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Özet: Cebirlerin çaprazlanmış modüllerine ek bir boyut daha eklendiğinde ortaya 
çıkan değişmeli cebirlerin çaprazlanmış kareleri için izomorfizm teoremleri bu ma-
kalenin ana konusunu teşkil etmektedir. Bu bağlamda, çapraz kare ideal, görüntü ve 
bölüm çapraz kareleri gibi kavramların yanı sıra çaprazlanmış kare morfizmleri için 
çekirdek kavramını da kapsayan değişmeli cebirlerin çaprazlanmış karelerinin ta-
nımı verilmiştir. Çalışma, izomorfizm teoremlerinin bu yapılara nasıl uygulandığını 
tartışmakta ve bu çerçeve için ayrıntılı kanıtlar sunmaktadır. Ayrıca, daha önce bu 
yapılarda tanımlanmamış olan bölüm çaprazlanmış kareleri gibi bazı gerekli kav-
ramlar da sunulmakta ve bunların bazı temel özellikleri incelenmektedir. Bu ça-
lışma, çaprazlanmış n-küpler de dahil olmak üzere bir dizi farklı yapıya olası genel-
leştirme fırsatları sunmaktadır. 

  
  

Isomorphism Theorems for Crossed Squares of Commutative Algebras 
 
 

Keywords 
Isomorphism theorem, 
Subcrossed square, 
Crossed square ideal. 

 
 

Abstract: The isomorphism theorems for crossed squares of commutative algebras, 
which arise when the crossed modules of algebras are given an extra dimension, are 
the main subject of this paper. The definition of crossed squares of commutative al-
gebras is given in this context, encompassing ideas like the crossed square ideal, im-
age, and quotient crossed squares, as well as the kernel for crossed square mor-
phisms. The study discusses the way how isomorphism theorems are applied to 
these structures and offers detailed proofs for this framework. Moreover, some nec-
essary concepts such as quotient crossed squares, which were not previously spec-
ified in these structures, are also presented, and some basic properties are exam-
ined. The study provides opportunities for possible generalization to a number of 
different structures, including crossed n-cubes. 

  

1. Introduction 
 
Historically, the concept of algebra and its properties 
have formed the foundation of mathematics. Algebras 
are rich algebraic structures that roughly combine two 
ring structures together and are among the most im-
portant structures in algebra, so much so that they are 
synonymous with the name of the field itself. Through 
years of research. it has been discovered that many 
structures existing in group and ring theories can also 
be transferred to algebras. 

 
* Corresponding author: seliimcetin@gmail.com 

One of the most fundamental problems in mathemat-
ics, specifically in the field of algebra, is determining 
whether two structures are identical. The most 
straightforward way to perform this verification in al-
gebra is by using isomorphisms. However, the answer 
to whether there exists an isomorphism between two 
algebraic structures is not always obvious. 

Isomorphism theorems, which provide a reference 
pattern for identifying many pairs of isomorphic alge-
braic structures, offer an extremely useful approach to 
this fundamental problem in algebra and thus have 
numerous applications. In this regard, investigating 
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whether isomorphism theorems hold for different al-
gebraic structures constitutes a fundamental and cru-
cial step in thoroughly understanding the related alge-
braic structure. 

When examining the crossed modules of commutative 
algebras structurally, it is evident that this area con-
tinues to develop significantly. The concept of a 
crossed module was first defined for groups by J.H.C. 
Whitehead [1] in his work on homotopy groups. Since 
then, the concept of a crossed module has contributed 
significantly to various fields. M. Gerstenhaber [2] and 
also M. Schlessinger and S. Lichtenbaum [3] conducted 
different studies on the crossed modules of associative 
and commutative algebras. T. Lue [4] adapted the con-
cept of semi-completeness existing for groups to the 
crossed module of groups. G.J. Ellis [5] further devel-
oped the concept of a crossed module dimensionally 
by defining crossed n-cubes for n = 1,2,3 in the group 
category. T. Porter [6] examined the category of 
crossed modules for commutative algebras in his re-
search. K.J. Norrie [7] transferred many existing theo-
rems and results for groups to the crossed modules of 
groups. Additionally, G.J. Ellis [8] provided the defini-
tion of a crossed square for commutative algebras. 
N.M. Shammu [9] studied the crossed modules of asso-
ciative algebras algebraically and categorically, 
providing the definition of a crossed square for associ-
ative algebras. Later, Z. Arvasi [10], U. Ege and H.G. 
Akay [11] obtained significant findings on crossed 
modules in commutative algebras in their studies. For 
more information on crossed modules and crossed 
squares, the reader can refer to [12-22]. 
 

2. Material and Method 
 
In this subsection, the definition and square homo-
morphism of crossed squares of commutative alge-
bras are expressed.  
 

2.1. Crossed squares of algebras 
 
The definition of crossed squares of commutative al-
gebras will be given below. For this, we first recall that 
the action of a 𝕂− algebra 𝑅 on a 𝕂− algebra 𝐶 is a 
function 𝑅 × 𝐶 → 𝐶 that satisfies the conditions 

𝑟 ⋅ (𝑐1𝑐2) = (𝑟 ⋅ 𝑐1)𝑐2 = 𝑐1(𝑟 ⋅ 𝑐2) 
(𝑟1𝑟2) ⋅ 𝑐 = 𝑟1 ⋅ (𝑟2 ⋅ 𝑐) 

for all 𝑟, 𝑟1, 𝑟2 ∈ 𝑅  and 𝑐, 𝑐1, 𝑐2 ∈ 𝐶 . Moreover, if 𝑅  is 
unital, it is also required that 1𝑅 ⋅ 𝑐 = 𝑐  for all 𝑐 ∈ 𝐶 . 
We also recall that a crossed module of commutative 
𝕂− algebras is a structure of the form (𝐶, 𝑅, 𝜕), where 
𝑅 acts on 𝐶, 𝜕 ∶ 𝐶 → 𝑅 is a 𝕂− algebra homomorphism 
and the conditions 

(CM1) 𝜕(𝑟 ⋅ 𝑐) = 𝑟𝜕(𝑐) 

(CM2) 𝜕(𝑐1) ⋅ 𝑐2 = 𝑐1𝑐2 

are satisfied for all 𝑟 ∈ 𝑅 and 𝑐, 𝑐1, 𝑐2 ∈ 𝐶. 

Definition 2.1.1 Let  𝑅 be a unitary 𝕂 − algebra, 𝐿, 𝑀 

and 𝑁 be 𝑅 −algebras. Given a following commutative 
diagram 

 
with a function ℎ: 𝑀 × 𝑁 ⟶ 𝐿  since 𝐿 , 𝑀  and 𝑁  are 
𝑅 − algebras, 𝑅  acts on them. Morever, 𝑀  acts on 𝐿 
and 𝑁  through 𝜇  such that  𝜉 · 𝜀 = 𝜇( 𝜉) · 𝜀  and  𝜉 ·
 𝜍 = 𝜇( 𝜉) ·  𝜍 for all  𝜍 ∈ 𝑁,   𝜉 ∈ 𝑀 and  𝜀 ∈ 𝐿 while 𝑁 
acts on 𝐿 and 𝑀 through ѵ such that   𝜍 · 𝜀 = ѵ( 𝜍) · 𝜀  
and  𝜍 ·  𝜉 = ѵ(𝜍) ·  𝜉.  

