ) ,

where
Wα (φ, χ) (ξ) = ψ1 (ξ)χ2 (ξ)− χ1 (ξ)ψ2 (ξ) .

Combining (4) - (5), we see that ω1 (λ) = ρω2 (λ) .Thus, the characteristic function of the CBVP (2)-(6)
is given by ω (λ) := ω1 (λ) = ρω2 (λ) .

Lemma 1. Let

∆(λ) :=

∣∣∣∣∣∣∣∣
L1ψ1 L1χ1 L1ψ2 L1χ2

L2ψ1 L2χ1 L2ψ2 L2χ2

L3ψ1 L3χ1 L3ψ2 L3χ2

L4ψ1 L4χ1 L4ψ2 L4χ2

∣∣∣∣∣∣∣∣ .
Then, every λ ∈ C, we see that ∆(λ) = − 1

ρω
3 (λ) .

Proof. Combining (12) and (13), we conclude that

∆ (λ) =∣∣∣∣∣∣∣∣
0 −ω1 (λ) 0 0

ψ11 (d−, λ) χ11 (d−, λ) −k2ψ21 (d+, λ) −k2χ21 (d+, λ)
ψ12 (d−, λ) χ12 (d−, λ) −k3ψ22 (d+, λ) −k3χ22 (d+, λ)

0 0 ω2 (λ) 0

∣∣∣∣∣∣∣∣
= ω1 (λ)

∣∣∣∣∣∣
ψ11 (d−, λ) −k2ψ21 (d+, λ) −k2χ21 (d+, λ)
ψ12 (d−, λ) −k3ψ22 (d+, λ) −k3χ22 (d+, λ)

0 ω2 (λ) 0

∣∣∣∣∣∣
= −ω1 (λ)ω2 (λ)

∣∣∣∣ ψ11 (d−, λ) −k2χ21 (d+, λ)
ψ12 (d−, λ) −k3χ22 (d+, λ)

∣∣∣∣
= −ω1 (λ)ω2 (λ)

∣∣∣∣ ψ11 (d−, λ) χ11 (d−, λ)
ψ12 (d−, λ) χ12 (d−, λ)

∣∣∣∣
= −ω2

1 (λ)ω2 (λ) = −1

ρ
ω3 (λ) .

□

Theorem 4. The zeros of ω (λ) are the same as the eigenvalues of (2)-(6). Hence the eigenvalues of
(2)-(6) form a finite or infinite sequence without a finite accumulation point.

Proof. Let λ(0) be a zero of ω (λ) . Then ω2

(
λ(0)

)
= Wα,2 (ψ2, χ2) = 0, i.e., ψ2 = ζχ2 for some ζ ̸= 0.

Therefore ψ2 satisfies (6). Hence λ(0) is an eigenvalue, i.e.,

ψ
(
ξ, λ(0)

)
=

 ψ1

(
ξ, λ(0)

)
, ξ ∈ I1

ψ2

(
ξ, λ(0)

)
. ξ ∈ I2

satisfies the CBVP (2)-(6).

Let λ(0) be an eigenvalue and η
(
ξ, λ(0)

)
be any corresponding eigenfunction. Suppose that ω

(
λ(0)

)
̸=

0. Then we see that ω1

(
λ(0)

)
̸= 0 and ω2

(
λ(0)

)
̸= 0. Thus there exist constants ζi, i = 1, 2, 3, 4, at least

one of which is not zero, such that

η
(
ξ, λ(0)

)
=

 ζ1ψ1

(
ξ, λ(0)

)
+ ζ2χ1

(
ξ, λ(0)

)
, ξ ∈ I1

ζ3ψ2

(
ξ, λ(0)

)
+ ζ4χ2

(
ξ, λ(0)

)
, ξ ∈ I2.

Since η
(
ξ, λ(0)

)
is the eigenfunction, we conclude that Liη

(
ξ, λ(0)

)
= 0, i = 1, 2, 3, 4. Hence

det
(
Liη

(
ξ, λ(0)

))
= ∆

(
λ(0)

)
= 0,
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because at least one of the constants ζi, i = 1, 2, 3, 4 is not zero. By Lemma 1, we deduce that ∆
(
λ(0)

)
̸=

0, a contradiction. □

5. Green’s Function

Let us consider the following CBVP

−Tαu2 + {λ+ p (ξ)}u1 = Ξ1, (15)

Tαu1 + {λ+ r (ξ)}u2 = Ξ2, (16)

u1 (0) + k1u2 (0) = 0, (17)

u1 (d−)− k2u1 (d+) = 0, (18)

u2 (d−)− k3u2 (d+) = 0, (19)

u1 (a) + k4u2 (a) = 0, (20)

where ξ ∈ I and

Ξ =

(
Ξ1

Ξ2

)
∈ H.

Theorem 5. Suppose that λ is not an eigenvalue of (2)-(6). The CBVP (15)-(20) has a unique solution
u defined as

u (ξ, λ) =

∫ d

0

G (ξ, γ, λ) Ξ (γ) dαγ + ρ

∫ a

d

G (ξ, γ, λ) Ξ (γ) dαγ, (21)

where

G (ξ, γ, λ)

=
1

ω (λ)

{
χ (ξ, λ)ψT (γ, λ) , 0 ≤ γ ≤ ξ ≤ a, γ ̸= d, ξ ̸= d,
ψ (ξ, λ)χT (γ, λ) , 0 ≤ ξ ≤ γ ≤ a, γ ̸= d, ξ ̸= d.