If for all  𝑘 ∈ 𝕂, 𝜀 ∈ 𝐿,   𝜉,  𝜉′ ∈ 𝑀 𝜍,  𝜍′ ∈ 𝑁 
and  𝑟 ∈ 𝑅; 

i) (𝐿,𝑀, 𝜆), (𝐿, 𝑁, 𝜆′), (𝑀, 𝑅, 𝜇), (𝑁, 𝑅, ѵ) and 
(𝐿, 𝑅, 𝜇𝜆)  are crossed modules of alge-
bras. 

ii)  for all 𝜀 ∈ 𝐿 and 𝑟 ∈ 𝑅; 
𝜆(𝑟 · 𝜀) = 𝑟 · 𝜆(𝜀) 
𝜆′(𝑟 · 𝜀) = 𝑟 · 𝜆′(𝜀) 

iii) for all 𝑘 ∈ 𝕂,   𝜉 ∈ 𝑀,  𝜍 ∈ 𝑁; 
𝑘ℎ( 𝜉, 𝜍) = ℎ(𝑘 𝜉, 𝜍) = ℎ( 𝜉, 𝑘 𝜍) 

iv) for all  𝜉,  𝜉′ ∈ 𝑀,    𝜍, 𝜍′ ∈ 𝑁;  
ℎ( 𝜉 +  𝜉′, 𝜍) = ℎ( 𝜉, 𝜍) + ℎ( 𝜉′, 𝜍) 
ℎ( 𝜉, 𝜍 +  𝜍′) = ℎ( 𝜉, 𝜍) + ℎ( 𝜉, 𝜍′) 

v) for all  𝑟 ∈ 𝑅,   𝜉 ∈ 𝑀 and    𝜍 ∈ 𝑁;  
𝑟 · ℎ( 𝜉, 𝜍) = ℎ(𝑟 ·  𝜉, 𝜍) = ℎ( 𝜉, 𝑟 ·  𝜍) 

vi) for all   𝜉 ∈ 𝑀 and  𝜍 ∈ 𝑁; 
𝜆ℎ( 𝜉, 𝜍) =  𝜍 ·  𝜉 
𝜆′ℎ( 𝜉, 𝜍) =  𝜉 ·  𝜍 

vii) for all 𝜀 ∈ 𝐿,  𝜉 ∈ 𝑀 and 𝜍 ∈ 𝑁; 
ℎ(𝜆𝜀, 𝜍) =  𝜍 · 𝜀 

ℎ( 𝜉, 𝜆′𝜀) =  𝜉 · 𝜀 
Then, following such a structures is called 

                                
crossed square of commutative algebras. 

 
Definition 2.1.2 Let there be a crossed square 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 
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 𝒞1 and a crossed square 

 
𝒞2. A crossed square homomorphism 𝝓: 𝒞1⟶ 𝒞2 is a 
quadruple 𝝓 = (𝛼, 𝛽, 𝛾, 𝛿) such that the following 

 
diagram commutes and the conditions are satisfied:  
 for all  𝜀1 ∈ 𝐿1,  𝜉1 ∈ 𝑀1, 𝜍1 ∈ 𝑁1 and 𝑟1 ∈ 𝑅1 
𝛼(𝑟1 · 𝜀1) = 𝛿(𝑟1) · 𝛼(𝜀1), 
𝛽(𝑟1 ·  𝜉1) = 𝛿(𝑟1) · 𝛽( 𝜉1), 
𝛾(𝑟1 · 𝜍1) = 𝛿(𝑟1) · 𝛾(𝜍1) 

𝛼(ℎ1( 𝜉1, 𝜍1)) = ℎ2(𝛽( 𝜉1), 𝛾(𝜍1)).   

 
Remark 2.1.3 Due to the commutativity of the dia-
gram and the preservation of the actions, (𝛼, 𝛽), (𝛼, 𝛾), 
(𝛽, 𝛿), (𝛾, 𝛿) and (𝛼, 𝛿) are crossed module homomor-
phisms. For more information on crossed module ho-
momorphisms, refer to [23]. 

The following example demonstrates that crossed 
modules of algebras can be considered as an extension 
of the concept of an ideal. 

Example 2.1.4 Let 𝑅 be a 𝕂− algebra and 𝐼 and  𝐽 be 
ideals of 𝑅 . Define 𝜇 , ѵ, 𝜆: 𝐼 ∩ 𝐽 ⟶ 𝐼  and 𝜆′: 𝐼 ∩ 𝐽 ⟶ 𝐽 
as inclision maps. For all  𝑖 ∈ 𝐼 and   𝑗 ∈ 𝐽 , define 
ℎ: 𝐼 × 𝐽 ⟶ 𝐼 ∩ 𝐽,  ℎ(𝑖, 𝑗) = 𝑖𝑗. Then (𝑅, 𝐼, 𝐽, 𝐼 ∩ 𝐽 )  

 
is a crossed square of algebras, where 𝑅  acts on  𝐼 , 𝐽 
and 𝐼 ∩ 𝐽 by multiplication. The conditions for being a 
crossed square are obviously satisfied in this case. 

2.2. Subcrossed squares 
 
In this subsection, the definition of sub-crossed 
squares of commutative algebras is presented. 

 
Definition 2.2.1 Let 

 
be a crossed square. 
If 𝐴 ≤ 𝐿, 𝐵 ≤ 𝑀, 𝐶 ≤ 𝑁, 𝐷 ≤ 𝑅 such that the structure  

 
 𝜆 ,  𝜆′ ,  𝜇 ,  ѵ  and ℎ  under the restriction maps is a 
crossed square, then 𝒜 is called a sub-crossed square 
of ℒ. This situation is denoted by 𝒜 ≤ ℒ through the 
paper. 

Subcossed squares naturally serve as subobjects in the 
category of crossed squares and crossed square homo-
morphisms. 

3. Results  

3.1. Ideal of crossed squares of algebras 
In this subsection, the definition and a theorem related 
to the ideal of crossed squares of commutative alge-
bras are presented.  

 

𝑀1 𝐿1 

𝜆1
′  

 

𝑅1 

𝜆1 

𝜇1 

𝑁1 
ѵ1 

𝑀2 𝐿2 

𝜆2
′  

 

𝑅2 

𝜆2 

𝜇2 

𝑁2 
ѵ2 

𝑀1 𝐿1 

𝜆1
′  

𝑅1 

𝜆1 

 

𝜇1 

𝑁1 
ѵ1 

𝑀2
_2 

𝐿2 

𝜆2
′  

_

𝑅2 

𝜆2
_

𝜇2
_2 

𝑁2 
ѵ2
_

𝛼
_

𝛾
_ 𝛿

_

𝛽
_

𝐼 𝐼 ∩ 𝐽 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝐽 
ѵ 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐵 𝐴 

𝜆′ǀ 

𝐷 

𝜆ǀ 

𝜇ǀ 

𝐶 
ѵǀ 

𝒜 = 
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Definition 3.1.1 Given a crossed square 

 
of a commutative algebras  and let  

 
be a sub-crossed square of  ℒ. If for all 𝑟 ∈ 𝑅,  𝜌 ∈ 𝐸, 
 𝜚 ∈ 𝐼,  𝜎 ∈ 𝐽 

i) 𝐾 be a ideal of 𝑅, 
ii) If for all 𝑟 ∈ 𝑅,  𝜌 ∈ 𝐸,  𝜚 ∈ 𝐼,  𝜎 ∈ 𝐽 

                 𝑟 · 𝜌 ∈ 𝐸 
𝑟 · 𝜚 ∈ 𝐼 
𝑟 · 𝜎 ∈ 𝐽 

iii) And for all 𝑑 ∈ 𝐾,  𝜀 ∈ 𝐿,  𝜉 ∈ 𝑀,  𝜍 ∈ 𝑁 
𝑑 · 𝜀 ∈ 𝐸 
𝑑 ·   𝜉 ∈ 𝐼 
𝑑 ·  𝜍 ∈ 𝐽 

iv) And for all  𝜉 ∈ 𝑀,  𝑗 ∈ 𝐽, 
ℎ( 𝜉, 𝑗) ∈ 𝐸 

v) And for all 𝑖 ∈ 𝐼, 𝜍 ∈ 𝑁, 
ℎ(𝑖, 𝜍) ∈ 𝐸 

Then ℰ is called an crossed square ideal of ℒ or simply 
ideal. This situation is denoted by ℰ ⊴ ℒ  throughout 
the paper. 
 
 
Theorem 3.1.2 Let 

 
be a crossed square and 

 
an ideal of ℒ. Then 

a) (𝐸, 𝐼, 𝜆) ⊴ (𝐿,𝑀, 𝜆) 
b) (𝐸, 𝐽, 𝜆′) ⊴ (𝐿, 𝑁, 𝜆′) 
c) (𝐼, 𝐾, 𝜇) ⊴ (𝑀, 𝑅, 𝜇) 
d) (𝐽, 𝐾, ѵ) ⊴ (𝑁, 𝑅, ѵ) 
e) (𝐸, 𝐾, 𝜇𝜆) ⊴ (𝐿, 𝑅, 𝜇𝜆). 

 
Proof: 

a) Since ℰ ≤ ℒ, (𝐸, 𝐼, 𝜆) is a crossed module 
and 𝐸 ≤ 𝐿 ,  𝐼 ≤ 𝑀  so (𝐸, 𝐼, 𝜆) ≤ (𝐿,𝑀, 𝜆) . 
For all 𝜌 ∈ 𝐸,  𝜚 ∈ 𝐼, 𝜀 ∈ 𝐿,  𝜉 ∈ 𝑀: 
(i) 𝜉𝜚 = 𝜇(𝜉) · 𝜚 ∈ 𝐼 
(ii) 𝜉 · 𝜌 = 𝜇(𝜉) · 𝜌 ∈ 𝐸 
(iii) 𝜚 · 𝜀 = 𝜇(𝜚) · 𝜀 ∈ 𝐸 
Thus,  (𝐸, 𝐼, 𝜆) ⊴ (𝐿,𝑀, 𝜆). 

b) Since ℰ ≤ ℒ, (𝐸, 𝐽, 𝜆′) is a crossed module 
and 𝐸 ≤ 𝐿, 𝐽 ≤ 𝑁, so (𝐸, 𝐽, 𝜆′) ≤ (𝐿, 𝑁, 𝜆′). 
For all 𝜌 ∈ 𝐸, 𝜎 ∈ 𝐽, 𝜀 ∈ 𝐿,  𝜍 ∈ 𝑁: 
(i) 𝜍𝜎 = ѵ(𝜍) · 𝜎 ∈ 𝐽 
(ii) 𝜍 · 𝜌 = ѵ(𝜍) · 𝜌 ∈ 𝐸 
(iii) 𝜎 · 𝜀 = ѵ(𝜎) · 𝜀 ∈ 𝐸 
Thus,  (𝐸, 𝐽, 𝜆′) ⊴ (𝐿, 𝑁, 𝜆′). 

c) Since ℰ ≤ ℒ, (𝐼, 𝐾, 𝜇) is a crossed module 
and 𝐼 ≤ 𝑀 , 𝐾 ≤ 𝑅 , so (𝐼, 𝐾, 𝜇) ≤
(𝑀, 𝑅, 𝜇). For all 𝜚 ∈ 𝐼,  𝑘 ∈ 𝐾, 𝜉 ∈ 𝑀,  𝑟 ∈
𝑅: 
(i) 𝑟𝑘 ∈ 𝐾 
(ii) 𝑟 · 𝜚 ∈ 𝐼 
(iii) 𝑘 · 𝜉 ∈ 𝐼 
Thus,  (𝐼, 𝐾, 𝜇) ⊴ (𝑀, 𝑅, 𝜇). 

d) Since ℰ ≤ ℒ, (𝐽, 𝐾, ѵ) is a crossed module  
and 𝐽 ≤ 𝑁, 𝐾 ≤ 𝑅 , so (𝐽, 𝐾, ѵ) ≤ (𝑁, 𝑅, ѵ). 
For all 𝜎 ∈ 𝐽,  𝑘 ∈ 𝐾, 𝜍 ∈ 𝑁, 𝑟 ∈ 𝑅: 
(i) 𝑟𝑘 ∈ 𝐾 
(ii) 𝑟 · 𝜎 ∈ 𝐽 
(iii) 𝑘 · 𝜍 ∈ 𝐽 
Thus  (𝐽, 𝐾, ѵ) ⊴ (𝑁, 𝑅, ѵ). 

e) Since ℰ ≤ ℒ, (𝐸, 𝐾, 𝜇𝜆) is a crossed mod-
ule and 𝐸 ≤ 𝐿 ,  𝐾 ≤ 𝑅 , so (𝐸, 𝐾, 𝜇𝜆) ≤
(𝐿, 𝑅, 𝜇𝜆). For all 𝜌 ∈ 𝐸, 𝑘 ∈ 𝐾,  𝜀 ∈ 𝐿,  𝑟 ∈
𝑅: 
(i) 𝑟𝑘 ∈ 𝐾 
(ii) 𝑟 · 𝜌 ∈ 𝐸 
(iii) 𝑘 · 𝜀 ∈ 𝐸 
Thus  (𝐸, 𝐾, 𝜇𝜆) ⊴ (𝐿, 𝑅, 𝜇𝜆). ∎ 
 
 
 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐼 𝐸 

𝜆′ 

𝐾 

𝜆 

𝜇 

𝐽 
ѵ 

ℰ = 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐼 𝐸 

𝐾 𝐽 

ℰ = 
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3.2. Kernel and image of morphisms of 

crossed squares of algebras 
 
In this subsection information about the kernel of im-
age of morphisms of crossed squares of commutative 
algebras is provided. 

 
Theorem 3.2.1 Let be the following two crossed 
squares of commutative algebras. 

    

 
If 𝝓 = (𝛼, 𝛽, 𝛾, 𝛿): ℒ ⟶ ℒ∗  is a crossed square homo-
morphism between these squares, then 

 
 ker𝝓 ⊴ ℒ. 
 
Proof: First, let’s Show that 𝑘𝑒𝑟𝝓  is a sub-crossed 
square of ℒ.  By Proposition 3.4.27 in [23], we get 
(ker𝛼, ker𝛽, 𝜆) ≤ (𝐿,𝑀, 𝜆) 
(ker𝛼, ker𝛾, 𝜆′) ≤ (𝐿,𝑀, 𝜆′) 
(ker𝛽, ker𝛿, 𝜇) ≤ (𝑀, 𝑅, 𝜇) 
(ker𝛾, ker𝛿, ѵ) ≤ (𝑁, 𝑅, ѵ) 
(ker𝛼, ker𝛿, 𝜇𝜆) ≤ (𝐿, 𝑅, 𝜇𝜆).  

Additionally, if 𝜚 ∈ ker 𝛽, 𝜎 ∈ ker 𝛾, then 𝛼(ℎ(𝜚, 𝜎)) =

ℎ∗(𝛽(𝜚), 𝛾(𝜎)) = ℎ∗(0,0)  

and 
ℎ∗(0,0) = ℎ∗(0 + 0,0) = 2ℎ∗(0,0). 
Therefore, ℎ∗(0,0) = 0𝐿∗  so ℎ(𝜚, 𝜎) ∈ ker𝛼 . Thus, 
ker𝝓 ≤ ℒ. 