(22)

Proof. It follows from (21) that

u1 (ξ, λ) =

1
ω(λ)χ11 (ξ, λ)

∫ ξ

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)ψ11 (ξ, λ)

∫ d

ξ

(
χ11 (γ, λ) Ξ1 (γ)
+χ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)ψ11 (ξ, λ) ρ

∫ a

d

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ, ξ ∈ I1,

1
ω(λ)χ12 (ξ, λ)

∫ d

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)χ12 (ξ, λ) ρ

∫ ξ

d

(
ψ12 (γ, λ) Ξ1 (γ)
+ψ22 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)ψ12 (ξ, λ) ρ

∫ a

ξ

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ, ξ ∈ I2,

(23)

u2 (ξ, λ) =
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1
σ(λ)χ21 (ξ, λ)

∫ ξ

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
σ(λ)ψ21 (ξ, λ)

∫ d

ξ

(
χ11 (γ, λ) Ξ1 (γ)
+χ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
σ(λ)ψ21 (ξ, λ) ρ

∫ a

d

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ, ξ ∈ I1,

1
σ(λ)χ22 (ξ, λ)

∫ d

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
σ(λ)χ22 (ξ, λ) ρ

∫ ξ

d

(
ψ12 (γ, λ) Ξ1 (γ)
+ψ22 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
σ(λ)ψ22 (ξ, λ) ρ

∫ a

ξ

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ, ξ ∈ I2,

(24)

From (23), we find
Tαu1 (ξ, λ)

=



1
ω(λ)Tαχ11 (ξ, λ)

∫ ξ

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)Tαψ11 (ξ, λ)

∫ d

ξ

(
χ11 (γ, λ) Ξ1 (γ)
+χ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)Tαψ11 (ξ, λ) ρ

∫ a

d

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ

+Wα,1 (χ, ψ) (ξ) Ξ2, ξ ∈ I1,

1
ω(λ)Tαχ12 (ξ, λ)

∫ d

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)Tαχ12 (ξ, λ) ρ

∫ ξ

d

(
ψ12 (γ, λ) Ξ1 (γ)
+ψ22 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ)Tαψ12 (ξ, λ) ρ

∫ a

ξ

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ

+ρWα,2 (χ, ψ) (ξ) Ξ2, ξ ∈ I2,

=



1
ω(λ) {λ− r (ξ)}χ21 (ξ, λ)

∫ ξ

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ) {λ− r (ξ)}ψ21 (ξ, λ)

∫ d

ξ

(
χ11 (γ, λ) Ξ1 (γ)
+χ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ) {λ− r (ξ)}ψ21 (ξ, λ) ρ

∫ a

d

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ

+Ξ2, ξ ∈ I1,

1
ω(λ) {λ− r (ξ)}χ22 (ξ, λ)

∫ d

0

(
ψ11 (γ, λ) Ξ1 (γ)
+ψ21 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ) {λ− r (ξ)}χ22 (ξ, λ) ρ

∫ ξ

d

(
ψ12 (γ, λ) Ξ1 (γ)
+ψ22 (γ, λ) Ξ2 (γ)

)
dαγ

+ 1
ω(λ) {λ− r (ξ)}ψ22 (ξ, λ) ρ

∫ a

ξ

(
χ12 (γ, λ) Ξ1 (γ)
+χ22 (γ, λ) Ξ2 (γ)

)
dαγ

+Ξ2, ξ ∈ I2,

= {λ− r (ξ)}u2 (ξ) + Ξ2 (ξ) .

The validity of (15) is proved similarly. Therefore, u (ξ, λ) is the solution of (15)-(20). It is clear that
(21) satisfies (17)-(20). □

The Green’s function defined by (22) has the following properties:

Lemma 2. i) The function defined by (22) is unique.
ii) G (ξ, γ, λ) is continuous at the point (0, 0) .
iii)

G (ξ, γ, λ) = GT (γ, ξ, λ) .
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Proof. The proof is similar to ( [5], Theorem 18). □

Example 1. Let α→ 1. Then the CBVP (2)-(6) becomes(
0 −1
1 0

)
du (ζ)

dζ
+

(
p (ζ) 0
0 r (ζ)

)
u (ζ) = λu (ζ) , ζ ∈ I, (25)

u1 (0) + k1u2 (0) = 0, (26)

u1 (d−)− k2u1 (d+) = 0, (27)

u2 (d−)− k3u2 (d+) = 0, (28)

u1 (a) + k4u2 (a) = 0, k1, k2, k3, k4 ∈ R. (29)

With regard to the CBVP (25)-(29), Theorems 1 and 5 provide the following insights: Theorem 1 estab-
lishes the existence of the solution, while Theorem 5 presents the Green’s function. For similar results,
the following sources can be consulted (see, [6, 7, 20]).

6. Conclusion

In this paper, we have explored the conformable Dirac equation under impulsive boundary conditions.
We began by examining the uniqueness and existence of solutions relevant to the problem, followed by
the derivation of the symmetric operator. Subsequently, we constructed the Green’s function associated
with the problem and its fundamental characteristics are provided. The Titchmarsh–Weyl theory for this
type of problem may be the subject of future research.
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