Now, let’s show that ker𝝓 is an ideal. 
i) By Proposition 2.19 (i) in [23], ker𝛿 ⊴ 𝑅.  
ii) For all 𝑟 ∈ 𝑅 , 𝜌 ∈ 𝑘𝑒𝑟 𝛼,  𝜚 ∈ 𝑘𝑒𝑟 𝛽 , 𝜎 ∈

𝑘𝑒𝑟 𝛾: 

𝛼(𝑟 · 𝜌) = 𝛿(𝑟) · 𝛼(𝜌) = 𝛿(𝑟) · 0 = 0, 
so  𝑟 · 𝜌 ∈ ker𝛼. 
𝛽(𝑟 · 𝜚) = 𝛿(𝑟) · 𝛽(𝜚) = 𝛿(𝑟) · 0 = 0,  
so  𝑟 · 𝜚 ∈ ker𝛽. 
𝛾(𝑟 · 𝜎) = 𝛿(𝑟) · 𝛾(𝜎) = 𝛿(𝑟) · 0 = 0,  
so  𝑟 · 𝜎 ∈ ker𝛾. 

iii) For all 𝑑 ∈ ker𝛿,  𝜀 ∈ 𝐿, 𝜉 ∈ 𝑀 ve 𝜍 ∈ 𝑁: 
         𝛼(𝑑 · 𝜀) = 𝛿(𝑑) · 𝛼(𝜀) = 0 · 𝛼(𝜀) = 0, 

𝛽(𝑑 · 𝜉) = 𝛿(𝑑) · 𝛽(𝜉) = 0 · 𝛽(𝜉) = 0 
and 
𝛾(𝑑 · 𝜍) = 𝛿(𝑑) · 𝛾(𝜍) = 0 · 𝛾(𝜍) = 0 
Therefore, 𝑑 · 𝜌 ∈ ker𝛼,  𝑑 · 𝜚 ∈ ker𝛽 and  

𝑑 · 𝜎 ∈ ker𝛾. 
iv) For all 𝜉 ∈ 𝑀, 𝜎 ∈ ker𝛾: 

𝛼(ℎ(𝜉, 𝜎)) = ℎ∗(𝛽(𝜉), 𝛾(𝜎)) 

                                               = ℎ∗(𝛽(𝜉), 0) 
and 
 ℎ∗(𝛽(𝜉), 0) = ℎ∗(𝛽(𝜉), 0 + 0) 
                      = ℎ∗(𝛽(𝜉), 0) + ℎ∗(𝛽(𝜉), 0) , 
then ℎ∗(𝛽(𝜉), 0) = 0𝐿∗. So ℎ(𝜉, 𝜎) ∈ ker𝛼. 

v) For all 𝜚 ∈ ker𝛽 , 𝜍 ∈ 𝑁 : 𝛼(ℎ(𝜚, 𝜍)) =

ℎ(𝛽(𝜚), 𝛾(𝜍)) = ℎ(0, 𝛾(𝜍)) = 0 

Thus ℎ(𝜚, 𝜍) ∈ ker𝛼. ∎ 
 
Theorem 3.2.2 Let  

  

 
be two crossed squares and  𝝓 = (𝛼, 𝛽, 𝛾, 𝛿): ℒ ⟶ ℒ∗ 
be a crossed square homomorphism. Then, 

 
 im𝝓 ≤ ℒ∗. 
 
 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝑀∗ 𝐿∗ 

𝜆′∗ 

𝑅∗ 

𝜆∗ 

𝜇∗ 

𝑁∗ 
ѵ∗ 

ℒ∗ = 

𝑘𝑒𝑟𝛽 𝑘𝑒𝑟𝛼 

𝑘𝑒𝑟𝛿 𝑘𝑒𝑟𝛾 

𝑘𝑒𝑟𝝓 ∶= 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝑀∗ 𝐿∗ 

𝜆′∗ 

𝑅∗ 

𝜆∗ 

𝜇∗ 

𝑁∗ 
ѵ∗ 

ℒ∗ = 

im𝛽 im𝛼 

im𝛿 im𝛾 

im𝝓 ∶= 
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Proof: By Proposition 3.4.28 in [23], we have: 
(im𝛼, im𝛽, 𝜆∗) ≤ (𝐿∗, 𝑀∗, 𝜆∗) 
(im𝛼, im𝛾, 𝜆′∗) ≤ (𝐿∗, 𝑀∗, 𝜆′∗) 
(im𝛽, im𝛿, 𝜇∗) ≤ (𝑀∗, 𝑅∗, 𝜇∗) 
(im𝛾, im𝛿, ѵ∗) ≤ (𝑁∗, 𝑅∗, ѵ∗) 
(im𝛼, im𝛿, 𝜇∗𝜆∗) ≤ (𝐿, 𝑅, 𝜇∗𝜆∗).  
Additionally, if 𝜚∗ ∈ im𝛽 and 𝜎∗ ∈ im𝛾, there exist 𝜚 ∈
𝑀 and 𝜎 ∈ 𝑁 such that 𝜚∗ = 𝛽(𝜚) and 𝜎∗ = 𝛾(𝜎). 

ℎ∗(𝜚∗, 𝜎∗) = ℎ∗(𝛽(𝜚), 𝛾(𝜎)) = 𝛼(ℎ(𝜚, 𝜎)). 

Thus ℎ∗(𝜚∗, 𝜎∗) ∈ im𝛼. 
As a consequence, im 𝝓 is shown to be a subcrossed 
square of ℒ∗. ∎ 
 
As a direct result of this theorem and the previous the-
orem, the exact sequence of crossed squares can be 
obtained. 

 

 
 
Theorem 3.2.3 Let 

                
be a crossed square.  
 

i) Given a family of sub-crossed squares 
 

 
 
of  ℒ, in this situation, then 

 
 ⋂𝒜𝑖  is a sub-crossed square of ℒ. 

ii) Given a family of crossed squares ideals 

 
of ℒ, then, 

 
⋂ℰ𝑖  is an ideal of  ℒ. 
 
Proof: As a result of Proposition 3.4.24 in [23] given 
for crossed modules, it is seen that each edge of the 
structures ⋂𝒜𝑖  and ⋂ℰ𝑖 are crossed modules. There-
fore, it is sufficient to check the following for the proof 
of this result.  

i) For all 𝜚 ∈ ⋂𝐵𝑖  and  𝜎 ∈ ⋂𝐶𝑖  since  
ℎ(𝜚, 𝜎) ∈ 𝐴𝑖  for each 𝑖 , it follows that 
ℎ(𝜚, 𝜎) ∈ ⋂𝐴𝑖. 

ii) For all 𝜉 ∈ 𝑀 and 𝜎 ∈ ⋂ 𝐽𝑖  since ℎ(𝜉, 𝜎) ∈
𝐸𝑖  for each 𝑖,  it follows that ℎ(𝜉, 𝜎) ∈ ⋂𝐸𝑖   

iii) For all  𝜚 ∈ ⋂ 𝐼𝑖 ,  𝜍 ∈ 𝑁  since ℎ(𝜚, 𝜍) ∈ 𝐸𝑖  
for each 𝑖, then ℎ(𝜚, 𝜍) ∈ ⋂𝐸𝑖  .∎ 

 
Theorem 3.2.4 Let 

 

im𝛽 

𝐿 

im𝛾 ker𝛾 

𝑖 𝛼 𝑘𝑒𝑟𝛼 

ker𝛽 

𝑁
_

ker𝛿_
2 

𝑅
_

im𝛿_
2 

𝑀
_

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ =
= 

𝐵𝑖  𝐴𝑖 

𝐷𝑖  𝐶𝑖  

𝒜𝑖 =
= 

ሩ𝐴𝑖  

ሩ𝐷𝑖  ሩ𝐶𝑖  

ሩ𝒜𝑖 ∶= 

 

ሩ𝐵𝑖  

𝐼𝑖  𝐸𝑖 

𝐾𝑖  𝐽𝑖  

ℰ𝑖 = 

ሩ𝐸𝑖  

ሩ𝐾𝑖  ሩ𝐽𝑖  

ሩℰ𝑖 ∶= 

 

ሩ𝐼𝑖  
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be a crossed square of commutative algebras. 

i) Given a sub-crossed square 𝒜 ≤ ℒ   and 
an ideal ℰ ⊴ ℒ, respectively.  

   

 
The crossed square 𝒜 + ℰ 

 
defined as their sum is a sub-crossed 
square of  ℒ.  

ii) If the crossed squares for each 𝑖,   

 
are ideal of ℒ, then the crossed square 

 
defined as their sum is also an ideal of  ℒ. 
 
Proof: From Theorem 3.4.26 in [23], it is seen that 
each edge of  𝒜 + ℰ  is a sub-crossed module of the 
corresponding edge of  ℒ , and each edge of ∑ℰ𝑖  is a 
crossed ideal of ℒ . Therefore, it is sufficient to show 
the following.  

i) For all 𝜚 ∈ 𝐵,𝜚′ ∈ 𝐼, 𝜎 ∈ 𝐶, 𝜎′ ∈ 𝐽:    
ℎ(𝜚 + 𝜚′, 𝜎 + 𝜎′) = ℎ(𝜚, 𝜎) + ℎ(𝜚, 𝜎′) 

                                  +ℎ(𝜚′, 𝜎) + ℎ(𝜚′ + 𝜎′)  
and since ℎ(𝜚, 𝜎) ∈ 𝐴 , ℎ(𝜚, 𝜎′) , ℎ(𝜚′, 𝜎) , 
ℎ( 𝜚′, 𝜎′) ∈ 𝐴 + 𝐸 , thus  ℎ(𝜚 + 𝜚′, 𝜎 +
𝜎′) ∈ 𝐴 + 𝐸. 

ii) For all 𝜉 ∈ 𝑀 and ∑𝜎𝑖 ∈ ∑ 𝐽𝑖: ℎ(𝜉, ∑ 𝜎𝑖) =
∑ℎ(𝜉, 𝜎𝑖) ∈ ∑𝐸𝑖 . Similarly, for all  𝜍 ∈ 𝑁 
and ∑𝜚𝑖 ∈ ∑ 𝐼𝑖:  
ℎ(∑ 𝜚𝑖 , 𝜍) = ∑ℎ(𝜚𝑖 , 𝜍) ∈ ∑𝐸𝑖  ∎ 
 

Theorem 3.2.5 Let 

 
be a crossed square of commutative algebras and 

 
an ideal of ℒ;   

For 𝜀 + 𝐸 ∈ 𝐿 𝐸⁄  , ∀ 𝜉 + 𝐼 ∈
𝑀
𝐼⁄  ve ∀ 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄  : 

𝜆̅ : 𝐿 𝐸⁄ ⟶ 𝑀
𝐼⁄  ,  𝜆

̅(𝜀 + 𝐸) = 𝜆(𝜀) + 𝐼 

𝜆′̅ : 𝐿 𝐸⁄ ⟶ 𝑁
𝐽⁄  ,  𝜆′̅(𝜀 + 𝐸) = 𝜆′(𝜀) + 𝐽 

𝜇̅ : 𝑀 𝐼⁄ ⟶
𝑅
𝐾⁄  ,  𝜇̅(𝜉 + 𝐼) = 𝜇(𝜉) + 𝐾 

ѵ̅ : 𝑁 𝐽⁄ ⟶
𝑅
𝐾⁄  ,  ѵ̅( 𝜍 + 𝐽) = ѵ( 𝜍) + 𝐾 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐵 𝐴 

𝐷 𝐶 

𝒜 = 

𝐼 𝐸 

𝐾 𝐽 

ℰ = 

𝐵 + 𝐼 𝐴 + 𝐸 

𝐷 + 𝐾 𝐶 + 𝐽 

𝒜 + ℰ ∶= 

𝐼𝑖  𝐸𝑖  

𝐾𝑖  𝐽𝑖  

ℰ𝑖 = 

෍𝐸𝑖  

෍𝐾𝑖  ෍𝐽𝑖  

෍ℰ𝑖 ∶= 

 

෍𝐼𝑖  

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐼 𝐸 

𝐾 𝐽 

ℰ = 
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ℎ̅ : 𝑀 𝐼⁄ ×
𝑁
𝐽⁄ ⟶

𝐿
𝐸⁄ ,  ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) = ℎ(𝜉, 𝜍) + 𝐸  

With these functions,  

 
the structure is a crossed square.  
  
Proof: 

i) From Proposition 3.5.1 in [23], it is seen 

that each edge of ℒ ℰ⁄  is a crossed module. 

It is sufficient to show that ℎ̅ is well-de-
fined and satisfies the conditions related 
to crossed squares.  
For all  𝜉 , 𝜉′ ∈ 𝑀  and  𝜍 , 𝜍′ ∈ 𝑁 , let 𝜉 +
𝐼 = 𝜉′ + 𝐼  and 𝜍 + 𝐽 = 𝜍′ + 𝐽 . Thus 𝜉 −
𝜉′ ∈ 𝐼 ,  𝜍 − 𝜍′ ∈ 𝐽 . Therefore, since 𝜉 −
𝜉′ ∈ 𝐼 ,  ℎ(𝜉 − 𝜉′, 𝜍) ∈ 𝐸 . Similarly,  𝜍 −
𝜍′ ∈ 𝐽,  ℎ(𝜉′, 𝜍 − 𝜍′) ∈ 𝐸. Thus, 
ℎ(𝜉 − 𝜉′, 𝜍) + ℎ(𝜉′, 𝜍 − 𝜍′) 
= ℎ(𝜉, 𝜍) − ℎ(𝜉′, 𝜍) + ℎ(𝜉′, 𝜍) − ℎ(𝜉′, 𝜍) 
                             = ℎ(𝜉, 𝜍) − ℎ(𝜉′, 𝜍′) ∈ 𝐸 
Therefore, ℎ(𝜉, 𝜍) + 𝐸 = ℎ(𝜉′, 𝜍′) + 𝐸,  
or equivalently  
ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) = ℎ̅(𝜉′ + 𝐼, 𝜍′ + 𝐽) . 
Hence, ℎ̅ is well-defined. 

ii) For all  𝑟 + 𝐾 ∈ 𝑅 𝐾⁄ ,  𝜀 + 𝐸 ∈ 𝐿 𝐸⁄  : 

𝜆̅((𝑟 + 𝐾) · (𝜀 + 𝐸)) = 𝜆̅(𝑟 · 𝜀 + 𝐸) 

                     = 𝜆(𝑟 · 𝜀) + 𝐼 = 𝑟 · 𝜆(𝜀) + 𝐼 
                     = (𝑟 + 𝐾) · (𝜆(𝜀) + 𝐼) 
                     = (𝑟 + 𝐾) · 𝜆̅(𝜀 + 𝐸). 
Similarly, 

𝜆′̅((𝑟 + 𝐾) · (𝜀 + 𝐸)) = 𝜆′̅(𝑟 · 𝜀 + 𝐸) 

                        = 𝜆′(𝑟 · 𝜀) + 𝐽 = 𝑟 · 𝜆′(𝜀) + 𝐽 
                                        = (𝑟 + 𝐾) · (𝜆′(𝜀) + 𝐽) 

                                        = (𝑟 + 𝐾) · 𝜆′̅(𝜀 + 𝐸). 

iii) For all 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄ , 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄ , 𝑘 ∈ 𝐾; 

𝑘ℎ̅( + 𝐼, 𝜍 + 𝐽) = 𝑘(ℎ(𝜉, 𝜍) + 𝐸) 
                    = 𝑘ℎ(𝜉, 𝜍) + 𝐸 = ℎ(𝑘𝜉, 𝜍) + 𝐸 
                    = ℎ(𝜉, 𝑘𝜍) + 𝐸 
                     = ℎ̅(𝑘𝜉 + 𝐼, 𝜍 + 𝐽) 
                     = ℎ̅(𝜉 + 𝐼, 𝑘𝜍 + 𝐽) 
                     = ℎ̅(𝑘(𝜉 + 𝐼), 𝜍 + 𝐽) 

                         = ℎ̅(𝜉 + 𝐼, 𝑘(𝜍 + 𝐽)). 

iv) For all 𝜉 + 𝐼 ,  𝜉′ + 𝐼 ∈ 𝑀 𝐼⁄  and 𝜍 + 𝐽 ∈
𝑁
𝐽⁄  ; 

ℎ̅(𝜉 + 𝐼 + 𝜉′ + 𝐼, 𝜍 + 𝐽) 
                                 = ℎ̅(𝜉 + 𝜉′ + 𝐼, 𝜍 + 𝐽) 

                 = ℎ(𝜉 + 𝜉′, 𝜍) + 𝐸 
                 = ℎ(𝜉, 𝜍) + ℎ(𝜉′, 𝜍) + 𝐸 

                 = ℎ(𝜉, 𝜍) + 𝐸 + ℎ(𝜉′, 𝜍) + 𝐸 
                 = ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) + ℎ̅(𝜉′ + 𝐼, 𝜍 + 𝐽). 

For all 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄  ,  𝜍 + 𝐽 and 𝜍′ + 𝐽 ∈ 𝑁 𝐽⁄  ;    

ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽 + 𝜍′ + 𝐽)

= ℎ̅(𝜉 + 𝐼, 𝜍 + 𝜍′ + 𝐽) 
                                                         = ℎ(𝜉, 𝜍 + 𝜍′) + 𝐸 
                                                    = ℎ(𝜉, 𝜍) + ℎ(𝜉, 𝜍′) + 𝐸 
                                             = ℎ(𝜉, 𝜍) + 𝐸 + ℎ(𝜉, 𝜍′) + 𝐸 

                 = ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) + ℎ̅(𝜉 + 𝐼, 𝜍′ + 𝐽). 

v) For all 𝑟 + 𝐾 ∈ 𝑅 𝐾⁄  , 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄  and 𝜍 +

𝐽 ∈ 𝑁 𝐽⁄  ;  

(𝑟 + 𝐾) · ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) 
                      = (𝑟 + 𝐾) · (ℎ(𝜉, 𝜍) + 𝐸) 

                                       = 𝑟 · ℎ(𝜉, 𝜍) + 𝐸 
                                       = ℎ(𝑟 · 𝜉, 𝜍) + 𝐸 
                                       = ℎ̅(𝑟 · 𝜉 + 𝐼, 𝜍 + 𝐽) 

                                       = ℎ̅((𝑟 + 𝐾) · (𝜉 + 𝐼), 𝜍 + 𝐽). 

Similarly, 

For all 𝑟 + 𝐾 ∈ 𝑅 𝐾⁄ , ∀ 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄   and 

 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄  ; 

(𝑟 + 𝐾) · ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) 
                       = (𝑟 + 𝐾) · (ℎ(𝜉, 𝜍) + 𝐸) 

                                       = 𝑟 · ℎ(𝜉, 𝜍) + 𝐸 
                                       = ℎ(𝜉, 𝑟 · 𝜍) + 𝐸 
                                       = ℎ̅(𝜉 + 𝐼, 𝑟 · 𝜍 + 𝐽) 

                                               = ℎ̅(𝜉 + 𝐼, (𝑟 + 𝐾) · (𝜍 + 𝐽)). 

 

vi) For all 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄ , 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄  ;     

𝜆̅(ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) = 𝜆̅(ℎ(𝜉, 𝜍) + 𝐸) 

                               = 𝜆(ℎ(𝜉, 𝜍)) + 𝐼 

                                                       = 𝜍 · 𝜉 + 𝐼 
                                       = (𝜍 + 𝐽) · (𝜉 + 𝐼). 

Similarly, 

𝜉 + 𝐼 ∈ 𝑀 𝐼⁄ , 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄  ; 

𝜆′̅(ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐽) = 𝜆′̅(ℎ(𝜉, 𝜍) + 𝐸) 

                 = 𝜆′(ℎ(𝜉, 𝜍)) + 𝐽 

                                         = 𝜉 · 𝜍 + 𝐽=(𝜉 + 𝐼) · (𝜍 + 𝐽). 
 

vii) For all 𝜀 + 𝐸 ∈ 𝐿 𝐸⁄  and 𝜍 + 𝐽 ∈ 𝑁 𝐽⁄  ;                   

ℎ̅(𝜆̅(𝜀 + 𝐸), 𝑛 + 𝐽) =  ℎ̅(𝜆(𝜀) + 𝐼, 𝜍 + 𝐽) 

                                      = ℎ(𝜆(𝜀), 𝜍) + 𝐸 
                                      = 𝜍 · 𝜀 + 𝐸 

                                                  = (𝜍 + 𝐽) · (𝜀 + 𝐸). 
 

Similarly, for all 𝜉 + 𝐼 ∈ 𝑀 𝐼⁄  and  𝜀 + 𝐸 ∈ 𝐿 𝐸⁄  ;               

ℎ (𝜉 + 𝐼, 𝜆′̅(𝜀 + 𝐸)) 

                          = ℎ̅(𝜉 + 𝐼, 𝜆′(𝜀) + 𝐽) 

                      = ℎ(𝜉, 𝜆′(𝜀)) + 𝐸 

                     = 𝜉 · 𝜀 + 𝐸 = (𝜉 + 𝐼) · (𝜀 + 𝐸). ∎ 

3.3. Quotient crossed squares of algebras 
 
In this subsection, the definition of quotient crossed 
squares of commutative algebras is provided. 

 

𝐿
𝐸⁄  

𝑅
𝐾⁄  𝑁

𝐽⁄  

ℒ
ℰ⁄ ∶= 

 

𝑀
𝐼⁄  

𝜆̅ 

𝜆′̅ 𝜇̅ 

ѵ̅ 
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Definition 3.3.1 Let ℰ ⊴ ℒ. The crossed square  ℒ ℰ⁄  

given in the theorem above is called the quotient of  ℒ 
by ℰ. 
 
Corollary 3.3.2 For a crossed square ℒ , a necessary 
and sufficient condition for ℰ to be an ideal of ℒ is that 
ℰ is equal to the kernel of a crossed square homomor-
phism 𝝓: ℒ ⟶ ℒ′. 
 

3.4. Isomorphism theorems for crossed 

squares of algebras 
 
In this subsection, the first, second, and third isomor-
phism theorems for crossed squares of unitary com-
mutative algebras are stated and proven. 

 
Theorem 3.4.1 First Isomorphism Theorem for 
Crossed Squares) Let 
 

and,  

 
are two crossed squares of commutative algebras and 
𝝓 = (𝛼, 𝛽, 𝛾, 𝛿): ℒ ⟶ ℒ∗  be a crossed square homo-

morphism. Then  ℒ 𝑘𝑒𝑟𝝓⁄ ≅ 𝑖 𝝓. 

 
Proof: From Theorem 3.6.1 in [23] for all  𝑙 + 𝑘𝑒𝑟𝛼 ∈
𝐿
𝑘𝑒𝑟𝛼⁄  , 𝜉 + 𝑘𝑒𝑟𝛽 ∈ 𝑀 𝑘𝑒𝑟𝛽⁄  , 𝜍 + 𝑘𝑒𝑟𝛾 ∈ 𝑁 𝑘𝑒𝑟𝛾⁄  and 

𝑟 + 𝑘𝑒𝑟𝛿 ∈ 𝑅 𝑘𝑒𝑟𝛿⁄  : 

𝛼̅ : 𝐿 𝑘𝑒𝑟𝛼⁄ ⟶ 𝑖 𝛼 ,  𝛼̅(𝜀 + 𝑘𝑒𝑟𝛼) = 𝛼(𝜀) 

𝛽̅ : 𝑀 𝑘𝑒𝑟𝛽⁄ ⟶ 𝑖 𝛽 ,   𝛽̅(𝜉 + 𝑘𝑒𝑟𝛽) = 𝛽(𝜉) 

𝛾̅ : 𝑁 𝑘𝑒𝑟𝛾⁄ ⟶ 𝑖 𝛾 ,  𝛾̅(𝜍 + 𝑘𝑒𝑟𝛾) = 𝛾(𝜍)  

𝛿̅ : 𝑅 𝑘𝑒𝑟𝛿⁄ ⟶ 𝑖 𝛿 ,  𝛿̅(𝑟 + 𝑘𝑒𝑟𝛿) = 𝛿(𝑟)  

Since the pair (𝛼̅, 𝛽̅), (𝛼̅, 𝛾̅), (𝛽̅, 𝛿̅), (𝛾̅, 𝛿̅) and (𝛼̅, 𝛿̅) are 
isomorphism of crossed modules, it is sufficient to ex-

amine the condition for the functions ℎ̅ : 𝑀 𝑘𝑒𝑟𝛽⁄ ×

𝑁
𝑘𝑒𝑟𝛾⁄ ⟶ 𝐿

𝑘𝑒𝑟𝛼⁄  and ℎ∗: 𝑖 𝛽 × 𝑖 𝛾 ⟶ 𝑖 𝛼. 

𝛼̅ (ℎ̅(𝜉 + 𝑘𝑒𝑟𝛽, 𝜍 + 𝑘𝑒𝑟𝛾)) = 𝛼̅(ℎ(𝜉, 𝜍) + 𝑘𝑒𝑟𝛼) 

                             = 𝛼(ℎ(𝜉, 𝜍)) =  ℎ∗(𝛽(𝜉), 𝛾(𝜍)) 

                             = ℎ∗ (𝛽̅(𝜉 + 𝑘𝑒𝑟𝛽), 𝛾̅(𝜍 + 𝑘𝑒𝑟𝛾)). ∎ 

 
Proposition 3.4.2 Let  

 
be a crossed square of algebras. In this situation, if 

 

 
𝒜 ≤ ℰ ⊴ ℒ and 𝒜 ⊴ ℒ, then 𝒜 ⊴ ℰ and ℰ 𝒜⁄ ⊴ ℒ 𝒜⁄ . 

 
Proof: Since 𝒜 ≤ ℰ, it is sufficient to show that  𝒜 ⊴
ℰ. 

i) If 𝐷 ≤ 𝐾 ⊴ 𝑅  and 𝐷 ⊴ 𝑅 , then 𝐷 ⊴ 𝐾, by 
Proposition 2.21 in [23]. 

ii) For all 𝑘 ∈ 𝐾 ,  𝜌 ∈ 𝐴 , 𝜚 ∈ 𝐵  and 𝜎 ∈ 𝐶 
since 𝑘 ∈ 𝑅:  
𝑘 · 𝜌 ∈ 𝐴, 𝑘 · 𝜚 ∈ 𝐵,  𝑘 · 𝜎 ∈ 𝐶.  

iii) For all 𝑑 ∈ 𝐷, 𝜌 ∈ 𝐸, 𝜚 ∈ 𝐼, 𝜎 ∈ 𝐽 since 𝜌 ∈
𝐿,  𝜚 ∈ 𝑀, 𝜎 ∈ 𝑁 and 𝒜 ⊴ ℒ: 
𝑑 · 𝜌 ∈ 𝐴, 𝑑 · 𝜚 ∈ 𝐵, 𝑑 · 𝜎 ∈ 𝐶. 

iv) For all 𝑖 ∈ 𝐼  and 𝜎 ∈ 𝐶 since 𝑖 ∈ 𝑀  
ℎ(𝑖, 𝜎) ∈ 𝐴. 

v) For all 𝜚 ∈ 𝐵  and 𝑗 ∈ 𝐽  since 𝑗 ∈ 𝑁  
ℎ(𝜚, 𝑗) ∈ 𝐴. 

Thus 𝒜 ⊴ ℋ.  

Now, let’s show that ℰ 𝒜⁄ ⊴ ℒ 𝒜⁄ .  

Since 𝐸 𝐴⁄ ⊆ 𝐿 𝐴⁄  ,   
𝐼
𝐵⁄ ⊆ 𝑀 𝐵⁄  ,  

𝐽
𝐶⁄  ⊆ 𝑁 𝐶⁄  , 

𝐾
𝐷⁄ ⊆ 𝑅 𝐷⁄  and ℰ 𝒜⁄  is a crossed square, and since the 

boundary homomorphism of ℰ 𝒜⁄  are restrictions of 

the boundary homomorphisms of ℒ 𝒜⁄ ,  ℰ 𝒜⁄ ≤ ℒ 𝒜⁄ . 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ =
= 

𝑀∗ 𝐿∗ 

𝜆′∗ 

𝑅∗ 

𝜆∗ 

𝜇∗ 

𝑁∗ 
ѵ∗ 

ℒ∗ = 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ = 

𝐼 𝐸 

𝐾 𝐽 

ℰ = 

𝐵 𝐴 

𝐷 𝐶 

𝒜 = 



S. ÇETİN et al. / Isomorphism Theorems for Crossed Squares of Commutative Algebras 

186 
 

i) By Proposition 2.21 in [23], 𝐾 𝐷⁄ ⊴ 𝑅 𝐷⁄ . 

ii) For all 𝑟 + 𝐷 ∈ 𝑅 𝐷⁄  , 𝜌 + 𝐴 ∈
𝐸
𝐴⁄  ,  𝜚 +

𝐵 ∈ 𝐼 𝐵⁄   and 𝜎 + 𝐶 ∈
𝐽
𝐶⁄  : 

(𝑟 + 𝐷) · (𝜌 + 𝐴) = 𝑟 · 𝜌 + 𝐴 ∈ 𝐸 𝐴⁄  , 

(𝑟 + 𝐷) · (𝜚 + 𝐵) = 𝑟 · 𝜚 + 𝐵 ∈ 𝐼 𝐵⁄  , 

(𝑟 + 𝐷) · (𝜎 + 𝐶) = 𝑟 · 𝜎 + 𝐶 ∈
𝐽
𝐶⁄  . 

iii) For all 𝑘 + 𝐷 ∈ 𝐾 𝐷⁄  , 𝜀 + 𝐴 ∈ 𝐿 𝐴⁄  , 𝜉 +

𝐵 ∈ 𝑀 𝐵⁄  , 𝜍 + 𝐶 ∈
𝑁
𝐶⁄  : 

(𝑘 + 𝐷) · (𝜀 + 𝐴) = 𝑘 · 𝜀 + 𝐴 ∈ 𝐸 𝐴⁄  , 

(𝑘 + 𝐷) · (𝜉 + 𝐵) = 𝑘 · 𝜉 + 𝐵 ∈ 𝐼 𝐵⁄  , 

(𝑘 + 𝐷) · (𝜍 + 𝐶) = 𝑘 · 𝜍 + 𝐶 ∈
𝐽
𝐶⁄  . 

iv) For all 𝜉 + 𝐵 ∈ 𝑀 𝐵⁄  , 𝑗 + 𝐶 ∈
𝐽
𝐶⁄  : 

ℎ̅(𝜉 + 𝐵, 𝑗 + 𝐶) = ℎ(𝜉, 𝑗) + 𝐴 ∈ 𝐸 𝐴⁄  . 

v) For all 𝑖 + 𝐵 ∈ 𝐼 𝐵⁄  , 𝜍 + 𝐶 ∈
𝑁
𝐶⁄ : 

ℎ̅(𝑖 + 𝐵, 𝜍 + 𝐶) = ℎ(𝑖, 𝜍) + 𝐴 ∈ 𝐸 𝐴⁄ . ∎ 

 
Theorem 3.4.3 (Second Isomorphism Theorem for 
Crossed Squares) Let 

 
be a crossed square of commutative algebras and  

    

 

 
ℒ
𝒜⁄
ℰ
𝒜⁄

⁄ ≅ ℒ ℰ⁄ . 

 

Proof: From Theorem 3.6.2 in [23], for all 𝜀 + 𝐴 +

𝐸
𝐴⁄ ∈

𝐿
𝐴⁄
𝐸
𝐴⁄

⁄ , 𝜉 + 𝐵 + 𝐼 𝐵⁄ ∈
𝑀
𝐵⁄
𝐼
𝐵⁄

⁄ , 𝜍 + 𝐶 +

𝐼
𝐶⁄ ∈

𝑁
𝐶⁄
𝐽
𝐶⁄

⁄  and 𝑟 + 𝐷 + 𝐾 𝐷⁄ ∈
𝑅
𝐷⁄
𝐾
𝐷⁄

⁄ :  

𝛼: 
𝐿
𝐴⁄
𝐸
𝐴⁄

⁄ ⟶ 𝐿
𝐸⁄  ,  𝛼(𝜀 + 𝐴 +

𝐸
𝐴⁄ ) = 𝜀 + 𝐸 

𝛽: 
𝑀
𝐵⁄
𝐼
𝐵⁄

⁄ ⟶ 𝑀
𝐼⁄  ,  𝛽(𝜉 + 𝐵 +

𝐼
𝐵⁄ ) = 𝜉 + 𝐼 

𝛾: 
𝑁
𝐶⁄
𝐽
𝐶⁄

⁄ ⟶ 𝑁
𝐽⁄  ,  𝛾(𝜍 + 𝐶 +

𝐼
𝐶⁄ ) = 𝜍 + 𝐽 

𝛿: 
𝑅
𝐷⁄
𝐾
𝐷⁄

⁄ ⟶ 𝑅 𝐾⁄  ,  𝛿(𝑟 + 𝐷 +
𝐾
𝐷⁄ ) = 𝑟 + 𝐾 

since the pair (𝛼, 𝛽), (𝛼, 𝛾), (𝛽, 𝛿), (𝛾, 𝛿) and (𝛼, 𝛿) are 
isomorphisms of crossed modules, it is sufficient to ex-

amine the condition for the functions  ℎ̿ : 
𝑀
𝐵⁄
𝐼
𝐵⁄

⁄ ×

𝑁
𝐶⁄
𝐽
𝐶⁄

⁄ ⟶ 
𝐿
𝐴⁄
𝐸
𝐴⁄

⁄ and  ℎ̅ : 𝑀 𝐼⁄ ×
𝑁
𝐽⁄  ⟶ 𝐿 𝐸⁄ .  

𝛼 (ℎ̿ (𝜉 + 𝐵 + 𝐼 𝐵⁄ , 𝜍 + 𝐶 +
𝐽
𝐶⁄ )) 

                                 = 𝛼(ℎ̅(𝜉 + 𝐵, 𝜍 + 𝐶) + 𝐸 𝐴⁄ ) 

                                 = 𝛼(ℎ(𝜉, 𝜍) + 𝐴 + 𝐸 𝐴⁄ ) 

                                 = ℎ(𝜉, 𝜍) + 𝐸 
                  = ℎ̅(𝜉 + 𝐼, 𝜍 + 𝐵) 

                  = ℎ̅ (𝛽(𝜉 + 𝐵 + 𝐼 𝐵⁄ ), 𝛾 (𝜍 + 𝐶 +
𝐽
𝐶⁄ )). ∎ 

 
Theorem 3.4.4 (Third Isomorphism Theorem for 
Crossed Squares) Let 

 
be a crossed square of commutative algebras.  And, 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ =
= 

𝐼 𝐸 

𝐾 𝐽 

ℰ = 

𝐵 𝐴 

𝐷 𝐶 

𝒜 =
= 

𝑀 𝐿 

𝜆′ 

𝑅 

𝜆 

𝜇 

𝑁 
ѵ 

ℒ =
= 
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if  𝒜 ≤ ℒ and ℰ ⊴  ℒ, then 𝒜 𝒜 ∩ ℰ⁄ ≅ 𝒜 + ℰ ℰ⁄ . 

 
Proof: By Theorem 3.6.3 in [23], 

𝛼: 𝐴 𝐴 ∩ 𝐸⁄ ⟶ 𝐴 + 𝐸
𝐸⁄  ,  𝛼(𝜌 + 𝐴 ∩ 𝐸) = 𝜌 + 𝐸 

𝛽: 𝐵 𝐵 ∩ 𝐼⁄ ⟶ 𝐵 + 𝐼 𝐼⁄  ,  𝛽(𝜚 + 𝐵 ∩ 𝐼) = 𝜚 + 𝐼 

𝛾: 𝐶 𝐶 ∩ 𝐽⁄ ⟶ 
𝐶 + 𝐽

𝐽⁄  ,  𝛾(𝜎 + 𝐶 ∩ 𝐽) = 𝜎 + 𝐽 

𝛿: 𝐷 𝐷 ∩ 𝐾⁄ ⟶ 𝐷 + 𝐾
𝐾⁄  ,  𝛿(𝑑 + 𝐷 ∩ 𝐾) = 𝑟 + 𝐾 

for all 𝜌 + 𝐴 ∩ 𝐸 ∈ 𝐴 𝐴 ∩ 𝐸⁄  ,  𝜚 + 𝐵 ∩ 𝐼 ∈ 𝐵 𝐵 ∩ 𝐼⁄  , 

𝜎 + 𝐶 ∩ 𝐽 ∈ 𝐶 𝐶 ∩ 𝐽⁄  and 𝑑 + 𝐷 ∩ 𝐾 ∈ 𝐷 𝐷 ∩ 𝐾⁄ . 

Since the pair (𝛼, 𝛽) ,   (𝛼, 𝛾) ,   (𝛽, 𝛿) ,  (𝛾, 𝛿)  and (𝛼, 𝛿) 
are isomorphisms of crossed modules, it is sufficient 

to show the condition for the functions  ℎ̅1 : 
𝐵
𝐵 ∩ 𝐼⁄ ×

𝐶
𝐶 ∩ 𝐽⁄ ⟶ 𝐴

𝐴 ∩ 𝐸⁄  and ℎ̅2 : 
𝐵 + 𝐼

𝐼⁄ ×
𝐶 + 𝐽

𝐽⁄ ⟶

𝐴 + 𝐸
𝐸⁄ .  

𝛼 (ℎ̅1(𝜚 + 𝐵 ∩ 𝐼, 𝜎 + 𝐶 ∩ 𝐽)) = 𝛼(ℎ(𝜚, 𝜎) + 𝐴 ∩ 𝐸) 

                                   = ℎ(𝜚, 𝜎) + 𝐸 = ℎ̅2(𝜚 + 𝐼, 𝜎 + 𝐽)      

                                   = ℎ̅2(𝛽(𝜚 + 𝐵 ∩ 𝐼), 𝛾(𝜎 + 𝐶 ∩ 𝐽)). 

∎ 

4. Discussion and Conclusion  
 
In this study, the isomorphism theorems, which hold 
significant importance in the theory of crossed mod-
ules of algebras in algebra theory, are explicitly proven 
since they have only been stated in the literature. Sub-
sequently, by using the isomorphism theorems of 
crossed modules of algebras, the isomorphism theo-
rems in the crossed squares of commutative algebras 
are stated and proven. Furthermore, to achieve this, 
several auxiliary concepts, such as the quotient 
crossed square, which had not been previously de-
fined in these structures, are introduced, and their fun-
damental properties are examined. 
This study can be adapted or generalized to various 
other structures in numerous ways. For instance, one 
could investigate whether the isomorphism theorems 
apply to structures similar to crossed squares, such as 
crossed cubes and crossed n-cubes, or examine certain 

algebraic results, whether found in this thesis or not, 
within the category of crossed squares. 
It is believed that this work will serve as a fundamen-
tal resource in mathematics and engineering, espe-
cially in the fields of algebra and algebraic topology, 
and will provide a valuable contribution to advanced 
studies on commutative algebras. Additionally, it will 
shed significant light on the discovery of numerous 
new topics and guide contemporary structures. 
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Directive" are complied with, and that none of the ac-
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